
What’s Going On? Learning Communication Rules In
Edge Networks

Srikanth Kandula
MIT CSAIL

kandula@mit.edu

Ranveer Chandra
Microsoft Research

ranveer@microsoft.com

Dina Katabi
MIT CSAIL
dk@mit.edu

ABSTRACT

Existing tra�c analysis tools focus on tra�c volume. �ey identify
the heavy-hitters—�ows that exchange high volumes of data, yet fail
to identify the structure implicit in network tra�c—do certain �ows
happen before, a
er or along with each other repeatedly over time?
Sincemost tra�c is generated by applications (web browsing, email,
pp), network tra�c tends to be governed by a set of underlying
rules. Malicious tra�c such as network-wide scans for vulnerable
hosts (mySQLbot) also presents distinct patterns.

We present eXpose, a technique to learn the underlying rules that
govern communication over a network. From packet timing infor-
mation, eXpose learns rules for network communication that may
be spread across multiple hosts, protocols or applications. Our key
contribution is a novel statistical rule mining technique to extract
signi�cant communication patterns in a packet tracewithout explic-
itly being told what to look for. Going beyond rules involving �ow
pairs, eXpose introduces templates to systematically abstract away
parts of �ows thereby capturing rules that are otherwise unidenti�-
able. Deployments within our lab andwithin a large enterprise show
that eXpose discovers rules that help with network monitoring, di-
agnosis, and intrusion detection with few false positives.

Categories and Subject Descriptors

C.. [Computer Communication Networks]: Network Protocols;
G. [Probability and Statistics]: Correlation

General Terms

Algorithms, Design, Management, Measurement, Performance

1. INTRODUCTION
Perhaps the single de�ning aspect of edge networks today is

that they are complex to manage. Today’s enterprise and campus
networks are built frommultiple applications, protocols and servers
which interact in unpredictable ways. Once the network is set-up,
there are few tools that let an administrator keep track with what
is going on in the network. Con�guration errors seep in, so
ware
gets upgraded and servers get phased out leaving the administrator
with the unenviable job of ensuring that tra�c in the network
conforms to a plan. Of course, scripting cron jobs and correlating
server logs to �gure out what’s going on is a tedious option that
does not scale [].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

Weadvocate an alternative approach tomanage the complexity in
edge networks. Suppose we shi
 focus away from individual servers
and con�gurations and focus directly on packets on the wire. Sup-
pose that from a packet trace, we could learn communication rules
that underlie a majority of the user activities present in that trace.
Such a broad picture would provide an administrator with a reality-
check; he can see how tra�c for major applications traverses the
network, identify con�guration errors or unwarranted communi-
cation, and perhaps detect malicious activity. �is paper is a �rst
step towards this goal.

Existing trace analysis tools however cannot reveal to an admin-
istrator the communication patterns in his network. �ey focus on
tra�c volume and do not reveal the implicit structure in edge net-
work tra�c. Tools like MRTG [] andNetFlowAnalyzers focus on
the heavy hitters, i.e., �ows that exchange a lot of data. �ey may
report that  of the tra�c is to the web-server and that  of
the tra�c uses TCP. Advanced tools like AutoFocus [] adapt their
granularity of search. �ey can reveal IP subnets (e.g, .../) or
port ranges that contribute lots of tra�c.

�is paper introduces eXpose, a new analysis technique that ex-
tracts signi�cant communication rules in a network trace, without
being told what to look for. A communication rule is a predicate
such as F lowi.new ⇒ F lowj .new indicating that whenever a
new F lowi connection happens, a new F lowj connection is likely
to happen. For example, eXpose would deduce rules like a DNS
connection o
en precedes new connections, an AFS client talks to
the root-server (port ) before picking �les up from the appro-
priate volume-servers (port ), an End-Point-Mapper RPC call
precedes mail fetch from Microso
 Exchange Servers, and viruses
such as the mySQLbot probe �ood the entire network looking for
vulnerable mySQL servers.

Our key insight is simple–if a group of �ows consistently occurs
together, the group is likely dependent. Of course, correlation does
not always imply dependence, but this is the best one can do lacking
knowledge of the applications and the network layout. �e chal-
lenge lies in applying this insight to a network trace where millions
of �ows show up every few hours. To do this, eXpose selectively bi-
ases the potential rules it evaluates and does not evaluate rule types
that are unlikely to yield useful information. Second, eXpose ab-
stracts away extraneous �ow details to make useful patterns more
discernible. �ird, eXpose uses an appropriate statistical measure
to score the candidate rules and mines e�ciently. Finally, eXpose
aggregates the discovered rules into a small number of useful clus-
ters that an administrator can corroborate and use.

Not all dependencies are visible at the granularity of a �ow. For
example, suppose whenever a client talks to a sales server, the server
fetches data from a backend database. Yet no individual client ac-
cesses the server o
en enough to create a signi�cant rule. To cap-
ture such rules that are otherwise unidenti�able, eXpose introduces
templates that systematically abstract away parts of �ows. For ex-
ample, one of our templates replaces the client’s IP with a wild-card
character creating a generic whenever any client talks to the sales

Our Lab Network

Internet Internet

Conference

Wireless LANs

(Sigcomm’04,

OSDI’06)

Our Lab Servers

(Web, NFS, AFS, DNS)

Enterprise Research LAN

Enterprise Corporate

Network

(a) Lab’s Access Link (b) Access Link of Conference LANs (c) Before Lab’s Enterprise Servers (d) Within a Major Enterprise

Figure : We evaluated eXpose on traces collected at each of the locations above (shown by the blue circle). �e locations included access links at a large
university and at two di�erent conference wireless LANs and, links carrying enterprise tra�c towards servers at a university and at a large company.

server. Leveraging these generics, eXpose searches for rules like
∗ : Sales ⇒ Sales : Database, meaning whenever any one of the
clients talks to the Sales server, the Sales server talks to its Database.
We showhow to apply templateswithout any prior knowledge about
the hosts involved in the trace and �nd that these templates improve
the expressiveness of our rules considerably.

eXpose has three unique characteristics. First, eXpose extracts
communication rules with zero guidance, i.e., without being told
what to look for. Hence, eXpose can identify communication
rules that are unknown to the administrator, including con�gura-
tion errors, anomalies, and exploits. Second, while prior work [,
] focuses on individual applications, a single source-destination
pair [], or the dependencies for clients accessing a given server [],
eXpose learns patterns that may involve multiple applications,
servers or protocols. Extracting this broad picture by applying prior
techniques that learn rules one application at a time or one server at
a time does not scale and may miss out on important dependencies
if the admin forgets to point the tool towards the correct servers (or
applications). �ird, eXpose is in a sense future-proof. By making
minimal assumptions about applications, protocols and servers, eX-
pose’s techniques to learn rules can deal with evolving networks.

We deployed eXpose on the server-facing links of two edge net-
works, in the CSAIL lab at MIT and in the Microso
 Research net-
work for a couple of months. We also run eXpose on traces collected
on the access-links (i.e., Internet facing links) of our lab at MIT and
two conference hot-spots. We corroborated rules output by eXpose
with the admins at the corresponding locations and aggressively re-
port every rule that we could not explain as a false positive. Our
results show the following:

• eXpose discovered rules for enterprise con�gurations and
protocols that are deployed and used in mainstream operat-
ing systems that we did not know existed, such as Nagios []
monitors and link-level multicast name resolution [].

• eXpose discovered rules for the major applications such as
email, web, �le-servers, instant messengers, peer-to-peer and
multimedia distribution in each of the two edge networks.

• eXpose detected con�guration errors leading to bug �xes.
• eXpose detected malicious tra�c, machines infected by tro-

jans, mysql bot scans and ssh scans targeting key routers.
• eXpose mines for rules in time that is much smaller than

the duration of traces (. – .). �is means that al-
though our current implementation works o�ine by feeding
o� packet traces, an online implementation is feasible.

We begin by describing eXpose’s learning algorithm.

2. LEARNING COMMUNICATIONRULES
Our goal is the following: Given a packet trace, discover the com-

munication rules inside the corresponding network. We de�ne a

communication rule as a dependency between �ow activities (see
Table ). A communication rule X ⇒ Y occurs in the trace if �ow
activity X implies �ow activity Y . For example, X may be a new
http connection from a client to a web-server, which implies Y , a
new connection from the client to the DNS server. �e rules them-
selves are probabilistic to mimic the underlying phenomena. For
example, new connections trigger DNS lookups only upon a miss
in the local cache. Some communication rules are at the granu-
larity of �ows such as whenever Host talks to Host, Host talks
to Host; whereas others are more abstract, such as whenever any
client talks to the web-server W, the web-server talks to its backend
B. We call the latter generic rules and de�ne simple templates for
such generic rules. Our tool discovers all signi�cant instantiations
of these templates in the given packet trace. Some of the rules we
discover describe the normal behavior of the network, while others
identify attacks and mis-con�gurations in the network.

2.1 From Dependency to Association
How do we detect �ow dependencies in a trace? Lacking knowl-

edge of the applications and the network layout, it is impossible to
say that two activities seen in a trace are dependent. �e best one
can do is to �nd correlated occurrences in the trace. At a high-level,
our idea is to identify �ow groups that co-occurwith frequency sig-
ni�cantly greater than chance and repeat consistently over time.

