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Abstract— It is increasingly common that computers ~ APs with underutilized DSL links.
in residential and hotspot scenarios see multiple accese It does not facilitate load balancing across APs. WiFi
points (APs). These APs often provide high speed wire- users tend to gather in a few locations (e.g., a con-
less connectivity but access the Internet via independent, ference room, or next to the window in a cafe). The
relatively low-speed DSL or cable modem links. Ideally, current 802.11 connectivity model maps all of these
a client would simultaneously use all accessible APs and users to a single AP, making them compete for the
obtain the sum of their backhaul bandwidth. Past work same limited resource, even when a nearby AP hardly
can connect to multiple APs, but can neither aggregate has any users [12, 24]. Furthermore, the mapping is
AP backhaul bandwidth nor can it maintain concurrent relatively static and does not change with AP load.
TCPs across them.

This paper introduces FatVAP, an 802.11 driver that Ideally, one would like a connectivity model that ap-
aggregates the bandwidth available at accessible APs apbximates dat virtual AP, whose backhaul capacity is
also balances their loads. FatVAP has three key featurdbe sum of the access capacities of nearby APs. Users
First, it chooses the APs that are worth connecting tthen compete fairly for this fat AP, limited only by secu-
and connects with each AP just long enough to colledity restrictions. A fat AP design benefits users because
its available bandwidth. Second, it ensures fast switchinigj enables them to harness unused bandwidth at acces-
between APs without losing queued packets, and hencesible APs to maximize their throughput. It also benefits
the only driver that can sustain concurrent high throughAP owners because load from users in a campus, office,
put TCP connections across multiple APs. Third, it work®r hotel is balanced across all nearby APs, reducing the
with unmodified APs and is transparent to applicationgeed to install more APs.
and the rest of the network stack. We experiment with |t might seem that the right strategy to obtain a fat vir-
FatVAP both in our lab and hotspots and residential deual AP would be to greedily connect to every AP. How-
ployments. Our results show that, in today’s deploymentgyver, using all APs may not be appropriate because of the
FatvVAP immediately delivers to the end user a mediagverhead of switching between APs. In fact, if we have to
throughput gain of 2.6x, and reduces the median responsgsure that TCP connections simultaneously active across

time by 2.8x. multiple APs do not suffer timeouts, it might be impos-
sible to switch among all the APs. Also, all APs are not
1 INTRODUCTION equal. Some may have low load, others may have better

Todav. WiFi users often see many access OintI%ackhaul capacities or higher wireless rates (802.11a/g

Y, | . Y > POINGy. 802.11b). So, a client has to ascertain how valuable
(APs), multiple of which are open [10], or accessible at @n AP is and spend more time at APs that it is likely to
small charge [9]. The current 802.11 connectivity mOdelget more bandvF\)/idth from, i.e., the client has to divid()a/ its
which limits a user to a single AP, cannot exploit this phes P

nomenon and, as a result, misses two opportunities time among APS SO as to maximize its th_roughput. Fur-
' ' " ther, the efficiency of any system that switches between

e Itdoes notallow a client to harness unused bandwidtAPs on short time scales crucially depends on keeping the
at multiple APs to maximize its throughput. Users inswitching overhead as low as possible. We need a system
hotspots and residential scenarios typically suffer lovarchitecture that not only shifts quickly between APs, but
throughput, despite the abundance of high-speed AP&lso ensures that no in-flight packets are lost in the pro-
This is because these high-speed APs access the Inte@ss.
net via low capacity (e.g., 1Mb/s or less) DSL or cable  While prior work virtualizes a wireless card allowing
modem links. Since the current connectivity modelt to connect to multiple APs, card virtualization alone
ties a user to a single AP, a user’s throughput at hon@annot approximate a fat virtual AP. Past work uses this
or in a hotspot is limited by the capacity of a singlevirtualization to bridge a WLAN with an ad-hoc net-
DSL line, even when there are plenty of high-speeevork [6, 13], or debug wireless connectivity [11], but



e FatVAP is effective at harnessing unused bandwidth
from nearby APs. For example, with 3 APs bottle-
necked at their backhaul links, FatVAP’s throughput

‘51 l 2| @ J is 3x larger than an unmodified MadWifi driver.
ol & % AR 7 T 4 e FatVAP effectively balances AP loads. Further, it
AP AP2 FatVAP adapts to changes in the available bandwidth at an AP
&Client &Client and re—balanc_es load with no perceivable delay.
e FatVAP coexists peacefully. At each AP, FatVAP
Figure 1: An example scenario where a client can potentially obtainsiiim of competes with unmodified clients as fair|y as an un-

the backhaul bandwidth available at the two APs. . . . . . .
modified MadWifi driver and is sometimes fairer as

can neither aggregate AP backhaul bandwidth nor bal- FatVAP will move to an alternate if the AP gets con-
ance their load. This is because it cannot tell which APs gested. Further, FatVAP clients compete fairly among
are worth connecting to and for how long. Further,ithasa themselves.

large switching overhead of 30-600ms [7, 13] and hence

cannot be used for switching at short time-scales on th& MOTIVATING EXAMPLES

order of 100 ms, which is required for high-throughout Nt all access points are equal. An 802.11 client

TCP connections across these APs. , might have a low loss-rate to one access point; another
~ This paper introduces FatVAP, an 802.11 driver dezccess point might be less congested; yet another may
sign that enables a client to aggregate the bandwidi,ye 4 high capacity link to the Internet or support higher
available at accessible APs and balance load across thej, rates (802.11g rather than 802.11b). How should an
FatVAP approximates the concept of a fat virtual APgn 11 glient choose which access points to connect to

given the physical restrictions on the resources. To do sQq \what fraction of its time to stay connected to each
FatVAP periodically measures both the wireless and engyp-

to-end bandwidths available at each AP. It uses this infor- To better understand the tradeoffs in switching APs,

mation as well as an estimate of the switching overhegg; s ook at a few simple examples. Consider the sce-
to connect to each AP for just enough time to collect it§5yig in Fig. 1, where the wireless client is in the range
gvgllable bandwidth and toggle only those APs that maxss » open APs. Assume the APs operate on orthogonal
imize user throughput. _ 802.11 channels. For each AP, let thizeless available
The FatVAP driver has the following key features. o qwidth, w be the rate at which the client communi-

e It has an AP scheduler that chooses how to dissates with the AP over the wireless link, and thed-
tribute the client’s time across APs so as to maximizé-end available bandwidth, &e the client’s end-to-end
throughput. data rate when connected to that AP. Note that these

e It ensures fast switching between APs (about 3 msjalues do not refer to link capacities but the through-
without losing queued packets, and hence is the onlyut achieved by the client and in particular subsume link
driver that can sustain concurrent high throughpuosses, driver’s rate selection and competition from other
TCP connections across multiple APs. clients at the AP. Note also that the end-to-end bandwidth

o It works with existing setups, i.e., single 802.11 cardis always bounded by the wireless available bandwidth,
unmodified APs, and is transparent to applicationse.,e < w. How should the client in Fig. 1 divide its time
and the rest of the network stack. between connecting to AP1 and AP2? The answer to this

