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Abstract. We introduce a computational interpretation for Hilbert’s
choice operator (ε). This interpretation yields a typed foundation for
dynamic linking in software systems. The use of choice leads to inter-
esting difficulties—some known from proof theory and others specific to
the programming-language perspective that we develop. We therefore
emphasize an important special case, restricting the nesting of choices.
We define and investigate operational semantics. Interestingly, computa-
tion does not preserve types but it is type-sound.

1 Introduction

In the 1920s, Hilbert invented the choice operator ε as a means of defining the
first-order universal and existential quantifiers in an attempt to establish the
consistency of arithmetic and analysis. Usually, in first-order logical systems, if A
is a formula and x is a variable then εx.A is a term that represents some element
x for which A holds, when such an x exists. The term εx.A is syntactically
well-formed even when no such x exists. Hence, ∃x.A may be regarded as an
abbreviation for A[(εx.A)/x]. (See section 7 for some references on ε.)

In this paper, we introduce a computational interpretation of the choice op-
erator ε in the context of a second-order propositional logic, that is, in a variant
of propositional ε-calculus. Its originality stems from the view of this operator as
a construct in the type system for a programming language. In our type system,
ε binds a type variable—rather than a variable that ranges over values—much
like ∀ in the polymorphic λ-calculus System F [9,3]. If A is a type and X is a
type variable then εX.A is a type X for which A is inhabited, when such an
X exists. The type X may be chosen dynamically (at run-time) among several
candidates. In any case, X is unique. For instance, εX.X is an arbitrary, fixed
inhabited type, and if ⊥ is an empty type, then εX.⊥ is an arbitrary, fixed type.

Our programming-language perspective has substantial consequences. In par-
ticular, it constrains orders of program evaluation. We cannot blindly rely on
analogues of the strategies previously explored in the proof theory for the choice
operator (e.g., [14]): these strategies are generally not attractive for the opera-
tional semantics of programs.

While some of the logical difficulties caused by the choice operator are fairly
well-known, we find others in this context. In short, we observe that ε tends to
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conflict with type-soundness, parametricity, and termination, and (non-conserva-
tively) extends typed functional programming with tricky side effects. Some of
these issues are crucially affected by orders of program evaluation.

In light of these difficulties, we particularly focus on an important special case
in which ε’s cannot be nested arbitrarily. With such restrictions, we define and
investigate operational semantics. Interestingly, computation does not preserve
types but it is type-sound. For example, a step of computation might replace
the type εX.X with the type Bool. Such instantiations result in global changes
of types, but—if done with great care—not in run-time type errors.

Choice is obviously related to existential quantification, and thereby [19] to
abstract datatypes. From a programming-language perspective, choice enables
us to refer to uniform, unique implementations of abstract datatypes. Two oc-
currences of εX.A in a program always refer to the same type X. In contrast,
two occurrences of ∃X.A in a program will typically yield different, incompatible
concrete representations for X; such incompatibility is a well-known source of
problems, for example in the treatment of binary methods. Programming lan-
guages provide several other ways of overcoming or avoiding those problems (for
instance, the “dot notation” [4]). In contrast with many programming-language
inventions, choice remains fruitfully close to logic.

At the same time, choice seems intriguingly close to practice. Specifically,
whenever we instantiate εX.A with a chosen type B, we also pick a value of the
corresponding type A[B/X]. In programming terms, this value can be seen as
a dynamically linked implementation of the interface A, with B as the concrete
representation type for X. Further, consecutive instantiations of a type variable
correspond to incremental implementations of an interface.

As a result of our exploration, we therefore obtain a foundation for (aspects
of) typed dynamic linking in extensible software systems (e.g., [2,10,6,7,12]).
Dynamic linking has thus far been rather mysterious and notoriously error-prone
(e.g., [5]). It has often been defined rather vaguely, or kept “under the covers”.
We hope that studies such as ours will contribute to taming it.