But there are simply too many �ows in a trace, for e.g., in all of
the links that we collected traces at (see Fig. ), we saw more than
105 �ows within a few hours. Examining every pair of �ows for
dependence doesn’t scale, let alone examining larger groups of �ows.

To design a scalable solution, we make a Markovian assumption.
Whether a �ow is absent, present, or new at any point of time is only
in�uenced by �ows that have recently occurred. Said di�erently, we
partition the trace into time windows and look for dependencies
that occurwithin the same time window (default window size is 1s).
�is assumption focuses on identifying dependencies that are sepa-
rated only by a short period of time. We believe that most network
dependencies are machine-generated and are indeed separated by
a short period of time. For example, we learnt the communication
rules for BitTorrent, viruses and, email clients (See §) by looking
within 1s-wide windows. A systematic evaluation of sensitivity to
window size is in §.. We acknowledge, however, that some �ow
dependencies occur over longer periods. For example, the gap be-
tween a user reading a web-page and clicking on a link may exceed
s. Extending our technique to look at dependencies over multiple
time windows is possible but is outside the scope of this paper.

Using this Markovian assumption, eXpose converts the input
trace into an activity matrix. �e rows of the activity matrix de-
note time windows in the trace, whereas the columns correspond to
�ows in the trace. Each entry in the matrix takes one of three values:
new, present or absent denoting the activity of a �ow (column) in

Term Meaning

Flow A �ve-tuple <local IP, local Port, remote IP, remote Port, Protocol>
Flow Activity A �ow is either absent, present or new. Note new ⊂ present.
Rule X ⇒ Y X, Y are tuples of <�ow, �ow_activity>. X ⇒ Y is a strong rule if whenever �ow FX has activity AX , �ow FY is more likely to

have activity AY than normal.
Activity Matrix Rows denote time windows, columns denote �ows in the trace. Each entry holds the activity of a �ow (column) in the corresponding

time window (row)

Table : De�nitions used in this paper

…

flowi.new →
flowj.present

...

Packet

Trace

flow1 … flowK

time1
present |new

…

timeR

Activity Matrix Rules for Related
Flows

Figure : Schematic of eXpose’s work-�ow.

a time window (row). We observe that this representation (Fig. )
is typical of a data-mining problem. Hence eXpose �nds dependent
�ows by mining for association rules [] in the activity matrix.

Flows and their activities: To be concrete, we identify a �ow in
terms of its source and destination IPs, ports, and protocol. A �ow
is present in a time-window if it sends non-zero packets during that
period. For connection-oriented �ows like TCP that have an explicit
start and end (syn, �n), a �ow is new in the time window that over-
laps its beginning. For datagram-based �ows and also when traces
don’t have detailed headers, a �ow is new if it becomes present a
er
a period of inactivity. Note that if a �ow is new, it is also present in
that time window (new⊂ present).

2.2 Significance of a Communication Rule
Howdoes one tell which dependencies are signi�cant?Onemight

be tempted to say that a communication rule, X ⇒ Y , exists if X
and Y occur together o
en, that is if Prob(X ∧ Y) is high. �is
intuition is incorrect, however, and causes both false positives and
false negatives. Two dependent �ows may always occur together in
the trace, yet happen so rarely (lowProb(X∧Y)) that their depen-
dence is not identi�ed. On the other hand, an unrelatedpair of �ows
can have a high joint probability simply because one of the �ows is
very popular.

We take an information-theoretic approach to identify statisti-
cally signi�cant dependencies—pairs of �ows that havemuchhigher
joint probabilities than merely due to chance. Speci�cally, we set up
candidate rules of the type X ⇒ Y , where both X and Y are tuples
of <�ow, �ow-activity> and use JMeasure [], a known metric in
the data-mining community, to score candidate rules.

JMeasure(X ⇒ Y) = I(Y ; X = 1), ()

where I(Y ; X = 1) is the mutual information, i.e.:

I(Y ;X = 1) = P (X∧Y) log
P (Y |X)

P (Y)
+P (X∧¬Y) log

P (¬Y |X)

P (¬Y)
.

Intuitively, the JMeasure score of rule X ⇒ Y is the reduction
in entropy of the random variable Y when the random variable X
happens. If X and Y were independent, the JMeasure score would
be zero. At the other extreme, if Y is completely dependent on X,
the JMeasure takes the largest possible value, P (X) log 1

P (Y)
.

Unlike other measures of statistical signi�cance, such as the Chi-
Square Test [] and the F-Measure [], the JMeasure score does en-
code the directionality of the relationship. �is is crucial becausewe
expect dependencies in practice to be uni-directional. For example,
a HTTP connection may trigger a DNS connection but not all DNS
connections happen due to HTTP.

Unfortunately, the JMeasure rule that works well for general data-
mining comes short when identifying network dependencies for the
following reasons.

(a) Negative Correlations: Reduction in entropy occurs in one of
two ways. In the extreme, when X happens, Y may always happen
or Y may never happen. Unfortunately, JMeasure does not di�er-
entiate between these two cases and scores both highly. While the
�rst type of rules are interesting as they correspond to co-occurring
�ows which are likely to be true dependencies, the latter kind hap-
pens trivially o
en in network traces and are generally notmeaning-
ful. �ere are somany �ows that aremuch shorter than the duration
of the trace (low P (Y)) that it is easy to �nd another �ow X that
happens only when Y does not occur, spuriously leading to a high
JMeasure rule. To avoid such rules, we only use the positive corre-
lation part of the JMeasure rule:

Score(X ⇒ Y) = P (X ∧ Y) log
P (Y |X)

P (Y)
. ()

(b) Long-Running Flows: Long-duration �ows pose a challenge
unique to mining network traces. Every one of our traces had �ows
that were contiguously active over a signi�cant part of the trace–
long downloads (FTP, SMB) and long-running shell sessions (telnet,
ssh, remote-desktop). Given the prevalence of short duration �ows,
it is o
en the case that a short �ow (X) happens only when a long
running �ow (Y) is active. �e above scoring technique scores this
pair highly, yielding a spurious rule. To avoid such rules we em-
ploy the following principles. First, we note that spurious rules like
the above happen only when the activity on either side (bothX and
Y) is present. Long-running �ows are present in many more time-
windows than they are new, and a short �ow that starts many times,
i.e., has many new time-windows, is unlikely to completely coincide
with a long �ow. So, we prefer to report rules involving present ac-
tivities only when there is little mis-match between the frequencies

on either side: 1/3 ≤ P (X)
P (Y)

≤ 3. Second, we do not report rules

involving �ows that happen inmore than 90% of the time-windows
of the trace. It is unlikely that anything reasonable can be said about
such dominant �ows.

(c) Too Many Possibilities: Any statistical test, including our tech-
nique, is based on a simple principle. How likely is the null hypoth-
esis (in this context, the hypothesis thatX and Y are independent)
given the score? If a rule has a score value that makes the probabil-
ity of the null hypothesis vanishingly small, the rule is reported as
statistically signi�cant. Unfortunately, in network mining there is
a complementary challenge. �ere are so many �ows, and so many
potential rules, that even if each null hypothesis has very small prob-
ability, overall the likelihood of false positives is quite large. eXpose
selectively biases the possible rules it considers to reduce false pos-
itives. First, we note that a rule involving two �ows can have upto
four unique IPs–the sources and destinations of the two �ows. It is
unlikely that �owswhichhave none of their ends in common are de-
pendent (example: does IP A talk to IP B whenever IP C talks to IP
D?). Hence, we only report rules involving �ows that have at-least
one IP address in common. Not only does this shi
 focus away from

potential rules that are more likely to be false-positives (see §. for
evaluation), but it also greatly reduces the number of potential rules,
improving scalability. Second, we note that most �ows happen in
such few time windows that there is too little data to predict rela-
tionships for such short �ows. So, instead, we focus on the heavy
tail– theK most active �ows in the packet trace. K can be set by the
network administrator, otherwise it defaults to  �ows. See §.
for an analysis of eXpose’s sensitivity to K.

(d) Cut-o�: eXpose only reports rules that have a signi�cance
score (Eq. ) greater than a thresholdαwhich defaults to .01nats. 1
To put this threshold in perspective, note that if two �ows are
completely dependent on each other, i.e., P (X) = P (Y) =
P (X ∧ Y), then both rules X ⇒ Y and Y ⇒ X will be
output for all non-trivial values of P (X). More interestingly, for
general �ows such as the �ows from a client to a DNS and an
HTTP server, the rule HTTP ⇒ DNS will be output only when
two conditions hold: () co-occurrence better than chance, i.e.,
P (DNS|HTTP) > P (DNS) and, () frequent co-occurrence,
i.e., P (HTTP ∧ DNS) > .01

log P (DNS|HTTP)−log P (DNS)
. Note

the interplay between the two conditions, the more likely a DNS
�ow is when an HTTP �ow happens, the larger the gap between
P (DNS|HTTP) and P (DNS), the less stringent the constraint
on frequency of co-occurrence.

2.3 Generic Communication Rules
So far, we have been looking at dependencies between pairs of

�ows. But, not all dependencies are visible at this granularity. For
example, suppose whenever a client talks to a sales server, the server
fetches data from a backend database. Clearly this is an impor-
tant dependency, yet it may be missed if no single client accesses
the server frequently (recall that we score based on �ow frequency).
Our idea is to relax the granularity at which we look for dependen-
cies. In particular, we report the above dependence as long as all the
clients together access the server o
en enough. To achieve this we
introduce generics.