, ) guestion depends on a few factors.
FatVAP leverages today's deployment scenarios 10 ot consider a scenario in which the bottlenecks to

provide immediate improvements to end users witho%oth APs are the wireless links (i.ev,— e at both APS).
any modification to infrastructure or protocols. It does Nof, this case, there is no point toggling between APs. If
need fancy radios, access to the flrmware, or changestﬁ)e client spends any time at the AP with lower available
the 80,2_'11_MAC' FatVAP has Pee” |_rnplernente_zd in th@vireless bandwidth, it will have to send at a lower rate for
MadWifi driver [4], and works in conjunction with au- ot heriod, which reduces the client's overall throughput
torate algorithms, carrier-sense, CTS-to-Self protectio jonce \when the wireless link is the bottleneck, the client
and all other features in the publicly released driver. should stick to the best AP and avoid AP switching.
Experimental evaluation of our FatVAP prototype in Now assume that the bottlenecks are the APs’ access
a testbed and actual hotspot deployments shows that: links (i.e.,w > efor both APs). As a concrete example,

e In today’s residential and Hotspot deployments (irsay that the client can achieve 5 Mb/s over either wireless
Cambridge/Somerville MA), FatVAP immediately link, i.e.,w; = w, = 5 Mb/s, but the client’s end-to-end
delivers to the end user a median throughput gain @lvailable bandwidth across either AP is only 2 Mb/s, i.e.,
2.6x, and reduces the median response time by 2.8%¢; = & = 2 Mb/s. If the client picks one of the two



In practice, one also cannot pick APs greedily based
mm on their wireless available bandwidth. Consider the ex-
End-to-end Available 5 4 3 ample in Fig. 3. One may think that the client should
Wireless Available 5 8 8 toggle between AP1, AP2, AP3, AP4, and AP5, spend-
ing 20% of its time on each AP. This would have been
Optimal = 7 Mbps, 88% busy  true if switching APs takes no time. In practice, switch-
Figure 2: Choosing APs greedily based on higher end-to-end avaitetridwidth ing between APS incurs a de|ay to reset the hardware
‘s notoptmal. to a different channel, to flush packets within the driver,
| AP Bandwidth (Mbps) | AP1 | AP2 | AP3 | AP4 | APS | APS | etc., and this overhead adds up over the number of APs
S O i 1 S switched. Consider again the scenario in Fig. 3. Let the
- Wireless Avallable -5 5 5 5 545 gyjtching delay be 5 ms, then each time it toggles be-
e % Crogng s Sreedly besed o Hgherieess selalibsin  tyieen 5 AP, the client wastes 25 ms of overhead. This
switching overhead cannot be amortized away by switch-
APs and sticks to it, as is the case with current drivers, ii®g infrequently between APs. To ensure that TCP con-
throughput will be limited to 2 Mb/s. We observe how-nections via an AP do not time out, the client needs to
ever that the client need not spend 100% of its time aterve each AP frequently, say once every 100ms. With a
an AP to obtain its end-to-end available bandwidth. It isluty cycle of 100ms, and a switching overhead of 25ms
sufficient to connect to each AP férof the client’'s time. a client has only 75% of its time left for useful work. Di-
While connected, the client sends (and receives) its daviding this over the five APs results in a throughput of
at 5 Mb/s, i.e., according to its wireless available bands x .75=3.25 Mb/s, which is worse than sticking to AP6
width. The AP drains the client’s data upstream (or refor 100% of the time, and obtaining 4.5 Mb/s.
ceives new data for the client) at the lower rate of 2 Mb/s, In §3.1, we formalize and solve a scheduling prob-
which is the end-to-end bandwidth available to our clienlem that maximizes client throughput given practical con-
Until the AP drains the previous burst (or gets new datatraints on switching overhead and the switching duty cy-
for the client), there is no point for the client to stay con<le.
nected to the AP. As long as the client spends more than
% of its time on each AP, it can achieve the sum of theid FATVAP

end-to-end rates,_ i.e., inour ex_ample It. achieves 4 Mb/s. FatVAP is an 802.11 driver design that aggregates the
~ Thus, to obtain the bandwidth available at an ':‘P- Handwidth available at nearby APs and load balances traf-
client should connect to it for at least a fractibn= . fic across them. We implemented FatVAP as a modifica-

of its time. This means that when the wireless link is theion to the MadWwifi driver [4]. FatVAP incorporates the
bottleneck at an AP, i.ew = e, a client needs to spend fo||owing three components:

100% (_)f its time at t_hat AP in_order to colle_ct its avail_able « An AP scheduler that maximizes client throughput;
bandwidth. Otherwise, the client can use its spare time 1, A |oad balancer that maps traffic to APs according to
get then unused bandwidth at other APs. But since the their available bandwidth:

sum of thefi’s across all APs can exceed 1, a client will « An AP switching mechahism that is fast. loss-free

need to selec_t a su_bset of the available APs. So, which and transparent to both the APs and the host network
APs does a client pick? stack

One may think of making greedy decisions. In par-
ticular, the client can order the APs according to their At a high level, FatVAP works as follows. Fat-
end-to-end available bandwidth, and greedily add APs tdAP scans the various channels searching for available
its schedule until the sum of the fractiofi's reaches 1- access-points (APS). It probes these APs to estimate their
i.e., 100% of the client’s time is used up. Such a schedwvireless and end-to-end available bandwidths. FatVAP’s
uler however is suboptimal. Fig. 2 shows a counter exscheduler decides which APs are worth connecting to
ample, where AP1 has the highest end-to-end rate ahd for how long in order to maximize client throughput.
5Mb/s, yet picking AP1 means that the client has to spenatVAP then toggles connections to APs in accordance
% = % = 100% of its time at AP1 leaving no time to to the decision made by the scheduler. When switch-
connect to other APs. The optimal scheduler here pickag away from an AP, FatVAP informs the AP that the
{AP2, AP3 and achieves 7 Mb/s throughput; the clientlient is entering the power-save mode. This ensures that
spends;; = 2 = 50% ofitstime at AP2 and = 38% at  the AP buffers the client’s incoming packets, while it is
AP3 for a total of 88% of busy time. The remaining 12%away collecting traffic from another AP. Transparent to
of time can compensate for the switching overhead angaser’s applications, FatVAP pins flows to APs in a way
increase robustness to inaccurate estimates of AP baridat balances their loads. FatVAP continually estimates
width. the end-to-end and wireless available bandwidths at each



AP by passively monitoring ongoing traffic, and adapts té&knapsack problem [3]. Given a set of items, each with a
changes in available bandwidth by re-computing the besalue and a weight, we would like to pack a knapsack

switching schedule. S0 as to maximize the total value subject to a constraint
on the total weight. Our items (the APs) have both frac-
3.1 The AP Scheduler tional weights (costs) x D and zero-one weights;] x s.

The scheduler chooses which APs to toggle betweehe knapsack problem is typically solved using dynamic
to maximize client throughput, while taking into accountorogramming. The formulation of this dynamic program-
the bandwidth available at the APs and the switchingning solution is well-known and can be used for our
overhead. problem [3].

We formalize the scheduling problem as follows. The A few points are worth noting.
scheduler is given a set of accessible APs. It assigns t@ FatVAP’s solution based on dynamic programming is
each AP a value and a cost. The value of connecting to a efficient and stays within practical bounds. Even with

particular AP is its contribution to client throughputfilf 5 APs, our implementation on a 2GHz x86 machine
is the fraction of time spent at APandw; is AP's wire- solves the optimization in 21 microseconds (§4€).
less available bandwidth, then the value of connecting tae So far we have assumed that we know both the
AP; is: wireless and end-to-end bandwidths of all acces-
valug = fi x w;. (1) sible APs. FatVAP estimates these values pas-

Note that as discussed §2, a client can obtain no more  Sively (§3.1.1,§3.1.2).
than the end-to-end available bandwidth at 2@ and ® The scheduler takes AP load into account. Both the

thus need not connect to ARr more thang of its time. wireless and end-to-end bandwidths refer to the rate
Hence, ' obtained by the client as it competes with other
0<f <2 = valug < e. ) clients. . o
Wi e It is important to include the switching overheag],