The next section describes the syntax and type system of a minimal pro-
gramming language with choice, which we call System E . Section 3 starts an
analysis of the possible computation rules for this language and of some of the
difficulties involved. Section 4 focuses on an important fragment, System E∗, that
has a simple and sound operational semantics. Section 5 treats an example. Sec-
tion 6 briefly considers parametricity, termination, and conservativity. Finally,
section 7 concludes with a discussion of related and further work. Because of
space constraints, this paper omits some further analysis of computation rules
for System E ; it also omits material on abstract machines, which are the subject
of ongoing work.

2 System E: Basics

This section describes the syntax, type system, and informal semantics of Sys-
tem E , postponing formal semantics.
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2.1 Defining System E
Design. For simplicity and in order to focus on the choice operator, our pro-
gramming language is a rather spartan λ-calculus. Since our choice operator
binds type variables, we may wonder how much higher-order machinery the pro-
gramming language should include. In particular, we may ask whether the type
quantifier ∀ should be primitive, as in System F [9,3]. The interaction of ε with
∀ seems to raise many interesting but non-trivial questions, as we hint in sec-
tion 6.2. Moreover, the full power of System F quantification is rarely present
in current practical languages. Therefore, for this first study of ε in a program-
ming context, we omit ∀. We also omit higher-order type operators, recursion,
subtyping, and mutable references. We even omit base types (Bool, . . . ) and
first-order types (A × B, . . . ), but we liberally rely on them when appropriate
(for instance, in examples); they are not problematic.

Syntax. Thus, System E is an extension of the simply typed λ-calculus, without
base types but with ε at the level of types and corresponding implementations
at the level of terms. Its grammar is:

A, B, T ::= types
X type variable
A → B function type
εX.A choice

e, t, u ::= terms
x variable
λx:A.t function
t u application
〈t : A with X = T 〉 implementation

The type variable X is bound in εX.A and in 〈e : A with X = T 〉, with A as
scope. We do not detail the usual definition of substitution for terms and types,
respectively written t[u/x] and A[T/X].

Informal semantics. The intended meaning of the constructs borrowed from the
simply typed λ-calculus is standard. We adopt a call-by-value interpretation.
As explained in the introduction, εX.A is a type X for which A is inhabited,
when such an X exists. We think of A as an interface in which X stands for
a representation type. The type εX.A may be chosen dynamically. When an
expression 〈t : A with X = T 〉 is evaluated, it fixes εX.A to be T , accordingly
fixes the code for A to be t (locally and elsewhere), and executes t. The details of
this process are quite delicate, and may become clear only with formal semantics.

Abbreviations. We abbreviate 〈e : A with X = T 〉 to 〈e : A〉 when X does not
occur free in A (and in that case T can be arbitrary). We write 〈e : A with T 〉 for
〈e : A with X = T 〉 when X is clear from context. Similarly, when X is clear from
context, we write A[T ] for A[T/X], and εA for εX.A. We write let x = t in u for
(λx:T.u t), when T is clear from context. We further write t; u for let x = t in u
when x does not occur free in u.
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Typing with ε. A context Γ is a finite set of pairs (x : T ) of variables and types.
Typing judgements are of the form Γ � t : T and can be derived by the usual
rules of the simply typed λ-calculus extended with the following new rule for ε:

Γ � e : A[T/X]
Γ � 〈e : A with X = T 〉 : A[(εX.A)/X]

This typing rule corresponds to the regular inference rule for ε in first-order
logic. In natural-deduction style, that rule is:

A[t/x]
A[(εx.A)/x]

where A ranges over formulas and t over terms. This rule strongly resembles the
typing rule, but omits the typing environment (which corresponds to assump-
tions higher in the natural-deduction proof tree) and the expressions (which
embody the proofs). Such similarities are the norm whenever the Curry-Howard
isomorphism connects a logic and a type system.