�e idea behind generics is similar to wild-cards in regular ex-
pression matching—relax some of the �elds in a �ow’s �ve-tuple.
As an example, whenever the �ow Client.SomePort : Sales.80
is active in a time window, we introduce a generic ∗.∗ : Sales.80
as being active in that time window. Further, we consider rules like

∗ .∗ : Sales.80 ⇒ Sales.∗ : Database.∗, ()

and say that this rule happens whenever some client talks to Sales
and Sales talks to the Database within the same time window. A
more interesting example of a generic rule is:

∗ .∗ : WebServer.80 ⇒ ∗.∗ : DNS.53. ()

For rules that relax IPs on both sides, we say the rule happens in a
time window only if the missing �elds on both sides are the same.
It does not matter which client(s) lead to the two relaxed �ows, as
long as there is at least one client that talked to both the web-server
and the DNS in that time-window.

2.3.1 Templates for Generic Rules

When to instantiate generics and how to combine them into com-
munication rules? Relaxing exhaustively explodes the number of
�ows and rules. Instead, we de�ne simple templates for relaxing
�ows and for combining the generics into rules. Whenever a �ow
matches a relaxation template, we instantiate the corresponding
generic. Rule templates prescribe which combinations of generics

nats stands for units of entropy when natural logarithms are used.
For e.g., log(2) = .693 nats.

0.0685

0.0029

0.0000

0.0003

0.0071

0 0.02 0.04 0.06 0.08

LabAccess

LabEnterprise

HotSpot-1

HotSpot-2

Enterprise

Ratio of running time –Improved/Naive
Figure:Measurement results compare the computational cost of eXpose’s
mining algorithm with that of a baseline.

and �ows are worth considering as a communication rule. We in-
troduce one relaxation template and two rule templates. Our tool
automatically learns all signi�cant rules that are formed through in-
stantiations of these templates in the packet trace.

Relaxation Template to Create Generics: Whenever one end of a
�ow is a well-known port ( for http,  for DNS, /etc/services has
exhaustive list), we relax the IP at the opposite (client) end. �e
idea is to create a generic that abstracts away the client’s IP and fo-
cuses on all accesses to the server. Instead of relying only on the
standard list of well-known server ports, we learn from each trace
the ports used by a large number of �ows in that trace and consider
them well-known. �is lets us learn the ports used by peer-to-peer
applications. Finally, ports that are not in the well-known list are
considered to be the same for the purpose of matching.

Rule-Templates to buildRules fromGenerics and Flows: Our �rst
template helps to identify server’s backend dependencies. Analo-
gous to the example in Eq. , this template allows rules that com-
bine a �ow with a generic if the un-relaxed IP in the generic (i.e.,
the IP corresponding to the server) matches one of the IPs in the
�ow. �e second template identi�es dependencies that are visible
to a client. Analogous to the example in Eq. , this template allows
rules involving two generics. Such a rule is active in a time window
only if at-least one client accesses both the server IPs/Ports in that
time window.

2.3.2 Scoring Generic Rules

Rules involving generics, such as the example in Eq. , become
more interesting asmore unique clients conform to the rule. Hence,
we supplement statistical signi�cance by a support metric. �e sup-
port of a rule involving one ormore generics is the number of unique
clients whose communication can be abstracted in the form of the
rule. Clearly, a generic rule with support 1 is a trivial generalization.
Hence, we only report generic rules that have support greater than
a threshold β (default 3).

3. ALGORITHMS TO MINE FOR RULES
So far we introduced generics and the scoring function for sta-

tistical signi�cance but how do we mine for communication rules?
�e costliest part of rule-mining, in our context, involves computing
how o
en each candidate rule occurs in the trace. For a simple rule
that involves only two �ows, we need to count the time-windows
when both �ows happen; if the rule involves generics, we need to
count time windows that contain �owsmatching the generics as de-
scribed above.

Our key contribution here is a more e�cient way to compute fre-
quencies for all potential rules. Recall that we focus on the topK ac-
tive �ows (and generics) a
er discarding the really long �ows (those
that happen in more than  of the time windows). Suppose the
trace consists of W consecutive time windows. Naively checking
whether each of theO(K2) pairs of �ows occur in each of the time-
windows, takes O(W ∗K2) time. �e square term, K2, dominates
the running time and can be quite long. Instead, we observe that in

any time-window only a handful of theK �ows are active. �us, in-
stead of counting frequencies of all K2 pairs at each time-window,
we need only count �ow pairs that are active in a time window. If
thewth window has Sw �ows, our algorithm computes frequencies

for all rules in O(
PW

w=1 Sw
2) time. Fig.  shows the improvement

in computational e�ciency with this algorithm on our traces. For
concreteness, we show the pseudo-code of our algorithm.

Procedure  ExtractCommRules(Packet Trace)

: Find F – the set of top K active �ows and generics
: Compute Activity Matrix M for all �ows in F
: Use Rule Templates to Create Candidate Rule setR
: for all Time Windows w ∈ rows (M) do
: for all <�ow, activity> tuples X, Y ∈ Window w do
: if X ⇒ Y ∈ Candidate RulesR then
: UpdateStats Freq(X ⇒ Y)
: end if
: end for
: end for
: for all X ⇒ Y rules in Candidate RulesR do
: if Score(X ⇒ Y) > α, Support(X ⇒ Y) > β then
: Output Rule X ⇒ Y as Signi�cant
: end if
: end for

3.1 Composing Communication Rules
�e communication rules discussed above relate only a pair of

�ows. Our algorithm and statistical signi�cance score naturally ex-
tend to rules involving more than two �ows. To see this, note that
if the le
 side of the rule X ⇒ Y were to be replaced with a con-
junction X1 ∧ X2 ∧ · · · ∧ XN ⇒ Y , both the algorithm and the
signi�cance score still apply.

�e trade-o� is computational complexity versus rule exhaustive-
ness. Looking for rules involving up to N �ows would roughly
take O(W ∗ KN) time, since we would have to check each of
the KN �ow groups generated from the top K �ows on each of
the W windows in the trace. On the other hand, doing so would
help only when a set of �ows are related but none of the pair-
wise relationships are signi�cant; for e.g., say F3 is present only
when both F1 is new and F2 is present and never otherwise. Here,
F1.new ∧ F2.present ⇒ F3.present is a signi�cant rule but nei-
ther of the pair-wise rules are signi�cant enough. We believe in Oc-
cam’s razor, themore complicated a rule, the less likely it would hap-
pen; hence we focus on pair-wise rules.

Complementary to rule exhaustiveness is the problem of group-
ing similar rules. Our analysis generates hundreds of statistically
signi�cant rules on a packet trace; hence it is worthwhile to attempt
clustering similar rules into easier-to-understand groups. We found
two techniques to be helpful. �e �rst is rather simple. We trans-
form the discovered rules into a rule-graph, wherein each rule is a
directed edge joining the nodes corresponding to the <�ow, activ-
ity> tuples that comprise the rule. We then take a transitive clo-
sure of the rule-graph to identify clusters of rules that involve re-
lated �ows, for e.g., X ⇒ Y1, X ⇒ Y2, Y1 ⇒ Z will belong to
the same transitive closure. �e second technique is more complex
and is motivated by our observation that the rule-graph consists of
highly clustered components that are connected by “weak” edges,
i.e., rules with low statistical signi�cance. Hence, we apply spectral
partitioning [] to the rule-graph, to remove such weak edges be-
tween strongly connected components. Speci�cally, ifA is the adja-
cency matrix of the rule-graph, where each matrix entry is the sig-
ni�cance score of the corresponding rule, we recursively partition

1556s

368s

399s

57s

100s

0 500 1000 1500 2000

LabAccess

LabEnterprise

MSR

HotSpot-1

HotSpot-2

0.02%

0.09%

2.29%

1.61%

23.8%

-0.3 -0.2 -0.1 0

Time to Mine for Rules (s)Fraction of Trace Duration

0.3 0.2 0.1 0

HotSpot-2

HotSpot-1

Enterprise

LabEnterprise

LabAccess

Figure : eXpose mines for communication rules within a small fraction
of the duration of the trace, so an online solution is feasible.

the graph based on the second smallest eigen value of A’s laplacian,
as described below.

Procedure  RecursiveSpectralPartition(RuleGraph A)

: if dim(A) < 10 or A is tightlyConnected then return
: end if
: Laplacian L = diag(colSums(A))− A
: Find EigenVector ν for 2nd smallest eigen value of L
: Split A’s rows based on the sign of ν into Apos, Aneg

: Recursively SpectralPartition Apos and Aneg

3.2 Towards a Streaming Solution
As presented so far, eXpose runs o�ine on packet traces. But,

can eXpose work in an online fashion, i.e., can we learn rules from
packet streams? Clearly, the chief obstacle is whether rules can be
mined quickly enough. Fig.  shows how long eXpose takes tomine
for rules in each of the �ve sample traces on a .MHz Dual Core
AMDOpteron with GB of RAM. Note that the time tomine rules
is always much smaller than the duration of the trace and is o
en
many orders of magnitude smaller.2 Hence, an online implementa-
tion seems feasible. To �esh out a streaming version of eXpose, be-
sides mining for rules, we need to compute rows of the activity ma-
trix (§.) online, maintain counters for the currently active �ows to
determine their new, present status and frequency counters to iden-
tify the K highly active �ows (§.); all of these seem solvable.