The cost of an AP is equal to the time that a client in the optimization. This variable accounts for vari-
has to spend on it to collect its value. The cost also in- ous overheads such as switching the hardware, chang-
volves a setup delay to pick up in-flight packets and re- ing the driver’s state, and waiting for in-flight pack-
tune the card to a new channel. Note that the setup delay ets. It also ensures that the scheduler shies away from
is incurred only when the scheduler spends a non-zero switching APs whenever a tie exists, or when switch-
amount of time at AP Hence, the cost of ARs: ing does notyield a throughputincrease. FatVAP con-
tinuously measures the switching delay and updates
s if the delay changes (we show microbenchmarks

whereD is the scheduler’s duty cycle, i.e., the total time in §4.2). . .
to toggle between all scheduled ARss the switching ® Our default choice for duty cycle i® = 100 ms.

setup delay, andf;] is the ceiling function, which is one This value is long enough to enable the scheduler to
if f, > 0 and zero otherwise. toggle a handful of APs and small enough to ensure

The objective of the scheduler is to maximize client that the RTTs of the TCP flows stay in a reasonable

cost =fi x D+ [fi] x s, 3)

throughput. The scheduler, however, cannot have too 'ange [19].
large a duty cycle. If it did, the delay can hamper th%
TCP connections, increasing their RTTs, causing poor
throughput and potential time-outs. The objective of the The wireless available bandwidth is the rate at which
scheduler is to pick thé’s to maximize the switching the client and AP communicate over the wireless link. If
value subject to two constraints: the cost in time must bi&e client is the only contender for the medium, the wire-
no more than the chosen duty cyd®, and the fraction less available bandwidth is the throughput of the wireless

of time at an AP has to be positive and no more ti§an link. If other clients are contending for the medium, it
ie., ' reduces to the client's competitive share of the wireless

throughput after factoring in the effect of auto-rate. Here
max Z fiw (4)  we describe how to estimate the wireless available band-
: width from client to the AP, i.e., on the uplink. One can
st. Z (fiD+ [fi]s) <D (5) have separate estimates for uplink and downlink. How-
i ever, in our experience the throughput gain from this im-
0<fi< E, Vi. (6) prov_ed accuracy is small in comparison to the extra com-
Wi plexity.
How do we solve this optimization? In fact, the op- How does a client estimate the uplink wireless avail-
timization problem in Eqgs. 4-6 is similar to the knownable bandwidth? The client can estimate it by measur-

.1.1 Measuring Wireless Available Bandwidth



ing the time between when a packet reaches the head Tie scheduler continuously updates its estimate by using
the transmit queue and when the packet is acked by tla@ exponentially weighted average over the samples in
AP. This is the time taken to deliver one packdt,given Eq. 9.

contention for the medium, autorate, retransmissions, etc - A second practical complication occurs because both
We estimate the available wireless bandwidth by dividinghe driver’s timer and the HAL's timer are typically syn-
the packet's size in byteB, by its delivery timetd. The  chronized with the time at the AP. This synchronization
client takes an exponentially weighted average over thesgppens with every beacon received from the AP. But as
measurements to smooth out variability, while adaptingatVAP switches APs, the timers may resynchronize with

to changes in load and link quality. _ ~adifferent AP. This is fine in general as both timers are
Next, we explain how we measure the delivery timalways synchronized with respect to the same AP. The
td. Note that the delivery time of packeis: problem, however, is that some of the packets in the trans-

td = tay — tg @ mit queue may have old timestamps taken with respect

! " to the previous AP. To deal with this issue, the FatVAP
wheretg; is the time when packgteaches the head of the driver remembers the id of the last packet that was pushed
transmit queue, an@, is the time when packgis acked. into the HAL. When resynchronization occurs (i.e., the
It is easy to geta; because the Hardware Abstractionbeacon is received), it knows that packets with ids smaller
Layer (HAL) timestamps each transmitted packet witlthan or equal to the last pushed packet have inaccurate
the time it was acked. Note that the HAL does raise &mestamps and should not contribute to the average in
tx interrupt to tell the driver to clean up the resources oEq. 9.

transmitted packets but it does this only after many pack- Finally, we note that FatVAP's estimation of available
ets have been transmitted. Hence, the time when the pandwidth is mostly passive and leverages transmitted
interrupt is raised is a poor estimatetaf. data packets. FatVAP uses probes only during initializa-
Obtainingtg;, however, is more complex. The driver tion, because at that point the client has no traffic travers-
hands the packet to the HAL, which queues it for transing the AP. FatVAP also occasionally probes the unused

mission. The driver does not know when the packeips (i.e., APs not picked by the scheduler) to check that
reaches the head of the transmission queue. Further, ¥gir available bandwidth has not changed.

do not have access to the HAL source, so we cannot

modify it to export the necessary informatibiive work ) _ )
around this issue as follows. We make the driver times3-1.2  Measuring End-to-End Available Bandwidth

tamp packets just before it hands them to the HAL. Sup- 1o ayailable end-to-end bandwidth via an AP is
pose the timestamp of packeis itis pushed to the HAL 0 5yerage throughput that a client obtains when using

is th;, we can then estimatej as follows: the AP to access the InterrfeT.he available end-to-end
tg; = max(thj, taj_1) (8) bandwidth is lower when there are more contenders caus-

o ) o . ing a FatVAP client to avoid congested APs in favor of a
The intuition underlying Eq. 8 is simple; either the HAL'S j5janced load.

queue is empty and thus packetaches the head of the How do we measure an AP’s end-to-end available

queue soon after itis handed_to the HAL, €., at ti.]h']e bandwidth? The naive approach would count all bytes re-
or the queue has some previous packets, in which ca

. cGived from the AP in a certain time window and divide
packej reaches the head of the queue only when the HAl'he count by the window size. The problem, however, is
is done with delivering packgt- 1, i.e., at timetgj_;. ' '

. L . ; that no packets might be received either because the host

. TW.O practical compllc:_;\t_lons exist however. First, thehas not demanded any, or the sending server is idle. To
tln?tertrl]n thet_ H'Af[l‘ h??hmlglsl_econdt_;(;cgraéy. '3‘5 ?I "€-avoid underestimating the available bandwidth, FatVAP

EU ' e”es imate o de N It\I/ery'tr: Om d- 1W' uesses which of the inter-packet gaps are caused by idle-
€ equally coarse, and mostly eftner U ms or 1 ms. 18qqq and removes those gaps. The algorithm is fairly sim-

fﬁe. It ignores packet gaps larger than one second. It also

?X;r a Ia(;ge number of measurterr]:etﬂts. I_n plartlcular_,l Fba!?nores gaps between small packets, which are mostly AP
produces a measurement ot the WIreless avallabig, ,.ons and TCP acks, and focuses on the spacing be-

Eprough%ut ?)t AaPk]ch t;kT% an avirﬁge oyer a window Oftween pairs of large packets. After ignoring packet pairs
seconds (by defaull = 2s), as follows: that include small packets and those that are spaced by
Zj et B 9) excessively long intervals, FatVAP computes an estimate

S td

eT ™l

] 2Note that our definition of available end-to-end bandwidthnot
1An open source project named OpenHAL allows access to the HAlhe typical value [17, 26] that is computed between a sodestination

but is too inefficient to be used in practice. pair, but is an average over all paths through the AP.
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true value because the AP buffers data when the client isstening and buffered Figure 5: FatVAP’s reverse NAT architecture.
data drains at the wireless available bandwidth. FatVAReets for this by spend- Packet from kernel
ing slightly longer than necessary at each AP, i.e., opegatt the red dot rather with dummy IP

than the black dot.

Flow pinned?

