April 23, 2013

Machine Learning Summit 2013

13:30–17:00 GMT

Location: Paris, France

April 22

Time Session Location
19:30
Welcome Drinks Reception
Concorde La Fayette

April 23

Time Session Speaker Location
07:35
Coach Transfer to Microsoft Le Campus
Concorde La Fayette
08:15
Light Breakfast and Registration
Arc-en-Ciel
09:00
Opening/Welcome remarks
Alain Crozier, President, Microsoft France
Grand Bleu
09:10
Introductory Talk
Rick Rashid, Microsoft Research
Grand Bleu
09:30
Plenary 1 Keynote: Machines that (Learn to) See

Chair: Chris Bishop, Microsoft Research

  • Andrew Blake, Microsoft Research
10:30
Break
Arc-en-Ciel
11:00
Parallel Sessions
Session 1: Model-Based Machine Learning in Practice

Chair: John Bronskill, Microsoft Research

  • Thomas Minka, Microsoft Research
Rubis
Session 2: Large Scale Machine Learning

Chair: Leon Bottou, Microsoft Research

  • Francis Bach, INRIA – Ecole Normale Superieure
  • Anatoli Juditski, University J. Fourier of Grenoble
  • Alekh Agarwal, Microsoft Research
Grand Bleu
Session 3: Game Theory Meets Machine Learning

Chair: Laurent Massoulie, Microsoft Research-Inria Joint Centre

  • Avrim Blum, Carnegie Mellon University
  • Amos Storkey, University of Edinburgh
  • Peter Key, Microsoft Research
Prairie
12:30
Lunch
Arc-en-Ciel
13:30
Parallel Sessions
13:30
Session 4: Learning with Millions of Categories
Chair: Yann LeCun, New York University

  • Samy Bengio, Google
  • Fei-Fei Li, Stanford University
  • P. Anandan, Microsoft Research
Prairie
Session 5: Model-Based Machine Learning Tutorial with Infer.NET
Chair: John Bronskill, Microsoft Research

  • John Guiver, Microsoft Research
Rubis
Session 6: Machine Learning and Social Data
Chair: Pushmeet Kohli, Microsoft Research

  • Foster Provost, New York University
  • Sharad Goel, Microsoft Research
  • Elad Yom-Tov, Microsoft Research
Grand Bleu
15:00
DemoFest
  • Machine Learning for Xbox Live
    Noam Koenigstein, Microsoft Research; Ulrich Paquet, Microsoft Research
  • Automatic Segmentation of High-grade Brain Tumours by Context-sensitive Decision Forests
    Darko Zikic, Microsoft Research
  • Teaching Kinect to Read Your Body and Hands
    Jamie Shotton, Microsoft Research
  • A weakly-supervised approach for building statistical conversational understanding models
    Dilek Hakkani-Tur, Microsoft Research; Larry Heck, Microsoft Research; Gokhan Tur, Microsoft Research; Asli Celikyilmaz, Microsoft Research
  • Model-based Machine Learning Using Infer.Net
    John Bronskill, Microsoft Research
  • Real-Time Business Metadata Extraction
    Dimitrios Lymberopoulos, Microsoft Research
  • Juggling the Jigsaw: Towards Automated Problem Inference from Network Trouble Tickets
    Navendu Jain, Microsoft Research
  • Querying Human Activities – Social Media Analytics Platform
    Emre Kiciman, Microsoft Research
  • Probabilistic Programming with Try F#
    Christophe Poulain, Microsoft Research 
Arc-en-Ciel
17:00
Plenary 2 Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning
Chair: Tony Hey

  • Judea Pearl, University of California
Grand Bleu
18:00
Close
 
18:15
Coach Transfer to La Gare Restaurant
  Microsoft Le Campus
19:00
Evening Dinner
 
22:00
Coach Transfer to Concorde La Fayette
  La Gare Restaurant

April 24

Time Session Speaker Location
07:35
Coach Transfer to Microsoft Le Campus
Concorde La Fayette
08:15
Light Breakfast
Arc-en-Ciel
09:00
Plenary 3 Keynote: Data is accumulating at such a rate that there are no longer enough qualified humans to analyse it

Chair: Peter Lee, Microsoft Research

  • Hermann Hauser, Amadeus Capital Partners
Grand Bleu
10:00
Break
Arc-en-Ciel
10:30
Parallel Sessions
Session 7: Machine Learning in Healthcare
Chair: Silvia Chiappa, Microsoft Research

  • David Page, University of Wisconsin-Madison
  • Antonio Criminisi, Microsoft Research
  • Bert Kappen, University of Radboud
Grand Bleu
Session 8: Machine Learning for Computer Vision
Chair: Sebastian Nowozin, Microsoft Research

  • Carsten Rother, Microsoft Research
  • Tomas Werner, Czech Technical University
  • Bill Freeman, Massachusetts Institute of Technology
Prairie
Session 9: Causality and Machine Learning

Chair: Zoubin Ghahramani, University of Cambridge

  • Isabelle Guyon, ChaLearn. Thomas Richardson, University of Washington
  • Leon Bottou, Microsoft Research
Rubis
12:00
Lunch
Arc-en-Ciel
13:00
Parallel Sessions
Session 10: The Future of Probabilistic Programming
Chair: Thore Graepel, Microsoft Research

  • Andy Gordon, Microsoft Research
  • Vikash Mansinghka, Massachusetts Institute of Technology
  • Avi Pfeffer, Charles River Analytics
  • Christopher Re, University of Wisconsin-Madison
Prairie
Session 11: Machine Learning and Natural Language
Chair: Ronan Collobert, Idiap Research Institute

  • Steve Renals, University of Edinburgh
  • Hermann Ney, RWTH Aachen University
  • Alex Acero, Microsoft Research
Grand Bleu
Session 12: Machine Learning and Crowdsourcing
Chair: Yoram Bachrach, Microsoft Research

  • Emre Kiciman, Microsoft Research
  • Eyal Amir, University of Illinois, Urbana-Champaign
  • David Parkes, Harvard University
Rubis
14:30
Break
  Arc-en-Ciel
Plenary 4 Keynote: Data Challenges and Opportunities in the Next Decade
Chair: Jeannette Wing, Microsoft Research

Panelists:

  • Eric Horvitz, Microsoft Research
  • Michel Cosnard, INRIA. Iain Buchan, Manchester University
  • Lionel Tarassenko, University of Oxford
Grand Bleu
16:00
Closing Remarks
  • Chris Bishop, Microsoft Research
  • Evelyne Viegas, Microsoft Research
Grand Bleu
16:10
Close of Day