Alternative typing rules. Several alternative typing rules are worth mentioning.
A minor variant of our new rule includes a type substitution on terms:

Γ � e[T/X] : A[T/X]
Γ � 〈e : A with X = T 〉 : A[(εX.A)/X]

This variant might be convenient, because it can result in more compact expres-
sions, but is not essential. A more significant alternative consists in extending
the syntax and the typing rule so that one can choose several types at once. We
return to such simultaneous choices in section 4.3.

2.2 Examples

We close this section with a brief, informal look at a few examples. We consider
further examples below, also discussing their operational semantics.

Suppose that several software components rely on auxiliary compression
packages that provide string compression and decompression functions. Many
of the components may come with their own compression packages, each with a
different internal representation for compressed data. One may prefer for all the
components to rely on the same package, so that they can exchange compressed
data. Any one of the possible packages may do. There may not be a convenient
way to predict that such a package will be needed and to pick one, a priori, but
the first use of such a package could trigger the loading of one implementation.
For this purpose, we define the type expressions:

CompressPkg = {c : String → X, d : X → String}
Compressed = εX.CompressPkg[X]
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where we write {c : String → X, d : X → String} for the type of records with
c and d components with respective types String → X and X → String. One
component, e, may use a trivial compression package f :

f = {c = λs:String.s, d = λs:String.s}
e = let h = 〈f : CompressPkg with X = String〉 in

. . . h.c . . . h.d . . .

Another component, e′, may use a more interesting compression package f ′ in
which natural numbers implement compressed data:

f ′ = {c = string2nat, d = nat2string}
e′ = let h = 〈f ′ : CompressPkg with X = Nat〉 in

. . . h.c . . . h.d . . .

Now e and e′ may be combined in a larger expression m. For example, if e has
type Compressed and e′ has type Compressed → Nat, we may write m = (e′ e)
with type Nat. At run-time, the execution of m loads f or f ′ but does not mix
them, avoiding type errors.

Similarly, consider the interface:

NatList = {nil : X, cons : Nat → X → X, member : X → Nat → Bool}
for lists of natural numbers, with an empty list and with cons and membership
operations. When t and u are two expressions of type NatList[εX.NatList], they
may rely on different internal representations for lists, but it is still safe to write
terms such as t.cons(2)(u.nil). At run-time, only one internal representation is
used.

A deeper and more detailed example is given in section 5, including opera-
tional semantics.

3 Computing in System E
Much as in the study of control operators, which correspond to classical logic,
we aim to explore a new programming-language construct that corresponds to
an extension of intuitionistic logic with ε. From a logical perspective, the aim is
a cut-elimination result as general as possible. This approach was the one taken
by Leisenring [14] in a first-order framework, with backtracking over choices and
reduction under binders (strong reduction, in programming-language terms). In
contrast, we favor a programming perspective, focusing on implementable and
predictable operational semantics. However, our approach is also relevant to the
more exotic strategies that arise from logical cut-elimination.

3.1 Linking

In order to perform computation with a System E term t, we must be able to
replace an implementation term 〈e′ : A with T ′〉 that appears in head position
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in t with some term e. This step is essentially a linking operation: replacing
a link to a potential implementation e′ of A with an actual implementation e
(which can be, but is not necessarily e′).

More precisely, let t be a term, and m = 〈e : A with T 〉 an implementation of
the interface A[εA]. Suppose that some implementation m′ of A[εA], m′ = 〈e′ :
A with T ′〉, occurs in t. Linking m′ to m, that is, replacing m′ with e, implies
linking the interface choice type εA to the type T used for εA in e, that is,
replacing εA with T . (This replacement also applies to any types α-convertible
to εA.)

However, there is no scope for εA: the substitution of T for εA must be global
to t. In contrast, for existential types, the elimination construct for ∃A (named
open in [3]) delineates statically the scope in which the chosen representation
type T can be used. There is no such elimination construct for A[εA]. Thus, we
may view A[εA] as the open interface type for the interface A, and ∃A as the
closed one.

Because the substitution of T for εA is global, it reaches all other imple-
mentations of A[εA] in t. In order to interoperate with e, those implementations
must, at the very least, use the same representation type T as e. The only way of
achieving this effect in practice is to link them with m as well. Thus, the entire
linking operation must be global.