Hand over to kernel and
thereby user applications

of the end-to-end available bandwidth at;AB:

Traffic Distributor
Pins flow to AP

AP x

B.
é\ = L y (10) Update counters of all APs
29 1 o
Change src IP, redo IP
and upper checksums

Change ether src, dst addr

Change dst IP, redo IP
and upper checksum

dst IP ==
P connected to AP x?

whereB; is the size of the second packet in fffepair,

andg; is the gap separating the two packets, and the sum ]

- - . Hand over to standard MadWifi 1

is taken over a time window of = 2 seconds. processing to wrap into an Standard MadWifi code finishes
802.11 frame and send processing packet from AP x

One subtlety remains however. When a client re-
connectsto an AP, the AP first drains out all packets that it
buffered when the client was away. These packets go out
at the wireless available bandwidth Once the bufferis pecayse a contending client shuts off, the client cannot

drained out, the remaining data arrives at the end-to-enfl,seryve this change, because its estimate will stilkpe
available bandwidtie. Since the client receives a por- To fix this, FatVAP clients operate at the red dot, i.e.

tion of its .data at the.W|reIess ayallable bandwidth an ey spend slightly longer than necessary at each AP in
w; > g, simply counting how quickly the bytes are re-

. : . rder to obtain an accurate estimate of the end-to-end
ceived, as in Eq. 10, over-estimates the end-to-end aV""ﬁé\ndwidth. Specifically, i& ~ w;, FatVAP knows that it
able _bandW|dth. . . is operating near or beyond the black dot and thus slightly

F'g'. 4 plots how the estimate of end-to-end ava'labl?ncreases to go back to the red dot. The red arrows in the
bf';m_dW|dthe. relates to the true value.- Ther(_a are two figure show how a FatVAP client gradually adaptdiite
distinct phases. In one phase, the estimate is equal to bring it closer to the desired range. As longfas larger

which is shown by the flat part of the solid blue line. Thisthan the optimal value, we can compensate for the infla-
phase corresponds to connecting tq AfP less time than tion knowina thate — f_'A i e. Edq. 10 can be re-written
needed to collect all buffered data, if.< . Since the gthalg =1e, Le. Eq.

(a) Send Side (b) Receive Side
Figure 6: Getting packets to flow over multiple interfaces.

buffered data drains &t;, the estimate will b'é =Ww.In as: B
the other phase, the estimate is systematically inflated by e =fi —’ (12)
%, as shown by the tilted part of the solid blue line. This 2.9

phase corresponds to connecting to; A8 more time ) )
than needed to collect all buffered data, ife 2. The 3.2 Load Balancing Traffic Across APs

derivation for .this. inflation is in Appendix A. Here, we  The scheduler 3.1 gives an opportunity to obtain

hote the ramifications. _ the sum of available bandwidth at all APs, but to fulfil
_Inflated estimates of the end-to-end available banqpat opportunity, the FatVAP driver should map traffic to

width make the ideal operating point unstable. A clienjypg appropriately. There are two parts to mapping traffic:

would ideally operate at the black dot in Fig. 4, where ity |oa4 halancer that splits traffic among the APs, and a

connects to APfor exactlyf” = & of its time. But, ifthe o\ erse-NAT that ensures traffic goes through the desired

client does so, the estimagewill be § = % =Ww.Inthis ppg.

case, the client cannot figure out the amount of inflation

in g and compensate for it because the true end—to-eréd2 1 The Load Balancer

available bandwidth can be any value corresponding to™

the flat thick blue line in Fig. 4. Even worse, if the ac- The load balancer assigns traffic to APs proportion-

tual end-to-end available bandwidth were to increase, sajly to the end-to-end bandwidth obtainable from an AP.



Thus, the traffic ratio assigned to each APjs: by a constant amourk (default 10,000) to accommo-
date for TCP’s slow ramp-up. Additionally, we decay all
= fiwi (12) counters everyf. = 60s to forget biases that occurred a
> v’ long time ago.

wheref; is the fraction of time that the client connects to
AP; andfiw; is the value of AP(see Egs. 1, 2). 3.2.2 The Reverse-NAT
When splitting traffic, the first question is whether the
traffic allocation unit should be a packet, a flow, or adesti- How do we ensure that packets in a particular flow
nation? FatVAP allocates traffic to APs on a flow-by-flonare sent and received through the AP that the load bal-
basis. A flow is identified by its destination IP addres&ncer assigns the flow to? If we simply present the kernel
and its ports. FatVAP records the flow-to-AP mapping irVith multiple interfaces, one interface per AP like prior
a hash-table. When a new flow arrives, FatVAP decidedork [13], the kernel would send all flows through one
which AP to assign this flow to and records the assigr®P- This is because the kernel maps flows to interfaces
ment in the hash table. Subsequent packets in the flow gk&cording to routing information, not load. When all APs
simply sent through the AP recorded in the hash table. have valid routes, the kernel simply picks the default in-
Our decision to pin flows to APs is driven by practi-terface.
cal considerations. First, it is both cumbersome and inef- To address this issue, FatVAP uses a reverse NAT as a
ficient to divide traffic at a granularity smaller than a flow.shim between the APs and the kernel, as shown in Fig. 5.
Different APs usually use different DHCP servers and adsiven a single physical wireless card, the FatVAP driver
cept traffic only when the client uses the IP address pre@xposes just one interface with a dummy IP address to the
vided by the AP’s DHCP server. This means that in th&ernel. To the rest of the MadWifi driver, however, Fat-
general case, a flow cannot be split across APs. Furth&fP pretends that the single card is multiple interfaces.
splitting a TCP flow across multiple paths often reorder&ach of the interfaces is associated to a different AP, us-
the flow’s packets hurting TCP performance [25]. Secing a different IP address. Transparent to the host kernel,
ond, a host often has many concurrent flows, making FatVAP resets the addresses in a packet so that the packet
easy to load balance traffic while pinning flows to APscan go through its assigned AP.

Even a single application can generate many flows. For On the send side, and as shown in Fig. 6, FatVAP
example, browsers open parallel connections to quickiyodifies packets just as they enter the driver from the
fetch the objects ina web page (e.g., images, scripts) [18ernel. If the flow is not already pinned to an AP, Fat-
and file-sharing applications like BitTorrent open concuryap uses the load balancing algorithm above to pin this
rent connections to peers. new flow to an AP. FatVAP then replaces the source IP
But, how do we assign flows to APs to satisfy the raaddress in the packet with the IP address of the inter-
tios in EQ.12? The direct approach assigns a new flow face that is associated with the AP. Of course, this means
the " AP with a random probability;. Random assign- that the IP checksum has to be re-done. Rather than re-
ment works when the flows have similar sizes. But flowgompute the checksum of the entire packet, FatVAP uses
vary significantly in their sizes and rates [15, 22, 25]the fact that the checksum is a linear code over the bytes
To deal with this issue, FatVAP maintains per-AP tokefin the packet. So analogous to [14], the checksum is re-
countersC, that reflect the deficit of each AP, i.e., howcomputed by subtracting sorig¢he dummy IP addre$s
far the number of bytes mapped to an AP is from its deand addingf (assigned interface’s )P Similarly, trans-
sired allocation. For every packet, FatVAP increments afjort layer checksums, e.g., TCP and UDP checksums,
counters proportionally to the APs’ ratios in Eq. 12. Theneed to be redone as these protocols use the IP header
counter of the AP that the packet was sent/received on i their checksum computation. After this, FatVAP hands
decremented by the packet seHence, every window over the packet to standard MadWifi processing, as if this

of Tc seconds (default i§ = 60s) we compute: were a packet the kernel wants to transmit out of the as-
signed interface.