4. EVALUATION
Wedeployed eXpose on the links carrying tra�c towards internal

servers at our lab and a major Enterprise. Further, we analyzed traf-
�c traces from three additional locations–the access links at our lab,
and at two wireless hot-spots (conference venues for SIGCOMM’
and OSDI’). Here, we describe the rules that we corroborated
through discussions with admins at each of the locations and high-
light sources for both false positives and false negatives.

4.1 Dataset
Our traces encompass packet headers (pcap format) and connec-

tion records (BRO [] format) while some traces anonymize IPs.
Since eXpose does not perform deep packet inspection, summary
information showing the �ows active in each time window su�ces.
Table  summarizes our traces. All our traces were collected at links
carrying tra�c for thousands of clients, but the connectivity pat-
terns and tra�c mix vary. Tra�c on the access links is mostly web
browsing and email access and exhibits a high degree of fan-out
with connections going o� to many unique IPs. Tra�c on the en-
terprise links has greater diversity in applications but is directed to-
wards fewer IPs. Tra�c in the Enterprise trace is dominated byWin-
dows/NT machines whereas the others show a wider mix of oper-
ating systems. eXpose uncovered many interesting �ow rules in the
eXpose takes longer to mine rules in the LabAccess trace because
unlike the other traces, there is little locality in this trace with �ows
going o� to many unique destinations in each time window.

Trace Collected at... Type Length Unique Flows Size

LabAccess Our Lab (CSAIL@MIT)’s access link to the Internet Conn. Records  hrs ,,  GB
LabEnterprise Link facing internal Lab Servers Conn. Records  hrs ,  GB
Enterprise Link between Microso
’s Research and corporate LANs Pkt Headers  hrs ,  GB
HotSpot- Access link for the SIGCOMM’ wireless LAN Pkt. Headers  days ,  MB
HotSpot- Access Link for the OSDI’ wireless LAN Pkt. Headers  days , . GB

Table : Dataset of traces we have tested eXpose with.

Figure : Rules identi�ed by eXpose from among the many possible rules.
�e �gure has a circle (in blue) for each possible rule and a star (in red) for
rules that are identi�ed as signi�cant. Signi�cant rules come in di�erent
forms; simply looking for high joint probability (high z) is not enough.

traces. �e di�erences in the rules from the various locations pro-
vide insights into the characteristics of each environment.

4.2 Metrics
One of the metrics we care about is breadth; we want to extract

broad rules that represent patterns for a majority of the tra�c. In
each of our traces, we were able to discover dependencies for a
signi�cant proportion of user actions— web browsing, email, �le-
server access, instant messaging, peer-to-peer tra�c and multime-
dia content. We care about both correctness and completeness of
our rules. False negatives are patterns that are expected to exist in a
trace but are not discovered by eXpose. We checked with adminis-
trators at both our lab and the corporate enterprise and report the
patterns missed by eXpose. False positives are �ow-pairs that are
scored highly by eXpose but have no reasonable explanation. We
aggressively assume every rule we could not explain to be a false
positive and mention the sources for such rules in our traces.

4.3 Nature of the Rule-Mining Problem
Identifying signi�cant rules from among the many possibilities is

tricky. For the LabEnterprise trace, Fig.  plots in (blue) circles each
of the potential rules and in (red) stars each of the rules eXpose iden-
ti�es as signi�cant. Clearly, signi�cant rules come in di�erent forms,
some involve activities that happen rarely, both individually and to-
gether (near the (,,) corner), others involve one rare activity and
one frequent activity (near the (,,) and (,,) corners), and yet
others involve a pair of frequent activities (close to the (,,) cor-
ner). Simply looking for pairs with high joint probability (points
with z > const) or looking for pairs with high conditional proba-
bility (z

x
> const) does not su�ce.

Before detailing the kinds of rules discovered by eXpose, we
present the bigger picture. eXpose augments a packet trace with
generics–abstract versions of the real �ows, evaluates many poten-
tial �ow/generic pairs to extract the signi�cant rules and clusters to-
gether rules that are similar to one other. Table  shows for each of
our traces the progression of eXpose through each of these phases.

In this context, it is easy to place our chief contribution—a tech-
nique to identify the few hundred signi�cant patterns from among
the 1010 − 1012 possibilities. To achieve this, eXpose selectively
biases search by not evaluating rules that are unlikely to be useful.

BitTorrent1

BitTorrent2

Gnutella1

WinHole

Trojan

IMAP(SSL)

Gnutella2

DNS Redirects

False Positive

Figure : Annotated Snapshot of eXpose’s output showing the rules learnt
by eXpose for the HotSpot- Trace. A user can click on a pattern to see
more information about the corresponding rule. Nodes in the graph rep-
resent �ow activities and edges representing rules join the two activities
involved in each rule.

Second, eXpose abstracts away extraneous �ow details to make use-
ful patterns more discernible. �ird, eXpose scores the candidate
rules with an appropriate statistical measure and mines e�ciently.
Finally, eXpose aggregates the inferred rules into a small number of
useful patterns that an admin can corroborate and use. Fig.  shows
an annotated snapshot of eXpose’s output.

4.4 Evaluation in Controlled Settings
A key obstacle in evaluating a rule miner like eXpose is the lack

of ground-truth information for traces in the wild. To circumvent
this, we ran eXpose on a three hour trace from a single client desk-
top. We discovered all the expected communication rules includ-
ing, the dependence with DNS; the accesses to the yp server during
logins; and the rules for NFS access. Unexpectedly, we found de-
pendencies for certain o
en browsed web-sites. eXpose found rules
for how advertisements and images are synchronously fetched from
other servers whenever the client browsed the main page of a web
site. Further, we injected arti�cial tra�c wherein pairs of �ows at
random would either be independent of each other or dependent.
eXpose was successful at discovering rules for the dependent �ows.
We also cra
ed tra�c that occurs together always but is separated
by a time gap greater than eXpose’s choice of time window size. As
expected, eXpose did not discover these dependencies. Similar to
prior work [, ], we share the belief that dependent yet separated
by long time gap �ow pairs are not common in practice and defer
�nding such pairs to future work.

4.5 Micro-Evaluation
We �rst evaluate some of eXpose’s design choices.

Is Selective Biasing Useful? Recall eXpose selectively biases the
search to avoid pairs that are unlikely to be dependent. While the
details of how eXpose picks rules to evaluate are elsewhere (§.),
here we verify its usefulness. On the HotSpot- trace, eXpose �nds
, signi�cant rules from among the , �ow pairs that it
evaluates for a hit-rate of 3.9× 10−2 . Doing away with some of our
biasing constraints (speci�cally the constraint that �ow pairs have

Trace  Flow Pairs Generics Added Rules Evaluated Rules Output Rule-Clusters
LabAccess .×1012  , , 

LabEnterprise .×1011  , , 
Enterprise .×1011 , ,, , 
HotSpot- .×1010  , , 
HotSpot- .×1011 , , , 

Table : Progression from Packet Trace to Clusters of Communication Rules

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3

N
u
m

b
e
r

o
f
D

is
c
o
v
e
re

d
 R

u
le

s

Rule Score (Modified JMeasure)

Same for all rules with score > .04
Same for all rules with score > .07

10,000 Flows
5,000 Flows
2,500 Flows

237.5

300.7

478

0

100

200

300

400

500

600

2500 5000 10000
of Highly Active Flows

T
im

e
 t

o
 M

in
e
 R

u
le

s

1.52

7.36

34.48

0

5

10

15

20

25

30

35

40

2500 5000 10000

of Highly Active Flows

#
 o

f
R

u
le

s
 E

v
a

lu
a
te

d
 (

x
 1

0
6
)

(a) Discovered Rules vs. Highly Active Flows Considered (K) (b) Time to Mine (c) Memory Footprint

Figure : Sensitivity of eXpose to the number of highly active �ows (K , §.). Recall that eXpose mines over the top K = 5000 highly active �ows by
default. �e more statistically signi�cant a rule (higher score), the fewer the number of active �ows eXpose has to consider to discover the rule!

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u
m

b
e
r

o
f
D

is
c
o
v
e
re

d
 R

u
le

s

Rule Score (Modified JMeasure)

.25s Windows
.5s Windows
1s Windows
2s Windows
5s Windows

Figure : Sensitivity of eXpose to the size of time windows used in dis-
cretizing the trace (§.). Window sizes in the [.s, s] range seem to not
change results appreciably, verifying the assumption that most dependent
�ows happen within a short duration of each other.

atleast one matching IP to be considered for a rule) caused eXpose
to evaluate an order of magnitude more (,,) �ow pairs. Yet,
only an additional  rules were found for a much smaller hit-rate
of 3.3 × 10−5 and a large increase in the time to mine.

How Sensitive is eXpose to the Number of Active Flows? Recall
that eXpose mines over the top K = 5000 highly active �ows by
default. But, do the discovered rules change appreciably if eXpose
mines over many more or many fewer �ows? Fig.  plots the num-
ber of discovered rules and their scores when eXpose mines over
the LabEnterprise trace with three di�erent choices of K. As eX-
pose mines over more active �ows, its search space broadens and
it discovers more rules. But, the more statistically signi�cant a
rule (higher score), the fewer the number of active �ows eXpose has
to consider in order to reveal that rule! In Fig.  (a), we see that
when eXpose mines over twice the default number of highly active
�ows (K = 10, 000), none of the new rules have score higher than
.04. Figures (b, c) show the cost of expanding the search space.
Since eXpose has to now evaluatemanymore rules, the time tomine
for rules increases by  (from .s to s) and the memory
footprint increases by . We believe that an administrator can
choose the number of active �ows to tradeo� higher resource cost
for better �delity in revealing the less signi�cant rules. We picked
K = 5000 as the default.