Definition 1. Let again m stand for 〈e : A with T 〉. The static linking of t with
m, noted t � m, is defined as the term obtained by simultaneously replacing all1

implementations of A[εA] with e, and all instances of εA with T . If we use � as
a wildcard in pattern-matching, we can write this as:

t � 〈e : A with T 〉 = t[T/εA, e/〈� : A with �〉]

We extend the linking notation to types and typing contexts:

R � m = R[T/εA] Γ � m = Γ [T/εA]

One may argue that the linking operation, as specified here, is unsatisfactory
for practical, efficient implementations of programming languages. In particular,
it requires testing type equalities at run-time. Section 4.3 offers a remedy.

3.2 Type Soundness

In spite of the precautions we have taken, t � m is not always well-typed. Let

C = X → Y B = εX.εY.C B′ = εY.C[B/X]

and consider the term

u = 〈not : Bool → Y with Y = Bool〉
1 That is, of course, except the implementations of A[εA] occurring inside e. The

example of section 5 illustrates this point.
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which has type

Bool → εY.C[Bool/X]

It follows that the type of

v = 〈(u true) : εY.C with X = Bool〉
is B′, but B′ does not appear in v. Now

w = 〈λx:B.1 : B → Y with Y = Nat〉
is an implementation of type C[B/X][B′/Y ], so ((λx:B′.x) v)�w = ((λx:Nat.x) v)
is not well-typed.

This difficulty is well-known in the proof theory of ε. It arises when there are
so-called “improper” ε type expressions that contain ε subexpressions in which
the outer ε type variable appears free. For example, εX.εY.(X → Y ) is improper
because the outer type variable X occurs under εY .

More precisely, we say that a type εC is subordinate in an implementation 〈e :
B with Y = T 〉 if B contains a subexpression εB′, in which Y appears (making
εY.B improper), such that εC is equal to either εB′[T/Y ] or εB′[εY.B/Y ]; we
say that εC is subordinate in t if εC is subordinate in some subterm of t.

By a straightforward structural induction, we obtain a conditional type-
soundness result:

Theorem 1. Suppose that Γ, ∆ � t : R and Γ, ∆′ � m : A[εA], where Γ , ∆, and
∆′ are disjoint contexts. If εA is not subordinate in t and does not appear in Γ ,
then

Γ, ∆ � m, ∆′ � t � m : R � m

The difficulties explained above make it impossible to remove the conditions
of this statement in order to obtain an unconditional type-soundness theorem.
One might expect that a solution could be based on work in proof theory, and
in particular on Leisenring’s approach. Unfortunately, that approach is not di-
rectly suitable in a programming context. We have found realistic examples with
dependent choices in which “normal” orders of evaluation lead to type errors,
and in which orders of evaluation based on Leisenring’s are inappropriate. We
may go further in two ways:
– One is to choose an evaluation order which avoids subordinate interface

types. Such evaluation orders may be too complex for programming pur-
poses. We omit their description.

– The other is to avoid subordinate interface types entirely. The corresponding
restrictions seem reasonable, and we describe one next, in section 4.

4 System E∗

In this section we start to explore a relatively simple but important fragment of
System E that we call System E∗. We believe that this fragment is useful in its
own right (not only as a possible stepping stone), so a substantial part of this
paper is devoted to its development.
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4.1 Defining System E∗

System E∗ is a well-behaved fragment of System E that forbids interleaved ε
binders in types. From a logical perspective, it corresponds to what Leisenring
called the ε∗-calculus. From a programming-language perspective, this means
that open interfaces cannot occur in signatures.

Definition 2. A type is valid in System E∗ (in short, is in E∗) if it verifies the
two properties:

– all its subexpressions are in E∗,
– if it is of the form εX.A, if εY.B is a subexpression of A, then there is no

occurrence of X in B which is free in A.

A term t or context Γ is in E∗ if every type occurring in it is in E∗.