C - Ci+ri xB—B Packetis mapped to AP On the receive side, FatVAP modifies packets after

C+rixB Otherwise. standard MadWifi processing, just before they are handed

(13) up to the kernel. If the packet is not a broadcast packet,
It is easy to see that APs with more traffic than theiFatVAP replaces the IP address of the actual interface the
fair share have negative counters and those with less thpacket was received on with the dummy IP of the inter-
their fair share have positive counter values. When a neface the kernel is expecting the packets on. Checksums
flow arrives, FatVAP assigns the flow to the AP with theare re-done as on the send side, and the packet is handed
most positive counters and decreases that AP’s countexf to the kernel.



Disconnecting Old Interface-AP Pair ! Connecting New Interface-AP Pair

Trap all further packets from Ready all buffered packets for transmit,
kernel to old AP and buffer them don'’t trap packets to new AP further

To maximize user throughput, FatVAP has to toggle \ ;
between APs according to the schedule§tl while | 2rcoseimaeone
simultaneously maintaining TCP flows .through m_ultl— \.
ple APs (See§32) _SWItChlng APS requ_lres SWItChlng Halt hardware and E Attach transmit g's of new AP
the HAL and potentially resetting the wireless channel T ——— and restart hardware ‘
It also requires managing queued packets and updati _ \—'—j
the driver's state. These tasks take time. For example,
the Microsoft virtual WiFi project virtualizes an 802.11

3.3 Fast, Loss-Free, and Transparent AP Switching

Send to new AP, a coming
out of power-save notification

Figure 7: FatVAP’s approach to switching between interfaces

card, allowing it to switch from one AP to another. But l J ] J

this switching takes 30-600 ms [7] mostly because a new 7y D

driver module needs to be initialized when switching to Channel X
a new AP. Though successful in its objective of bridg- T

ing wireless networks, the design of Virtual WiFi is not [ : Fa:tVA:P : ]

sufficient to aggregate AP bandwidth. FatVAP needs to
support fast AP switching, i.e., a few milliseconds, oth- (a) Cannot use one MAC to connect to APs on the same channel
erwise the switching overhead may preclude most of the

benefits. Further, switching should not cause packet loss.

If the card or the AP loses packets in the process, switch-
ing will hurt TCP traffic [25]. Finally, most of the switch- “ /
ing problems would be easily solved if one can modify ESSIDX o o
both APs and clients. Such a design, however, will not be [ Tintertaced ¢ { Interface2 | ]
useful in today’s 802.11 deployments. FatVAP

(b) No benefit in connecting to multiple light-weight APs
3.3.1 Fast and Loss-Free SWitching Figure 8: Challenges in transparently connecting to multiple APs.

The basic technique that enables a card to toggle be- . - . S
o . horter wait (a few milliseconds) with negligible impact
tween APs is simple and is currently used by the Mad-
- . n TCP and the scheduler.
WiFi [4] driver to background scan for better APs an Second. how do we maintain multiole 802.11 state
others. Before a client switches away from an AP, it tells ' P '

. . . i i ithi i iver? -
the AP that it is going to power save mode. This Causens1ach|nes simultaneously within a single driver? Con

the AP to buffer the client’'s packets for the duration Opectm_g with an AP means malntaml_ng an 80.2.'11 state
machine. For example, in 802.11, a client transitions from

its absence. When the client switches again to the AP, | .
sends the AP a frame to inform the AP of its return, an&ilJL 0 hSe(r::'lt\lc;?l é‘)LrJT:r dtzaf‘;tizc ?ﬁ;oéiéeﬁgz'gg i
the AP then, forwards the buffered packets. O W : ward e ug - 1LIS cru
So. how d | this idea f ikl itch cial to handle state transitions correctly because other-
. 0, how do we Jeverage this |dea 1or quICKly SWItC o0 1y communication may be possible. For example, if
ing APs without losing packets? Two fundamental issues - : . :
an association request from one interface to its AP is sent

gﬁgddgo vei?hsoz:\\::ii:[slz:gi, d‘g?ﬁg Z‘::’\'}g:‘éli{?‘nzsd ]Y(v)??rt]:gle ut when another interface is connected to its AP, perhaps
P n a different channel, the association will fail prevegtin

AP? An AP switching system that sits outside the drlVerf'urther communication. To maintain multiple state ma-

like MultiNet [13] has no choice but to wait until all pack- chines simultaneously, FatVAP adds hooks to MadWifi's

ets queued in the driver are drained, which could ta S .
. o 02.11 state-machine implementation. These hooks trap
a while. Systems that switch infrequently, such as Mad- o . . -
all state transitions in the driver. Only transitions foe th

e e o aleace s cten comected o 1 AP can prc

FatVAP pushes.the switching procedure to the drivegeed’ all cher tran_smons are held pendmg_ and handled
. o . ; hen the interface is scheduled next. Passive changes to

where it maintains multiple transmit queues, one for eac, e state of an interface such as receiving packets or up-

interface. Switching APs simply means detaching the ol ating statistics are allowed at all times.

AP's queue and reattaching the new AP's queue. This Fig. 7 summarizes the FatVAP drivers’ actions when

makes switching a roughly constant time operation andwitchin from arold interface-AP pair to mewnair
avoids dropping packets. It should be noted that packe%s 9 P pair.

are pushed to the transmit queue by the driver and read by First, FatVAP traps all future packets handed down
the HAL. Thus, FatVAP still needs to wait to resolve the by the kernel that need to go out to the old AP and
state of the head of the queue. This is, however, a much buffers them until the next time this interface-AP pair



is connected. unigue MACs. When FatVAP assigns a MAC address to
e Second, FatVAP sends out an 802.11 managemeatvirtual interface, it ensures that interfaces conneated t
frame indicating to the old AP that the host is goingAPs on the same channel do not share the MAC address.

into power save mode. The AP then buffers all futur?b) Light-Weight APs (LWAP): Some vendors allow a
packets that need to go to the host. hysical AP to pretend to be multiple APs with differ-
e Unfortunately, these above two cases do not COV‘:tE-:}nt ESSIDs and different MAC addresses that listen on
packe_ts that may alread,y be on-_the-way, €., Packpe same channel, as shown in Fig. 8b. This feature is of-
ets might be in the card's transmit queue waiting Qe ised to provide different levels of security (e.g., one
be sent or might even be in the air. To prevent packgyni.\eight AP uses WEP keys and the other is open)
loss, FatVAP waits a little bit for the current packety g yaffic engineering (e.g., preferentially treat authen
on the air to be received before halting the hardwarg e traffic). For our purpose of aggregating AP band-
FatVAP also preserves the packets waiting in the i, switching between light weight APs is useless as
terface’s transmit queue. The transmit queue of thﬁ1e two APs are physically one AP.
old interface is simply detached from the HAL and is g5 /ap yses a heuristic to identify light-weight APs.
re-attached when the interface is next scheduled. | \vaps that are actually the same physical AP share
o Fourth, FatVAP resets the hardware settings of thg, .y hits in their MAC addresses. FatVAP connects to

card and pushes t_he new.association state into t%‘ﬁly one AP from any set of APs that have fewer than
HAL. If the new AP is on a different channel, the cardﬁve bits different in their MAC addresses

changes channels and listens at the new frequency

band. _ _ o 4 EVALUATION
e Finally, waking up the new interface is simple as the _ _ )

hardware is now on the right channel. FatvAP sends e evaluate our implementation of FatVAP in the

out a management frame telling the new AP that thg{ladwifi driver in an internal testbed we built with APs
host is coming out of power save, the AP immediatelffomM Cisco and Netgear, in hotspots served by com-
starts forwarding buffered packets to the host. mercial providers like T-Mobile, and in residential areas

which have low-cost APs connected to DSL or cable mo-
dem backends.