Why pick 1s wide time-windows? Fig.  plots the number of rules
discovered at each score level by eXpose on the LabEnterprise trace
when discretizing at time windows of di�erent sizes. We see that
smaller windows lead to fewer rules while larger windows lead to

more rules, at almost every score level. �e reason is twofold. First,
at larger time windows, eXpose would discover rules for more de-
pendent �ows, i.e., all those that are separated by no more than the
time window. Second, since more �ows are present in each of the
larger time windows on average, it is more likely that a �ow pair will
co-occur merely due to chance. Lacking ground truth it is hard to
distinguish between these two cases—whether a rule that was newly
discovered at a larger window size is a true rule that was missed at
the smaller window size or is a false positive that was added merely
by chance. Regardless, at all window sizes in the [.s, s] range,
eXpose reveals very similar rules, showing that dependencies that
occur within a short period are highly stable.

4.6 Case Study: Patterns in the Enterprise
In every one of our traces, we found patterns of typical behavior

describing the network setup and the dependencies between appli-
cations, and also patterns of atypical behavior indicating con�gu-
ration problems or malicious activity. We have been running eX-
pose inside Microso
 on the link connecting a thousand node re-
search LAN with the rest of the corporate network (Fig. d) for a
few months. Here, we present rules learnt by eXpose on a hr trace.

Load Balancing: Perhaps the most signi�cant pattern in the Enter-
prise tracewas due to the proxies used for external web access. �ere
are about thirty di�erent proxies, and eXpose found this rule cluster
of generics:

Proxy1.80 : ∗.∗ ⇒ Proxy2.80 : ∗.∗; Proxy3.80 : ∗.∗; . . .

P roxy2.80 : ∗.∗ ⇒ Proxy1.80 : ∗.∗; Proxy3.80 : ∗.∗; . . .

. . . and so on.

�is rule-cluster was a clique; the generic corresponding to each
proxy was linked by a rule to every one of the generics correspond-
ing to the other proxies. �ese rules show that whenever a client
talks to one of the proxy servers, the client is very likely to talk to
some other proxy server. �e explanation for this rule is simple – a
client browsing the web fetchesmultiple HTTP objects in quick suc-
cession, and the load-balancing aspect of the proxy cluster spreads
the client’s HTTP requests across multiple proxy servers.

We note two things. First, this rule could not be discovered with-
out abstraction. No one client talks to all the proxies, nor does any
one client browse for very long. Second, without any knowledge of
the network setup in the Enterprise, eXpose reveals the existence of
load balancing web proxies and further shows that the load balancer

works fairly well. Such information helps in understanding the net-
work setup and in troubleshooting performance problems.

Within the Enterprise, many services are load-balanced. We
found similar load-balancing patterns for DNS servers on port ,
WINS (windows name lookup) servers on port  and domain-
controller servers (certi�cates) on port .

ApplicationDependencies:Webelieve that one of themain contri-
butions of eXpose is the ability to automatically �nd dependencies
for all the important applications. eXpose learnt rules for web activ-
ity, email viewing, video lecture broadcasts, printers and dependen-
cies at all the prominent servers.

eXpose discovered rules indicating that name lookup is a key in-
gredient of activities ranging from distributed �le-systems to email
and web access.

∗.∗ : Server.port ⇒ ∗.∗ : DNS.53

∗.∗ : Server.port ⇒ ∗.∗ : WINS.137

�e �rst rule shows that a client accessing any server does a
DNS lookup for names, while the latter shows the client doing a
WINS (windows name server) lookup. Names in the Enterprise are
distributed across DNS and WINS tables. Such rules were ubiqui-
tous for every one of the servers mentioned in the rest of the trace,
so we omit further mention.

Web: For web-browsing, we found that a majority of the proxies
requested authentication credentials before access.

Proxy1.500 : ∗.∗ ⇒ Proxy1.80 : ∗.∗

�is generic rule shows that when fetching HTTP data (at port )
from a proxy, clients exchange Kerberos credentials (at port ).

E-Mail: eXpose found dependencies for e-mail access.

Client.∗ : Mail.135 ⇒ Client.∗ : DC.88

Client.∗ : Mail.135 ⇒ Client.∗ : Mail.X

Client.∗ : Mail.X ⇒ Client.∗ : PFS1.X, Client.∗ : PFS2.X

Client.∗ : Mail.X ⇒ Client.∗ : Proxy.80

�e rules show that whenever a client talks to a mail server, he
talks to a domain-controller (DC); the DC servers on port  is-
sue Kerberos credentials a
er authenticating the user. �e second
rule shows that the actual mail server is on a “custom port”, so the
clients �rst look up the end-point mapper on port  at the server
to learn which port the actual exchange server process is located
at. Enterprise-wide public mail is stored elsewhere on public folder
servers. Many clients browse through public mail simultaneously
with their personal mail. Finally, we found that most mail contains
HTTP content, or has links to content, so the users connect to the
proxies when reading mail.

A couple of points are worth noting here. �e e-mail dependen-
cies are the �rst instance of multi-host dependencies and show the
ease with which eXpose extends across hosts and applications. eX-
pose discovered these rules without being told that email was an
important activity and without knowing which ports/servers are in-
volved in email. Clients within the Enterprise are distributed across
multiple mail servers, so we found multiple instances of the above
rules, one for each mail server. Finally, eXpose found the port used
by most of the exchange servers and our admin was particularly in-
terested in the exceptions.

∗.∗ : Mail1.135 ⇒ ∗.∗ : Mail1.49155

Most mail servers were running out of a default con�guration �le
that created exchange server processes on port . �e few ex-
ceptions were probably due to legacy servers that had out-of-date
con�gurations. Ability to detect such �ne-grained con�guration
helps to understand and debug problems.

File-Servers: ForWindows SMB (think NFS forWindows), eXpose
discovers that

SMBServer.445 : ∗.∗ ⇒ SMBServer.139 : ∗. ∗ .

�e rule indicates that clients askwhich server has the �le by query-
ing the server (at port )which in turn respondswith a �le-handle
that the clients use to fetch the �le (at port ). Of course, the �le-
handle may point to another server.

OtherSMBServer.445 : ∗.∗ ⇒ SMBServer.139 : ∗.∗

Such SMB redirection is common practice so that logical names
share a hierarchy, while the �les are distributed across servers. eX-
pose uncovered this tangle of re-directions.

Video Lecture Broadcasts: eXpose discoveredmultiple cliques cor-
responding to video lecture broadcasts.

V ideo.rtsp : Client1.∗ ⇔ V ideo.rtsp : Client2. ∗

V ideo.rtsp : Client1.∗ ⇔ V ideo.rtsp : Client3. ∗

V ideo.rtsp : Client2.∗ ⇔ V ideo.rtsp : Client3. ∗

. . . and so on.

It turns out that the Video server live-streamed talks and other
events within the enterprise over Real Time Streaming Proto-
col (rtsp). Each clique corresponded to the audience of a particu-
lar talk. Rules linking a pair of clients who were tuned in for a long
overlapping period had higher scores than those involving clients
who tuned out of the broadcast quickly.

Mailing List Servers: eXpose discovered multiple instances of
cliques involving email servers.

ListServ.∗ : Client1.∗ ⇔ ListServ.∗ : Client2. ∗

ListServ.∗ : Client1.∗ ⇔ ListServ.∗ : Client3. ∗

ListServ.∗ : Client2.∗ ⇔ ListServ.∗ : Client3. ∗

. . . and so on.

It turns out that each of these mail servers was responsible for a
particular mailing list. Whenever a mail would be sent to the list,
themail server forwards themail onto all the participants of that list.
eXpose discovered when each list was active and the participants for
each list.

DHCP: Clients that were searching for a DHCP server by broad-
casting on the network caused the pattern,

NetworkBroadcast.137 : ∗.∗ ⇒ DHCPServer.137 : ∗. ∗ .

Printers: eXpose found a clique involving print spoolers:

IP1.161 : PrintServ.∗ ⇔ IP2.161 : PrintServ. ∗

IP1.161 : PrintServ.∗ ⇔ IP3.161 : PrintServ. ∗

IP2.161 : PrintServ.∗ ⇔ IP3.161 : PrintServ. ∗

. . . and so on.

It turns out that each of the IP’s corresponded to the network in-
terfaces of the printers throughout the Enterprise. �e print-server
appears to periodically poll the SNMP () port of these printers
for usage and other information.

Workload Clusters: eXpose found cliques for �le-servers.

Pool1.∗ : F ileServ.445 ⇔ Pool2.∗ : F ileServ.445

Pool1.∗ : F ileServ.445 ⇔ Pool3.∗ : F ileServ.445

Pool2.∗ : F ileServ.445 ⇔ Pool3.∗ : F ileServ.445

. . . and so on.

File-servers showing up in the above rules are centralized data
stores for various groups. �ey were accessed by pools of clients
who were crunching the data in parallel.