Note that we can obtain the same restriction by requiring that ε always binds
the same fixed type variable (very roughly analogous to self or like Current for
objects).

For example, the type εX.(X → εY.(Y → Y )) is in E∗ but εX.(X →
εY.(X → Y )) is not. The former type can be written with a single bound type
variable, as εX.(X → εX.(X → X)). The latter type cannot be rewritten analo-
gously, because of the occurrence of a bound variable underneath another binder.

For types in E∗, the typing rules for System E∗ are identical to those of
System E . Crucially, in System E∗, no type is subordinate in any implementation.
Therefore, Theorem 1 always applies. Furthermore, if Γ , t, and m are valid, then
so are Γ �m and t �m. Thus, the way is paved for simple operational semantics for
System E∗. This system remains rich enough for many examples, such as those
developed in sections 2.2 and 5.

4.2 Operational Semantics

Basically, we choose a functional evaluation strategy (say, here, right-to-left call-
by-value) and we perform a static linking step, on the fly, each time an imple-
mentation is encountered.

More formally, it is convenient to use evaluation contexts. We adopt the
following, usual, definitions for values and evaluation contexts:

v ::= values
λx:A.e function

C ::= evaluation contexts
• hole
e C application right
C v application left

and the reduction rules:

C[(λx:A.e v)] → C[e[v/x]]
C[〈e : A with T 〉] → C � 〈e : A with T 〉[e]

The following decomposition lemma is easy.
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Lemma 1. Suppose that e is a closed term. Then e is a value or e = C[r] for
some context C and term r which is either a β-redex or an implementation.

A more general lemma is necessary when we extend the language, and then
we want to distinguish arbitrary normal forms (like the bad application 3(4))
from proper values.

Since Theorem 1 applies to any well-typed term in System E∗, it is easy to
check:

Theorem 2. If Γ � C[r] : R in System E∗, ε does not appear in Γ , and
C[r] → e, then there exists R′ such that Γ � e : R′ in System E∗.

The following corollary follows from Lemma 1 and Theorem 2.

Corollary 1. Suppose that e is a closed term. If e is well-typed in System E∗

then either e is a value or there exists e′ such that e → e′ and e′ is also well-typed
in System E∗.

4.3 A Programming Syntax

We believe that System E∗ suggests useful (and not too esoteric) ideas for lan-
guage design. Even if realizing these ideas is beyond the aims of this paper, we
can already outline a more practical syntax for choice.

In actual programming, one often wants to attach names to types for con-
ciseness and clarity, and also as brands (in the sense of Modula-3 [20]), in order
to distinguish different uses of the same type (for instance, real temperatures
and real distances). We use type variables as names for ε types. When X is
associated with A in the typing context, X stands for εX.A. When X and Y are
associated with A and A[Y/X], respectively, we need not equate them.

We further permit simultaneous choices, so that an interface does not have
to rely on one single type variable. Thus, for example, we may write an inter-
face type of address books, with several type variables for the types of names,
phone numbers, and addresses. Simultaneous choices are convenient but not a
major extension. (We believe that they can be reduced to simple choices using
quantifiers.)

The typing judgements are of the form ∆, Γ � e : T where Γ binds term
variables to types as usual, and ∆ is a list of associations, each of the form
[X1, . . . , Xn|A]. The grammar of the language is:

A, B, T ::= types
X, Y, . . . type variables
A → B function type

e, t, u ::= terms
x variable
λx:A.t function
t u application
〈t|X1 = T1 . . . Xn = Tn〉 implementation
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List(L) ≡ {nil : L; cons : Nat → L → L; hd : L → Nat option; tl : L → L}
let bl = {nil = []; cons = ( :: ); : List(Nat list)

hd = function (a :: l) → Some a | → none;
tl = function (a :: l) → l | → []}

in let cons2 x y a = : Nat → Nat → List(εL.List(L)) → List(εL.List(L))
let l = 〈bl : List(L) with L = Nat list〉 in l.cons x (l.cons y a)