Our results reveal three main findings.
We Would ||ke FatVAP to WOI’k W|th unmodiﬁed APS. e In the testbed, FatVAP performs as expected_ It bal-

Switching APs transparently involves handling these ances load across APs and aggregates their avail-
practical deployment scenarios. able backhaul bandwidth, limited only by the wire-

(a) Cannot Use a Single MAC AddressWhen two APs less capacity and application demands. This result is
are on the same 802.11 channel (operate in the same fre- achieved even when the APs are on different wireless
quency band), as in Fig. 8a, you cannot connect to both channels.

APs with virtual interfaces that have the same MAC ad-® In today’s residential and Hotspot deployments (in
dress. To see why this is the case, suppose the client usesCambridge/Somerville, MA), FatVAP delivers to the
both AP1 and AP2 that are on the same 802.11 channel. end user a median throughput gain of 2.6x, and re-
While exchanging packets with AP2, the client claims to  duces the median response time by 2.8x.

AP1 that it has gone into the power-save mode. Unfor-® FatVAP safely co-exists with unmodified drivers and
tunately, AP1 overhears the client talking to AP2 as it Other FatVAP clients. At each AP, FatVAP com-
is on the same channel, concludes that the client is out Petes with unmodified clients as fairly as an unmodi-
of power-save mode, tries to send the client its buffered fied MadWifi driver, and is sometimes fairer because

packets and when un-successful, forcefully deauthenti- FatVAP moves away from congested APs. FatVAP
cates the client. clients are also fair among themselves.

3.3.2 Transparent Switching

FatVAP confronts MAC address problems with an
existing feature in many wireless chipsets that allows a
physical card to have multiple MAC addresses [4]. Théa) Drivers We compare the following two drivers.
trick is to change a few of the most significant bits acrosse Unmodified Driver: This refers to the madwifi
these addresses so that the hardware can efficiently listen v0.9.3 [4] driver. On linux, MadWifi is the current
for packets on all addresses. But, of course, the number of defactodriver for Atheros chipsets and is a natural
such MAC addresses that a card can fake is limited. Since baseline.
the same MAC address can be reused for APs that are o# FatVAP: This is our implementation of FatVAP as an
different channels, FatVAP creates a pool of interfaces, extension of madwifi v0.9.3. Our implementation in-
half of which have the primary MAC, and the rest have cludes the features described;By and works in con-

.1 Experimental Setup



o - Time (us) e Long-lived iperf TCP flowstn this traffic load, each
peration .
Mean STD client has as many parallel TCP flows as there are

IP Checksum Recompute 0.10 0.09 APs. Flows are generated using iperf [2] and each
TCP/UDP Checksum Recompute 0.12 0.14 flow lasts for 5 minutes.
Flow Lookup/Add in HashTable|| 2.52 2.30 e Web Traffic:This traffic load mimics a user browsing

Running the Scheduler 16.21 4.85 the Web. The client runs our modified version of Web-
Switching Delay 2897.48| 2780.71 Stone 2.5 [8] a tool for benchmarking Web servers.
Table 1: Latency overhead of various FatVAP operations. RequeStS for new Web pages arrive as a Poisson pro-

cess with a mean of 2 pages/s, the number of objects
on a page is exponentially distributed with a mean
of 20 objects/page, the objects themselves are copies
(b) Access Points:Our testbed uses Cisco Aironet of actual content on the CSAIL Web server and have

1130AG Series access points and Netgear's lower-cost SiZeS thatare roughly a power-law with mean equal to
APs. We put the testbed APs in the 802.11a band so as 1_5KB' Note that popglar browsers usually open mul-
to not interfere with our lab’s existing infrastructure.ou  UPle parallel connections to the same server or differ-
outside experiments run in hotspots and residential de- €Nt Serversto quickly download the various objects on
ployments and involve a variety of commercial APs inthe & Web page (e.g., images, scripts) [18].
802.11b/g mode, which shows that FatVAP works acros¢® BitTorrent: Here, we use the Azureus [1] BitTorrent
802.11a/b/g. The testbed APs can buffer up to 200 KB for client to fetc_h a 500MB file. The tracker is on a
a client that enters the power-save médeestbed APs CSAIL machine, and 8 Planetlab nodes act as peers.
are assigned different 802.11a channels (we use channels NOt€ that BitTorrentfetches data in parallel from mul-
40, 44, 48, 52, 56 and 60). The wireless throughputto all tiPIe PEers.

APs in our testbed is in the ranffe9 — 22] Mb/s. The ac-

tual value depends on the AP, and differs slightly between

uplink and downlink scenarios. APs in hotspots and regt.2 Microbenchmarks

idential experiments have their own channel assignment . )
which we do not control. To profile the various components of FatVAP, we use

the x86 rdtscll instruction for fine-grained timing infor-

ation. rdtscll reads a hardware timestamp counter that is

ent wireless cards, from the Atheros chipsets in the Iap :
. ’ . ted CPU cycle. O 2 GHz client,
est Thinkpads (Atheros AR5006EX) to older Dlink andtﬂ(i:srilriZIednsz rgggﬁjg\éirgf 0.5 n(glr?oesecr;r?g; Zclien

Netgear cards. Clients are 2GHz x86 machines that run _
Linux v2.6. In each experiment, we make sure that Fat- Table 1 shows our microbenchmarks. The table shows
VAP and the compared unmodified driver use similar mathat the delay seen by packets on the fast-path (e.g., flow

chines with the same kernel version/revision and the sanfRPKup to find which AP the packets need to go to, re-
card. computing checksums) is negligible. Similarly, the over-

head of computing and updating the scheduler is mini-

(d) Traffic Sh_aping: To emylate an AP backhaul link, mal. The bulk of the overhead is caused by AP switching.
we add a traffic shaper behind each of our test-bed Apﬁ'takes an average of 3 ms to switch from one AP to

This shaper is a Linux box that bridges the APs traffi nother. This time includes sending a power save frame,

to the Inter_net and ha,s two E‘heff‘et gards, one of whi aiting until the HAL has finished sending/receiving the
is plugged into the lab’s (wired) GigE infrastructure, an urrent packet, switching both the transmit and receive

thedother ig k():ongeg(;erc]i t: the ﬁ‘P‘ Tl?e Sgaplfzr c;)ontr(()jls tEleues, switching channel/AP, and sending a manage-
end-to-end bandwidth through a token bucket based ratgr, o frame to the new AP informing it that the client is

:‘_llt(ljrvv\\;hose r?]te determines the cap_aC|]Ey Ol:]; AE;’ aCCﬁE&Ck from power save mode. The standard deviation is
Ink. We use the same access capacity for both downlings, apoyt 3 ms, owing to the variable amount of pend-

and uplink. ing interrupts that have to be picked up. Because FatVAP
(e) Traffic Load: All of our experiments use TCP. A performs AP switching in the driver, its average switching
FatVAP client assigns traffic to APs at the granularity otlelay is much lower than prior systems (3ms as opposed
a TCP flow as described i§8.2. An unmodified client to 30-600ms). We note that switching cost directly affects
assigns traffic to the single AP chosen by its unmodifieghe throughput a user can get. A user switching between
driver [4]. Each experiment uses one these traffic loadstwo APs every 100ms, would only have 40ms of usable
SWe estimate this value by computing the maximum burst siae th time left if .eaCh switch takes_ 30ms, as Opposed to 94ms
a client obtains when it re-connects after spending a lamg in the of usable time when each switch takes 3ms and hence can
power-save mode. more than double his throughput (94% vs. 40% use).

junction with autorate algorithms, carrier-sense, CTS-
to-self protection, etc.