Presence Server: eXpose found many such rules,

Presence.5601 : Client1.∗ ⇔ Presence.5601 : Client2.∗

It turns out that a presence server is part of Windows O�ce Com-

municator. Whenever a client logs in, logs out or goes idle, his ma-
chine sends an update to the presence server which forwards the
information onto the user’s friends. So, each rule above links users
who are in each others friend list.

Oddities: eXpose found that a particular user Bob’s machine does:

Bob.∗ : Home1.∗ ⇔ Bob.∗ : Home2

Bob.∗ : Home1.∗ ⇔ Bob.∗ : Home3

Bob.∗ : Home2.∗ ⇔ Bob.∗ : Home3

. . . and so on.

It turns out that Bob’smachinewas talking tomany IPs belonging to
DSL users and cable-modem pools (Verizon DSL Customers, Road
Runner Customers). eXpose found this pattern because the accesses
to these home machines were periodic and synchronized. Either
Bob is running an experiment that probesmany homemachines, or
he is part of a zombie bot-net and the communication here is keep-
alive messages between bots in the botnet.

4.7 Case: Patterns in the LabEnterprise
We have deployed eXpose within the CSAIL lab at MIT such that

eXpose sees tra�c to and from the major internal servers, includ-
ing web, email, Kerberos, AFS, NFS servers, managed user work-
stations and a Debian/Fedora mirror (see Fig. c). Here we report
rules learnt by eXpose on a  minute trace.

Fig.  depicts rules learnt by eXpose. Graph nodes correspond to
a �ow or a generic in the trace, an edge between nodes indicates that
eXpose discovered a rule linking the two nodes. �e graph on the
le
 plots the output of eXpose’s rule-mining algorithm–i.e., all the
statistically signi�cant rules, whereas the graph on the right plots the
output of our recursive spectral partitioning algorithm. We found
in practice that eliminatingweak ruleswhich strangle otherwise dis-
connected node groups reduces false positives.
syslogd clique: All the managed workstations within the lab and
most of the internal servers ran the same version of Debian with
similar con�guration. In particular, thesemachines export their sys-
tem log �les to a server via port . Cron jobs in the con�g ran at
speci�c times causing synchronized updates to the individual sys-
tem logs and synchronized updates to the syslogd server.

IP1.514 : Syslogd.514 ⇔ IP2.514 : Syslogd.514

IP1.514 : Syslogd.514 ⇔ IP3.514 : Syslogd.514

IP2.514 : Syslogd.514 ⇔ IP3.514 : Syslogd.514

. . . and so on.

As eXpose could list all the machines uploading logs, the admin
could chase down machines that were supposed to be managed but
were not uploading syslog �les synchronously.
AFS accesses:�e following pattern repeated across many clients:

Client.7001 : AFSRoot.7003 ⇒ Client.7001 : ∗

Client.7001 : AFS1.7000 ⇒ Client.7001 : AFS2.7000

Client.7001 : AFS1.7000 ⇒ AFS1.7000 : AFSRoot.7002

�ese rules show that a client talks to the root server (at port )
to �ndwhich of themany volume servers have the �les he needs and
then talks to the appropriate volume server. �e lab has a single root
server but many tens of volume servers with �les distributed across
the volume servers. A user’s content is o
en spread acrossmore than
one servers, causing simultaneous accesses from his cache man-
ager (at port ) to the AFS servers (at port ). Finally, creat-
ing new �les, or browsing into di�erent parts of the AFS tree initiate
connections to a permissions server (at port ).

Besides identifying the underlying structure of AFS tra�c, eX-
pose’s rules let us understand where each user’s content was located
and how the accesses were spread across the various servers. �e
lab admins were happy to see that the accesses to volume servers

(a) Rules Discovered By Mining (b) A
er Spectral Partitioning
Figure : E�cacy of Rule Pruning. �e graph of le
 represents rules dis-
covered by mining. Each edge corresponds to a discovered rule and joins
nodes corresponding to the <�ow, activity> pair involved in the rule. �e
graph on the right depicts the same rule-set a
er recursive spectral parti-
tioning. Eliminating low-scored rules between node-groups that are oth-
erwise strongly connected breaks the rule-set into understandable pieces.

matched up with the hard-disk sizes on the servers (larger servers
got more accesses).
File-Server as the Backend: �e fact that many users have all their
data on AFS leads to many neat patterns:

Remote1 : WebServ.80 ⇒ WebServ.7000 : AFS.7001

Client : LoginServ.22 ⇒ LoginServ.7000 : AFS.7001

Compute1 : AFS.7001 ⇔ Compute2 : AFS.7001

Compute1 : AFS.7001 ⇔ Compute3 : AFS.7001

Compute2 : AFS.7001 ⇔ Compute3 : AFS.7001

�e �rst shows that accesses to home pages on the lab’s web-server
cause the web-server to fetch content from the AFS servers. While
the home-pages are stored on the web-server, it is likely that users
link to content (papers, cgi-scripts) present elsewhere in their AFS
share. Also, ssh connections into the lab’s login server caused the lo-
gin server to mount directories from AFS. Finally, compute clusters
synchronously accessed many volume servers, most likely because
a data-intensive job was parallelized across the cluster.
E-Mail Flow: eXpose discovered how email �ows through the lab.

Incoming.25 : ∗.∗ ⇒ Webmail.2003 : Incoming.X

∗.∗ : Webmail.143 ⇒ ∗.∗ : Webmail.993

∗.∗ : Webmail.110 ⇒ ∗.∗ : Webmail.995

�e �rst rule shows that whenever a connection is made on port
 (SMTP) to a mail server in the lab, the mail server connects with
di�erent server. It turns out, the lab has one Incoming SMTP server
that receives mail from outside but does not store the mail. Instead,
mail is forwarded on to a webmail server via LMTP (enterprise ver-
sion of SMTP, port ). �e webmail server in turn provides an
interface for users to read their mail. �e next two rules show the
webmail server responding to both IMAP (port ) and POP (port
) connections only to force clients to use the corresponding se-
cure versions IMAPS (port ) and POPS (port ).
Outgoing E-mail: eXpose tracks patterns in outgoing mail.

OutMail.∗ : dns0.mtu.ru.53 ⇔ OutMail.∗ : dns1.mtu.ru.53 (many)

OutMail.∗ : Mail1.25 ⇔ OutMail.∗ : Mail2.25 (clique)

�e �rst rule above shows that whenever the outgoing server does
a DNS (port ) lookup at one remote name server, it does a name
lookup on another redundant name server in the same domain. It
turns out that the lab’s mail server implementation simultaneously
looks up multiple DNS servers in the hope that at least one of them
would respond. Further, the second rule shows the outgoing mail
server simultaneously connecting to multiple mail servers in do-
mains like messagelabs.com. Apparently, messagelabs (and many
others) are out-sourced email providers who receive email for com-
panies(e.g., Akamai). Several lab mailing lists have employees of
these companies, and hence a mail to such lists makes the outgo-

ing server deliver mail simultaneously to multiple SMTP servers at
the outsourced email provider.
NagiosMonitor: �eLab admins use a Nagiosmachine tomonitor
the health of the lab’s key servers.

Nagios.7001 : AFS1.7000 ⇒ Nagios.7001 : AFS2.7000 (AFS clique)

Nagios.∗ : Mail1.25 ⇒ Nagios.∗ : Mail2.25 (mail clique)

Nagios.∗ : AD.139 ⇒ Nagios.∗ : AD.389 (active directory)

�ese rules show that the Nagios machine periodically connects to
the servers of each type as a client and probes their health. �e �rst
rule is part of a full clique, the Nagiosmachine connected as an AFS
client with every one of the AFS servers in the lab. Similarly, the
second rule is part of a clique wherein the Nagios box sent mail out
through each of the SMTP servers in the lab. �e third rule shows
Nagios checking thewindows server for both its name (netbios, port
) and LDAP services (directory lookup, port ).
Discovered Bugs: eXpose discovered many instances of con�gura-
tion problems andmalicious users that the administrators were able
to act upon. Here are examples of two such rules.
() IDENT Dependency: eXpose found many instances when a
client’s connection to a server is followed by the server initiating a
connection at port  on the client. For example,

Client.∗ : MailServer.25 ⇔ Client.113 : MailServer.∗

It turns out that port  is IDENT tra�c.

Despite the fact that IDENTwasnever veryuseful, even
today…UNIX servers, most commonly IRC Chat, but
some eMail servers as well, still have this IDENT pro-
tocol built into them. Any time someone attempts to
establish a connection with them, that connection at-
tempt is completely put on holdwhile the remote server
attempts to use IDENT to connect back to the user’s
port  for identi�cation [].

Shown this rule, an admin changed con�guration to disable IDENT.
() Legacy Con�guration: A legacy DHCP server was active and
responding to requests on a subnet. Even more, the legacy server
was accessing the lab’s authoritative name server that was supposed
to be used only by the front-end DNS servers, which pull the mas-
ter name table and respond to clients. Shown this rule, an admin
disabled the legacy server.

NetworkBroadcast.68 : Legacy.67 ⇒ Legacy.∗ : MasterNS.53.

