How sentiment analysis is used
Traditionally, businesses relied on questionnaires and surveys to gauge customer opinion. For example, the Net Promoter Score (NPS) survey aggregated and assessed information needed to measure customers’ willingness to recommend a business. While valuable, it can severely lack the ability to provide deeper insights into customer experiences—such as when making purchases—across your digital channels.
But sentiment analysis can bridge that gap.
In monitoring, identifying, and extracting customers’ opinions and sentiments from text, sentiment analysis can help reveal the meaning behind each comment, social media like, idea, complaint, and query. And help you readily attend to your customers’ ever-evolving needs.
By analyzing the collected data, you’ll get a summary of each customer’s reaction, as well as any other additional feedback that could help shape the public perception of your product or business. When this data is placed on a positive, neutral, or negative sentiment spectrum, you’re able to see what drove the customer to make that statement—revealing the opinions that describe the customer’s sentiments and feelings towards a specific topic.
These opinions are then classified as direct (“This product is the best I’ve ever used!”) or comparative (“Product A integrated better with my org than Product B.”). While these are often easy to interpret, it’s important to also note that some may need further looking at. Classifications such as implicit (“The business knows what they need to do to improve this product.”) and explicit (“Feature A is easy to use.”), as well as word sequences that are positive yet contain a negative word, can be difficult to analyze and might require some manual review or adjustments to your sentiment models.
But once these key words and phrases on how others feel about you are discovered, they can help you plan your organization’s next move. But first, you need to understand how sentiment analysis works to benefit your business.
Follow Dynamics 365