(c) Wireless Clients:We have tested with a few differ-
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Figure 9: FatVAP aggregates AP backhaul bandwidth until the limithef ¢ard’s wireless bandwidth, i.e., wireless link capaeitgwitching overhead.

function of the number of APs that FatVAP is allowed to
access. When FatVAP is limited to a single AP, the TCP

1100, BW change e ehange throughput is similar to running the same experiment
«» D) with an unmodified client. Both throughputs are about
6 6 5.8Mb/s, slightly less than the access capacity because
AP1 AP2 of TCP’s sawtooth behavior. But as FatVAP is given ac-

cess to more APs, its throughput doubles, and triples. At
3 APs, FatVAP’s throughput is 3 times larger than the
throughput of the unmodified driver. As the number of

Client
(a) Scenario

30

FatVAP —— APs increases further, we start hitting the maximum wire-
25 | Unmodified Madwifi -

E2E Aggregate Bandwidth - 1 less bandwidth, which is about 20-22Mb/s. Note that Fat-
2 VAP’s throughput stays slightly less than the maximum
wireless bandwidth due to the time lost in switching be-
tween APs. FatVAP achieves its maximum throughput
when it uses 4 APs. In fact, as a consequence of switching
overhead, FatVAP chooses not to use the fifth AP even

Aggregate Throughput (Mb/s)

5 . 100 150 200 when allowed access to it. Thus, one can conclude that
Time (seconds) FatVAP effectively aggregates AP backhaul bandwidth
(b) RecelvedO rate

up to the limitation imposed by the maximum wireless
Figure 10: At time t = 100s, the available bandwidth at the first access ””"bandwidth

changes from 15Mb/s to 5Mb/s, whereas the available barhbveidthe second )

access link changes from 5Mb/s to 15Mb/s. FatVAP quicklyatahces the load

and continues to deliver the sum of the APs’ available eréii bandwidth. In - 4 4  Can FatVAP Adapt to Changes in Bandwidth?
the scenario, an unmodified driver limits the client to ARvailable bandwidth.

Next, if an AP’s available bandwidth changes, we
4.3 Can FatVAP Aggregate AP Backhaul Rates? would like FatVAP to re-adjust and continue delivering
) _ ) the sum of the bandwidths available across all APs. Note
FatVAP’s main goal is to allow users in a hotspot or afhat an unmodified MadWwifi cannot respond to changes
home to aggregate 'Fhe bagdW|dth available at all acces§i packhaul capacity. On the other hand, FatVAP’s con-
ble APs. Thus, in this section we check whether FatVAR gt estimation of both end-to-end and wireless band-
can achieve this goal. width allows it to react to changes within a couple of sec-
Our experimental setup shown in Fig. 9(a) ms-  onds. We demonstrate this with the experimentin Fig. 10,
{1,2,3,4,3 APs. The APs are on different channels andvhere two APs are bottlenecked at their access links. As
each AP has a relatively thin access link to the |ntelbefore, the APs are on two different channels, and the
net (capacity 6Mb/s), which we emulate using the trafbandwidth of the wireless links to the APs is about [21-
fic shaper described ig4.1(c). The wireless bandwidth 22]Mb/s. At the beginning, AP1 has 15Mb/s of avail-
to the APs is abouf20 — 22]Mb/s. The traffic consti- able bandwidth, whereas AP2 has only 5Mb/s. At time
tutes of long-lived iperf TCP flows, and there are as many = 100s, we change the available bandwidth at the two
TCPs as APs, as describedi 1(d). Each experimentis APs, such that AP1 has only 5Mb/s and AP2 has 15 Mb/s.
first performed by FatVAP, then repeated with an unmodNote that since the aggregated available bandwidth re-
ified driver. We perform 20 runs and compute the averag@ains the same, FatVAP should deliver constant through-
throughput across them. The question we ask is: does Fat across this change. We perform the experiment with
VAP present its client with a fat virtual AP, whose back-a FatVAP client, and repeat it with an unmodified client
haul bandwidth is the sum of the AP’s backhaul bandthat connects to AP1 all the time. In both cases, the client
widths? uses iperf [2] to generate large TCP flows, as described
Figs. 9(b) and 9(c) show the aggregate throughput dfi §4.1(d).
the FatVAP client both on the uplink and downlink, as a  Fig. 10(b) shows the client throughput, averaged over
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Figure 11: Because it balances the load across the two APs, FatVAPwvashéesignificantly lower response time for Web traffic in cangon with an unmodified
driver.

2sintervals, as a function of time. The figure shows that if
the client uses an unmodified driver connected to AP1, its

throughput will change from 15Mb/s to 5Mb/s in accor- 10 Mois/f 7 \:5 Mors
dance with the change in the available bandwidth on that I:<'< SERC )
AP. FatVAP, however, achieves a throughput of about 18 AP1 :é égApz

Mb/s, and is limited by the sum of the APs’ access capac- Unmodified | :
ities rather than the access capacity of a single AP. Fat- Madwi [~ ", g FaivAP
VAP also adapts to changes in AP available bandwidth,

. L . a) Scenario
and maintains its high throughput across such changes. @

12 T T T
ifi atvap FatV: luti
10k Unmodified Madwifi ----8--- — atvVap solution

4.5 Does FatVAP Balance the Load across APs?

A second motivation in designing FatVAP is to bal-
ance load among nearby APs. To check that FatVAP in-
deed balances AP load, we experiment with two APs
and one client, as shown in Fig. 11(a). We emulate a §
user browsing the Web. Web sessions are generated usingd ‘ ‘ ‘ ‘ o ‘ ‘
WebStone 2.5, a benchmarking tool for Web servers [8] 0 20 30 40 50 60 70 80 90 100

. Scheduled Time for AP1 (%)
and fetch Web pages from a_ Web server that mirrors our (b) Throughput of FatVAP and a competing unmodified driver
CSA_IL Web-server, as descrlbed§n.1(Q). Figure 12: FatVAP shares the bandwidth of AP1 fairly with the unmodifieier.
Fig. 11(b) shows that FatVAP effectively balances th@&egardiess of how much time FatVAP connects to AP1, the uifieddiriver gets
i ; ’ ; 1alf of AP1’s capacity, and sometimes more. The resultsaréné downlink. The
utilization of the APs’ access links, whereas the unmod?

. . X . . _uplink shows a similar behavior.
ified driver uses only one AP, congesting its access link.

Fig. 11(c) shows the corresponding response times. #Mb/s. AP2 is not shared, and has = 20Mb/s, and
shows that FatVAP’s ability to balance the load acrosg, _ sMp/s
APs directly translates to lower response times for Web '

gregate Throughput (Mb/s)

outs, and t_hu_s I_ong response times, Fat\(AP balance_s ASontal line at 5Mb/s, which is one half of AP1’s access
loads to W'th'_n in a few percent, prevenpng CongeStIOncapacity. The figure shows that regardless of how much
and resulting in much shorter response times. time FatVAP connects to AP1, it always stays fair to the
unmodified driver, that is, it leaves the unmodified driver
about half of AP1’s capacity, and sometimes more. Fat-
VAP achieves the best throughput when it spends about
We would like to confirm that regardless of how55-70% of its time on AP1. Its throughput peaks when it
FatVAP schedules APs, a competing unmodified drivesPends about 64% of its time on AP1, which is, in fact,
would get its fair share of bandwidth at an AP. We run théhe solution computed by our scheduler§B.1 for the
experiment in Fig. 12(a), where a FatVAP client switchegbove bandwidth values. This shows that our AP sched-
between AP1 and AP2, and shares AP1 with an unmodiler is effective in maximizing client throughput.
ified driver. In each run, both clients use iperf to gener- . .
ate long-lived TCP flows, as describedsih 1(d). For the 4.7 Are FatVvAP Clients Fair Among Themselves?
topologyin Fig. 12(a), since AP1 is shared by two clients, When unmodified clients access multiple APs the ag-
we havew; = 19/2 = 9.5Mb/s, ande; = 10/2 = gregate bandwidth is divided at the coarse granularity of a

4.6 Does FatVAP Compete Fairly with Unmodified
Drivers?
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Figure 13: FatVAP clients compete fairly among themselves and haverer fa
throughput allocation than unmodified clients under theesaamditions.
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client. This causes significant unfairness between clients 0 1 2 3 4 5 6 7
that use different APs. The situation is further aggra- (a) CDF of throughput taken over all Web requests
vated since unmodified clients pick APs based on signal 100 ‘ ‘ ‘ —_—
strength rather than available bandwidth, and hence can 80

significantly overload an AP.