False Positives: We were able to corroborate  out of the 
rule groups that eXpose discovered on the labEnterprise trace,
for a false positive rate of . Some of the false positives were
due to dependencies that appeared true but we could not explain
such as pairs of �ows that always happened together in  of time
windows. Others were due to high volume servers, such as a debian
mirror hosted within the lab. �ere are so many connections to
the debian mirror server from so many di�erent IPs that invariably
we �nd many connections overlapping with each other. We do
know that many operating systems have so
ware that automatically
touches the distribution mirrors at �xed times of day to check for
updates, yet it is hard to say for sure why a pair of IPs access the
debian mirror synchronously. A natural improvement to eXpose
is to automatically scale the score threshold per server, i.e., high
volume servers that are at a risk of false positives are reported only
if they are in rules that have much higher scores.
False Negatives: Backend dependencies at the web-server hosting
personal web-pages were too �ne-grained for eXpose. We discov-
ered the bulk dependency, i.e., that most web-page requests cause
the web-server to fetch content from AFS. But, we were unable to
isolate the more complex dependencies of individual web-pages

carrying dynamic content. We believe that this is because of too
few connections to such dynamic content and readily admit that
eXpose is likely to miss speci�c dependencies while looking for the
broad ones. But, one can white-list servers that eXpose should pay
closer attention to by adding that server’s �ows to the list of �ows
that eXpose builds rules for.

4.8 Case: Patterns on the Lab’s Access Link
mySQLworm: We found an instance of themySQL worm; the host
pDED.dip.t-dialin.net performed a port scan throughout the
network on port  which is the default mySQL port on Unix.

�e mySQL Bot scans this port looking for mySQL
servers with weak passwords and if it is successful in
logging in as root . . . uses an exploit to install the bot
on the system. [].

Unlike other worms such as the SQL Sapphire Worm [], this
worm causes little tra�c and may not show up in tools that de-
tect heavy-hitters. Yet, eXpose detects it because the remote host
scanned many lab hosts simultaneously.

Cloudmark: �e mail server of a group in the lab was involved in
an interesting pattern. Whenever the server received mail (at port
), the server would connect to one of a bunch of servers owned by
cloudmark.com at port :

MailServer.25 : ∗.∗ ⇒ MailServer.∗ : CloudMark.2703.

Apparently, cloudmark is a �ltering service for spam, phishing and
virus-bearing mails to which this group subscribes.
NTP synchs: �e lab runs a major Network Time Protocol (NTP)
server. To keep system clocks up-to-date, clients periodically probe
an NTP server, and adjust clocks based on the server’s response
and the round trip time estimate. Client implementations vary
widely though. Most clients query the server infrequently and the
probe/response pairs are just one UDP packet. But eXpose found

Client1 : NTP.123 ⇔ Client2 : NTP.123,

indicating that pairs of clients were accessing the server syn-
chronously and o
en (one probe in every couple of seconds). Most
likely, these machines have the same poorly written NTP client.
TOR: �e lab contributes servers to the TOR [] anonymity net-
work. �e ability to identify temporally correlated pairs strips
one-hop anonymity, we can identify the next-hop for �ows routed
through the lab’s TOR server. For example, eXpose �nds rules,

IP1.9001 : TOR.∗ ⇔ TOR.∗ : IP2.9001

showing that tra�c �ows from IP1 to IP2 or vice versa. TOR’s
anonymity is not broken though. eXpose-like tra�c analysis has to
be done at every TOR server on a �ow’s path to identify the partic-
ipants. But, this does highlight a weakness–TOR seems to not use
cover tra�c and since there isn’t a lot of tra�c to begin with, it is
easy to correlate �ows across one hop.
FTP SessionDependencies: �e lab provides amirror for both de-
bian and fedora linux distributions. Clients around theworld down-
load OS images and packages. eXpose found that

IP1.∗ : Mirror.∗ ⇒ Mirror.21 : IP1. ∗ .

It turns out that an
p control connection (on port ) to exchange
commands precedes
p data connections that do the actual data
transfer. Further, data connections are started either actively, i.e.
started by the server on port , or passively, i.e., started by clients
at ephemeral ports. �e rules show that most data connections, in
practice, are passive perhaps to let clients behind NATs access data.

Discovered Bugs: Again eXpose discovered exploits and con�gu-
ration problems. () LegacyAddresses inMailing Lists: We found

that our university’s outgoing mail server was simultaneously ac-
cessing a couple of mail servers in the lab.

UnivMail.∗ : OldMail1.25 ⇔ UnivMail.∗ : OldMail2.25

�is was consistent with othermailing list patterns we had seen, the
university server was delivering mail to a list that had users at those
machines in the lab. Unfortunately, these older mail servers were no
longer operational and the email addresses had been invalid for a
long time. When shown this rule, the university’s admin responded
that the mailing lists would be cleaned.
() Selective SSH Scans: eXpose identi�ed several hosts in South
Asia that were selective scanning the lab’s main routers.

∗.∗ : Router1.22 ⇔ ∗.∗ : Router2 : 22 (three router clique).

During the scan a host would simultaneously initiate ssh connec-
tions and try login/password pairs on all the main routers. eXpose
also found co-operative scanning, wherein multiple hosts would
scan a router at the same time.

Attack1.∗ : Router.22 ⇔ Attack2.∗ : Router.22

Given the patterns, the lab’s admin blacklisted the scanning IPs.
() Web Robots: eXpose discovered rules for web crawlers.

Robot.∗ : Web1.80 ⇔ Robot.∗ : Web2.80

�ese rules indicate that a crawler bounces between multiple web-
servers perhaps as it follows links on the lab’s web content. Most of
the robots belonged to well-known search sites, but one of themwas
amachine in south-east asia that had neither a name record nor was
pingable a
er the fact. �ese robots neither make too many con-
nections nor pull down a lot of data and hence are indistinguishable
from normal web tra�c. eXpose found them by their characteristic
access pattern–synchronous accesses to multiple web-servers while
chasing down links. �e lab’s admin �agged the unknown IP to be
inspected more carefully by the intrusion detection box.
False-Positives: Our lab hosts Planetlab machines. Some depen-
dencies, such as access to the CODEEN CDN are discernible. Yet, it
is almost impossible to �gure out from the packet trace which cur-
rently active slice caused which packets. So, we did not attempt to
corroborate rules involving Planetlab.

4.9 Case Study: Rules for HotSpot Traces
Note that both the Sigcomm’ and OSDI’ traces are

anonymized, so we corroborated rules based on the port and proto-
col numbers of �ows. Fig.  graphically shows all the patterns that
eXpose learned from the Sigcomm’ trace.
Peer-to-peer Tra�c: Most of the high-density clusters were due to
peer-to-peer tra�c. In Fig. , the two large clusters were due to
twowireless hosts using BitTorrent, whereas the two smaller clusters
were due to Gnutella users. Each of these hosts connected to many
tens of unique peers. eXpose found that whenever a peer commu-
nicates on one of the ports in the - range, the peer is likely
to communicate on another port in the same range. Presumably,
this is due to multiple �ows between the host and BitTorrent peer.
Gnutella’s clusters are similar, except in a di�erent and smaller port
range; most �ows here are on ports -.
Suspicious activity on port : One of the wireless hosts com-
municated synchronously with four di�erent machines on port
. Popular wisdom [] says that the port is used by the
WinHole–”A trojanized version ofWingate proxy server”. �e tra�c
volume of each of these �ows is fairly small, yet eXpose discovered
the pattern from what appear to be synchronous heart-beat mes-
sages between this victim and other machines:

V ictim.∗ : Other1.1081 ⇔ V ictim.∗ : Other2.1081

DHCP Servers: Almost all the clients in the OSDI trace were in-

volved in a simple pattern; the client sends out a broadcast message
to port  and gets a response from either IP1 or IP2.

∗.67 : 255.255.255.255.68 ⇔ IP1.68 : ∗.67

It appears that both IP1 and IP2 carry a DHCP Server at the well
known port . �eDHCP daemon responds to requests for new IP
addresses sent by DHCP clients from port . DHCP tra�c is quite
infrequent and involves few bytes, yet the synchronous accesses in
time lead to this rule. Further, note that eXpose discovered the rule
with no knowledge of what to expect in the trace.
Apple iTunes: eXpose found hosts talking on port .

H1.5353 : H2.5353 ⇔ H1.5353 : H3.5353; H1.5353 : H4.5353

It turns out that theApple iTunes application advertises to otherAp-
ple machines on the subnet if con�gured to share its music. Some
users appear to have forgotten to disable this feature causing their
laptops to advertise music at the conference. eXpose discovers this
rule by the temporally correlated advertisements and had no knowl-
edge of iTunes before hand.
Link-level Multicast Name Resolution: We found what appears to
be a new form of looking up names. We saw earlier that windows
hosts query both the local DNS server and the local WINS server to
lookup names. In addition, eXpose observed these rules:

Host.∗ : Multicast.5355 ⇔ Host.∗ : DNS.53

Host.137 : WINS.137 ⇔ Host.∗ : DNS.53

Host.137 : WINS.137 ⇔ Host.∗ : Multicast.5355.

A few hosts were sending out packets to a multicast address on port
 alongwith the other name lookups. It turns out that this is link-
level multicast based name resolution—a new feature in Vista []
that is designed speci�cally for ad-hoc networks. Of course, this is
the �rst time we ever heard of this protocol.
Day-Long Traceroutes: We found two hosts sending what appear
to be day-long traceroutes. eXpose discovered these rules.

Host.0 : IP1.0 : 1 ⇔ Host.0 : IP2.0 : 1; Host.0 : IP3.0 : 1 . . .

Host.0 : IP2.0 : 1 ⇔ Host.0 : IP3.0 : 1; Host.0 : IP4.0 : 1 . . .