Here, we look at 5 clients that compete for two
APs, where AP1 has 2Mb/s of available bandwidth and
AP2 has 12 Mb/s, as shown in Fig. 13(a). The traffic 20y FatvAp —— |

60 [

40

Percentage(%)

load consists of long-lived iperf TCP flows, as described 0 = 2 — U”m‘;diﬁed “:Zdwm r—
in §4.1(d). Fig. 13(b) plots the average throughput of Response ime (secs)
clients with and without FatVAP. With an unmodified (b) CDF of response time taken over all Web requests

driver, clients C1 and C2 associate with AP1, therebgligure 15: FatVAP's performance in three residential deploymentsam@ridge,
L ... MA. The figure shows that FatVAP improves the median throughy 2.6x and

ac_;hlevmg a th_rough_put of less than 1Mb/s. The remainingquces the median response time by 2.8x.

clients associate with AP2 for roughly 4Mb/s through-

put for each. However, FatVAP's load balancing and finege web requests in all three locations. The figure shows
grained scheduling allow all five clients to fairly share thgnhat FatVAP increases the median throughputin these res-
aggregate bandwidth of 14 Mb/s, obtaining a throughp%emiw deployments by 2.6x. Fig. 15(b) plots the CDF
of roughly 2.8 Mb/s each, as shown by the dark bars igf the response time taken over all requests. The figure
Fig. 13(b). shows that FatVAP reduces the median response time by
2.8x. Note that though all these locations have only two
4.8 FatVAP in Residential Deployments APs, Web performance more than doubled. This is due to

We demonstrate that FatVAP can bring real and iml_:atVAP’s ability to balance the Iqad across APs. Sp_ecifi-
mediate benefits in today’s residential deployments. ally, most Web floyvs are short I|v§d and have relatlyely
do so, we experiment with FatVAP in three residentia mall TCP congestion windows. Without load balancmg,
locations in Cambridge, MA, shown in Fig. 14. Each oilhe bottleneck (_erpS a Iarg_e number Qf packets, causing
these locations has two APs, and all of them are homdiese flows to time out, which results in worse through-
of MIT students, where neighbors are interested in confuts and response times. In shp_rt, our r,eSUItS show that
bining the bandwidth of their DSL lines. Again, in these,FatVAF? brings |mmeq|ate benefitin todaysdeployments,
experiments, we run Web sessions that access a mirror'BProving both client’s throughput and response time.
the CSAIL Web-server, as explained§a.1(d). In each
location, we issue Web requests for 10 min, and repeét
the experiment with and without FatVAP. Results in Hotspots show that FatVAP can aggregate

Fig. 15(a) plots the CDF of throughput taken over althroughput across commercial access points. The traf-

9 Hotspots
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network. MultiNet applies this idea to extend the reach
of APs to far-away clients and to debug poor connectiv-
ity. We build on this vision of MultiNet but differ in de-

sign and applicability. First, MultiNet provides switclgin

capabilities but says nothing about which APs a client
should toggle and how long it should remain connected
to an AP to maximize its throughput. In contrast, FatvVAP

Davis Broadway schedules AP switching to maximize throughput and bal-
‘ Unmodified ® FatVAP ‘ ance load. Second, FatVAP can switch APs at a fine time
- scale and without dropping packets; this makes it the
- only system that maintains concurrent TCP connections
¥200+————-T——————— — — i
= 1600 L939.720  _1450.808__ _ _ _ 1080.37_ on multiple APs.
;: o——-+ N . (b) AP Selection:Current drivers select an AP based on
oo —— NN — — signal strength. Prior research has proposed picking an
£ 400 — | — —-100.821 — AP based on load [20], potential bandwidth [28], and a
S 0+ N s combination of metrics [21]. FatVAP fundamentally dif-
=

fers from these techniques in that it does not pick a single
AP, but rather multiplexes the various APs in a manner

Figure 16: FatVAP’s performance in two hotspots in Cambridge/SontierwlA, that maximizes client th roughput.
showing that FatVAP improves throughput for Web downloaut$ BitTorrent.

Davis Broadway

fic load uses both Web downloads and BitTorrent and i€ DISCUSSION

generated as described§a.1(d). Our results show that  Here, we discuss some related issues and future work.
both Web sessions and BitTorrent ob.tz_:un mu_ch |mproved (a) Multiple WiFi Cards:While FatVAP benefits from
throughput compared to the unmodified driver. Fig. 1¢,4ying multiple WiFi cards on the client's machine, it
shows that, depending on the Hotspot, FatVAP delivergqeg not rely on their existence. We made this design de-
an average throughput gain of 1.5-10x to Web trafficgision for various reasons. First most wireless equipments
and 2— 6x to BitTorrent. The huge gains obtained in the, 4 rally come with one card and some small handheld
Broadway site are because the AP with the highest RSgbyices cannot support multiple cards. Second, without
was misconfigured with a very large queue size. Whegan/ap the number of cards equals the number of APs
congested, TCPs at this AP experienced a huge RTT if4¢ one can connect with, which limits such a solution
flation, time-outs, and poor throughput. to a couple of APs. Third, cards that are placed very
close to each other may interfere; WiFi channels over-
lap in their frequency masks [16] and could leak power to
Related work falls in two main areas. each other’s bands particularly if the antennas are placed
(a) Connecting to Multiple APs: There has been much very close. Forth, even with multiple cards, the client stil
interest in connecting a wireless user to multiple netreeds to pick which APs to connect to and route traf-
works. Most prior work uses separate cards to conneti¢ over these APs as to balance the load. FatVAP does
to different APs or cellular base stations [5, 23, 27]not constrain the client to having multiple cards. If the
PERM [27] connects multiple WiFi cards to different res-client however happens to have multiple cards, FatvVAP
idential ISPs, probes the latency via each ISP, and assigwsuld allow the user to exploit this capability to expand
flows to cards to minimize latency. Horde [23] uses multhe number of APs that it switches between and hence
tiple cellular connections via different providers. In eon improve the overall throughput.
trast to this work which stripes traffic across independent (b) Channel Bonding and Wider Bandédvances
connections, FatVAPuses the same card to associate dike channel bonding (802.11n) and wider bands (40MHz
exchange data with multiple APs. Further, FatVAP usewide channels) increase wireless link capacity to hun-
virtual connections to these APs that are very much dekeds of Mb/s. Such schemes widen the gap between the
pendent and so are the throughput estimates that FatV&Rpacity of the wireless link and the AP’s backhaul link,
uses to choose APs. making FatVAP more useful. In such settings, FatVAP
The closest to our work is the MultiNet project [13], lets one wireless card collect bandwidth from tens of APs.
which was later named VirtualWiFi [6]. MultiNet ab- (c) WEP and Splash Screenske are in the process of
stracts a single WLAN card to appear as multiple viradding WEP and splash-screen login support to our Fat-
tual WLAN cards to the user. The user can then configAP prototype. Supporting WEP keys is relatively easy,
ure each virtual card to connect to a different wirelesthe user needs to provide a WEP key for every secure AP

5 RELATED WORK
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