�e rules show that Host was receiving ICMP (protocol ) mes-
sages from a bunch of IPs all within the same one-second period
and repeatedmany times throughout the day. Our best guess is that
somebody in the conferencewas doing some measurements, maybe
to check if a certain path changes during the day. eXpose found this
low-volume event and also the fact that the path did not change.
IM: eXpose found these rules:

Host.∗ : MSNServ.1863 ⇔ Host.∗ : AOLServ.5190.

It turns out that ports  and  are well known ports for MSN
and AOL Instant Messaging Servers respectively. It appears as if a
couple of userswere using aggregated instantmessaging (IM) clients
like GAIM [] that can connect to multiple IM networks. �ere is
little tra�c in these �ows, the IM client appears to refresh the servers
periodically and synchronously leading to the rule.

5. POSSIBLE EXTENSIONS OF eXpose
From interactions with our administrators, we have some ideas

on how to integrate eXpose into everyday operations. We see much
commonality in patterns. We saw eXpose extract similar rules from
di�erent locations (e.g., the IMAP-IMAPS, POP-POPS) rules. Even
more, a vast majority of the rules extracted on di�erent days but at
the same location are similar. �is suggests that we should build a
database of known rules at each location. Rules extracted on each
new packet trace, perhaps in a streaming fashion, can be matched
with existing rules in the database. �is lets the administrators focus
on the novel patterns and also gain further con�dence in patterns
that are seen repeatedly.

6. RELATED WORK
A few tools aggregate tra�c volumes and visualize the resulting

aggregates. FlowScan [] takes as input NetFlow data and breaks
down the tra�c volume according to the application (e.g., HTTP,
FTP), the IP pre�x, or the AS identi�er. CoralReef [] and IP-
MON [] produce similar tra�c breakdowns based on packet traces.
Autofocus [] also breaks the tra�c volumes into di�erent cate-
gories but adapts the breakdown boundaries to zoom-in or out on
interesting subnets and port ranges. eXpose extends these tools
along a new dimension by identifying temporally correlated clus-
ters of �ows.

Other relatedwork attempts to �nd tra�cmatching a pre-de�ned
communication pattern. Venkataraman et.al. [] and Staniford
et.al. [] present streaming algorithms to identify SuperSpread-
ers, i.e., machines infected by a worm or virus that in turn infect
many other hosts. Another line of work [, ] detects stepping
stones whereby an attacker compromises a machine and uses it to
launch a very di�erent attack on other machines. Blinc [] uses
hints from multiple levels to tag each �ow with the application that
created it. More generally, intrusion detection systems like Bro []
use a database of signatures for malicious activity and �ndmatching
tra�c. Rather than identifying tra�c that matches a given pattern,
eXpose automatically extracts the underlying patterns in a trace.

Perhaps the closest to eXpose is work that �nds detailed depen-
dencies for individual applications. Kannan et. al. [] analyze
network traces to identify the structure of a particular application
session (e.g., FTP, HTTP). For individual applications between one
source and one destination, they build statemachines detailing how
the session progresses. When pointed at a server, Sherlock [] �nds
dependencies for clients accessing that server even when such de-
pendencies involve multiple other servers or protocols.

Fundamentally, eXpose is di�erent as it �nds dependencies with-
out guidance. Without pre-focusing on any given application or
server, eXpose looks for all statistically signi�cant clusters of �ows.
�is lets eXpose �nd patterns that spread across multiple hosts, pro-
tocols and applications, and even those that an admin did not know
or expect such as con�guration errors. Both Sherlock [] and Kan-
nan et. al. [] can bring out detailed dependencies that eXpose’s
broader search might not highlight. But, to obtain output similar
to eXpose, one would have to repeatedly apply these techniques to
learn dependencies for one server or one application at a time. �is
is unlikely to scale and also misses out on dependencies at servers
that the admin may forget to point towards.

7. CONCLUSION
We advance the state-of-the-art in tra�c analysis by presenting

a general mechanism to identify temporally correlated �ows in a
packet trace. While just looking at temporally correlated �ows is un-
likely to capture the myriad kinds of structures in a packet trace, we
show that this is a powerful primitive that is able to capture many
useful patterns. Our tool eXpose uniquely de�nes the concept of
generic rules, focuses only on the statistically signi�cant �ow pairs
and presents an algorithm that scales to large traces. Results from
deploying eXpose within MIT and Microso
 Research show that
eXpose uncovers many con�guration errors and lets operators get
a quick read of what is going on in their network without having to
understand logs from the various servers.

8. ACKNOWLEDGMENTS
We thank Noah Meyerhans, Garrett Wollman at CSAIL and Ge-

o�rey Nordlund, Xu Chen at Microso
 Research for their help in
collecting the traces and validating the discovered communication

rules. We thank the collectors of Sigcomm’ and OSDI’ traces.
We also thank Albert Greenberg, Arthur Berger and Asfandyar
Qureshi for insightful comments on early dra
s. �is work was
supported in part by Microso
 Research and by NSF Career Award
CNS-. Opinions and �ndings in this paper are those of the
authors and are not necessarily shared by NSF or Microso
.

9. REFERENCES
[] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,

and M. Zhang. Towards Highly Reliable Enterprise Network
Services via Inference of Multi-level Dependencies. In
SIGCOMM, .

[] CoralReef - Workload Characterization. http://www.caida.
org/analysis/workload/.

[] R. Dingledine, N. Mathewson, and P. Syverson. Tor: �e
Second-Generation Onion Router. In USENIX Security, .

[] R. Duda, P. Hart, and D. Stork. Pattern Classi�cation. John
Wiley, .

[] C. Estan, S. Savage, and G. Varghese. Automatically Inferring
Patterns of Resource Consumption in Network Tra�c. In
SIGCOMM, .

[] GAIM/Pidgin. http://www.pidgin.im/.
[] IDENT. http://www.grc.com/port_.htm.
[] IPMON. http://ipmon.sprintlabs.com.
[] Jose Bernardo and Adrian F. M. Smith. Bayesian �eory. John

Wiley, .
[] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal.

Semi- AutomatedDiscovery of Application Session Structure.
In IMC, .

[] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Tra�c Classi�cation in the dark. In SIGCOMM,
.

[] Link-Level Multicast Name Resolution. http://www.
windowsnetworking.com/articles_tutorials/
Overview-Link-Local-Multicast-Name-Resolution.html.

[] PortPeeker Capture of mySQL Bot attack. http://www.
linklogger.com/mySQLAttack.htm.

[] Nagios: Host, Service, Network Monitor. http://nagios.org.
[] T. Oetiker and D. Rand. Multi Router Tra�c Grapher. http://

people.ee.ethz.ch/∼oetiker/webtools/mrtg/.
[] V. Paxson. Bro: A System For Detecting Network Intruders in

Real-Time. Computer Networks, .
[] D. Plonka. Flowscan: A Network Tra�c Flow Reporting and

Visualization Tool. In USENIX System Admin. Conf., .
[] Port . http://isc.incidents.org/port.html?port=.
[] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,

and A. Vahdat. Pip: Detecting�e Unexpected in Distributed
Systems. In NSDI, .

[] Analysis of the Sapphire Worm. http://www.caida.org/
analysis/security/sapphire/.

[] P. Smyth and R. M. Goodman. Knowledge Discovery in
Databases. MIT Press, .

[] S. Staniford, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS:
A Graph-based Intrusion Detection System for Large
Networks. In National Information Systems Security
Conference, .

[] S. Vempala, R. Kannan, and A. Vetta. On Clusterings Good,
Bad and Spectral. In FOCS, .

[] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New
Streaming Algorithms for Fast Detection of Superspreaders.
In NDSS, .

[] K. Yoda and H. Etoh. Finding a Connection Chain for
Tracing Intruders. In ESORICS, .

[] Y. Zhang and V. Paxson. Detecting Stepping Stones. In
USENIX Security, .

http://www.caida.org/analysis/workload/
http://www.caida.org/analysis/workload/
http://www.pidgin.im/
http://www.grc.com/port_113.htm
http://ipmon.sprintlabs.com
http://www.windowsnetworking.com/articles_tutorials/Overview-Link-Local-Multicast-Name-Resolution.html
http://www.windowsnetworking.com/articles_tutorials/Overview-Link-Local-Multicast-Name-Resolution.html
http://www.windowsnetworking.com/articles_tutorials/Overview-Link-Local-Multicast-Name-Resolution.html
http://www.linklogger.com/mySQLAttack.htm
http://www.linklogger.com/mySQLAttack.htm
http://nagios.org
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://isc.incidents.org/port.html?port=1081
http://www.caida.org/analysis/security/sapphire/
http://www.caida.org/analysis/security/sapphire/

	Introduction
	Learning Communication Rules
	From Dependency to Association
	Significance of a Communication Rule
	Generic Communication Rules
	Templates for Generic Rules
	Scoring Generic Rules

	Algorithms to Mine for Rules
	Composing Communication Rules
	Towards a Streaming Solution

	Evaluation
	Dataset
	Metrics
	Nature of the Rule-Mining Problem
	Evaluation in Controlled Settings
	Micro-Evaluation
	Case Study: Patterns in the Enterprise
	Case: Patterns in the LabEnterprise
	Case: Patterns on the Lab's Access Link
	Case Study: Rules for HotSpot Traces

	Possible Extensions of eXpose
	Related Work
	Conclusion
	Acknowledgments
	References