in let hd2 a = : List(εL.List(L)) → (Nat ∗ Nat) option
let l = 〈bl : List(L) with L = Nat list〉 in

match (l.hd a, l.hd(l.tl a) with
Some x, Some y → Some(x, y)

| → none
in let tl2 = . . . : List(εL.List(L)) → List(εL.List(L))
in let l = 〈{nil = 〈bl : List(L) with L = Nat list〉.nil; : List(εL.List(L))

cons = fun x a → match hd2 a with
Some(n, x′) where x = x′ → cons2 (n + 1) x (tl2 a)

| → cons2 1 x a;
. . . } with L = εL.List(L)〉

in(cons2 3 3 l.nil) : List(εL.List(L))

Fig. 1. An incremental example

Pleasantly, the restriction to ε∗ is embedded in the syntax. We need a well-
formedness condition for the associations ∆:

Definition 3. The list of associations ∆ is well-formed if it is empty or is of the
form ∆′; [X1, . . . , Xn|A] with ∆′ well-formed, X1, . . . , Xn pairwise distinct and
not already bound in ∆′, and every type variable that occurs in A being either
some Xi or bound in ∆′. Further, ∆, Γ is well-formed if ∆ is well-formed and
all type variables used in Γ are bound in ∆.

The typing rules for judgements of the form ∆, Γ � e : T are the ones of the
simply typed λ-calculus with the provision that ∆, Γ is well-formed. The typing
rule for implementations is:

∆, Γ � e : A[T1/X1, . . . , Tn/Xn] [X1, . . . Xn|A] ∈ ∆

∆, Γ � 〈e|X1 = T1 . . . Xn = Tn〉 : A

Here [T1/X1, . . . , Tn/Xn] represents parallel substitution.
We can adapt the computation rules to this syntax, but the specifics are some-

what complicated. We detail only a simple case in order to show how branding
becomes apparent. Provided X1, . . . , Xn do not appear in the remaining of the
typing context, we have:

C[〈e|X1 = T1 . . . Xn = Tn〉] →
C[T1/X1, . . . , Tn/Xn, e/〈�|X1 = � . . . Xn = �〉][e]

An important aspect of this rule is that linking of implementations no longer
require any inefficient testing of type equalities.
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5 An Incremental Example

We can now study an example in more detail. Its code is given in Figure 1. For
clarity, we have added the types of the main functions on the right-hand side.
This example features another simple interface for lists, composed of the empty
list, consing, and the head and tail functions. We have adopted an ML syntax
(actually close to Caml) and we suppose the language supports primitive lists
and pattern matching. The primitive empty list (respective primitive consing) is
written [] (respectively a :: l). We also use records and an option type, both in
a standard way. The record of the interface is abbreviated as List(L). The type
of lists is thus εL.List(L).

The example defines two possible instantiations for the type List(εL.List(L)).
The first trivially packages the primitive implementation. The second is opti-
mized for lists with many identical successive elements: for instance, [1; 1; 1; 4; 4]
is represented by [3; 1; 2; 4].

Interestingly, the second implementation is built upon the first one. Thus
εL.List(L) is linked successively to the two implementations during execution.
Furthermore, the function cons2 is used in the definition of the optimized repre-
sentation, and will thus behave in two different ways. This illustrates the possi-
bility of using System E∗ for a form of incremental programming.

The final result of the evaluation is [2; 3], which is the “optimized” repre-
sentation of [3; 3]. In order to describe the evaluation concisely, we need some
abbreviations. Let c2, b, and bl be the terms such that the program reads:

List(L) ≡ {nil : L; . . . }
let bl = bl
in let cons2 = c2
in let hd2 = . . .
in let tl2 = . . .
in let l = b in(cons2 3 3 l.nil)

No linking takes place during the first steps of the evaluation; instead the
four first let constructs are substituted, so that the program is then of the form:

(let l = b in (cons2 3 3 l.nil))[σ]

where σ stands for the successive substitutions [bl/bl] ◦ [c2/cons2] . . .
Then comes the evaluation of b[σ] which yields a first linking step:

(let l = b in (cons2 3 3 l.nil))[σ] � b[σ]

which is equal to:

let l = b[σ] � b[σ] in ((cons2 3 3 l.nil) � b)[σ]

However b[σ] �b[σ] is a record and the evaluation of its nil component involves
a second linking; further reducing the let construct and the arguments of the
function we reach:

((cons2 3 3 [])[σ] � b[σ]) � 〈bl : List(L) with L = Nat list〉
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which is actually equal to:

(c2[bl/bl] � b[σ]) � (〈bl : List(L) with L = Nat list〉) 3 3 []

Here, we see precisely that in the body of the first occurrence of cons2, lists
are linked to the “optimized” implementation by b[σ]. However inside the body
of b[σ], lists are linked to the standard implementation by 〈bl : List(L) with L =
Nat list〉. As a result, the function cons2 has two different behaviors, depending
upon whether it is used inside or outside b.

This example thus suggests that, in this setting, functions cannot simply be
viewed as closures. It also raises the question of an efficient execution model for
System E∗. We omit our answer to that question.

6 Parametricity, Termination, Conservativity (Sketch)

We close the technical material of this paper with brief discussions of parametric-
ity, of normalization, and of the logical strength of ε.

6.1 Conflict with Parametricity

System F is parametric in the sense that computations do not depend on type
information. On the other, System E and System E∗ clearly lack parametricity.
Specifically, we can find terms e[T/X] and e[T ′/X] that yield different outputs:

– Let e be the term

〈λx:X.x : X → X〉; 〈λx:Int.0 : Int → Int〉(1)

(This term is well-typed as soon as we allow the use of type variables at all.)
– e[Int/X] yields 1.
– e[Bool/X] yields 0.

We have yet to investigate semantic models for calculi with ε. The failure
of parametricity suggests that such models might be rather different from the
models of System F.

6.2 Conflict with Normalization

In extensions of System F, non-parametricity often conflicts with strong nor-
malization. In particular, Girard studied a non-parametric combinator J and
showed that its addition to System F breaks strong normalization [9]. Harper
and Mitchell considered a related combinator J ′ which also breaks strong nor-
malization despite having a more mundane type than J [11]. Both J and J ′ rely
on testing type equalities at run-time.

Using similar ideas, we can exhibit a non-terminating term which is well-
typed in System E with impredicative universal quantification. For brevity, we
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do not detail the standard rules for universal types here, and we do not discuss
which restrictions can preserve type soundness in the resulting calculus since our
example presents no problem in that respect.

Consider the following abbreviations:

B ≡ ∀X.X → X → X (the type of booleans encoded in System F)
m1 = 〈λx:X.λf :B.(f B f f) : X → B → B〉 q = m1; m2 : X → X → X
m2 = 〈λx:X.λy:X.x : X → X → X〉 r = ΛX.q : B

Since r � m1[B/X] = r and q[B/X] � m1[B/X] = λx:B.λf :B.(f B f f), the
well-typed term (r B r r) reduces to itself in any weak call-by-value reduction
strategy.

An analogous term can be written without quantifiers or in programming
syntax, but then we recover termination. The main open question on this subject
is whether every well-typed term of System E∗ terminates with our operational
semantics. The evidence thus far suggests that, if true, termination might be
tricky to justify.

6.3 Non-conservativity

The addition of ε is not conservative over intuitionistic second-order proposi-
tional logic. Specifically, we can derive ∃Z.((∃Z.A) → A[Z]) using ε, but not
otherwise. This property suggests that computation mechanisms beyond those
present in intuitionistic systems might in general be necessary for programming
languages with ε (much as happens for calculi based on classical logic).

On the other hand, ∃Z.((∃Z.A) → A[Z]) is essentially all we get. We have
obtained a compositional translation from our λ-calculus with ε to second-order
λ-calculus, which yields a term parameterized by variables of type ∃Z.((∃A) →
A[Z]), for each εA implemented in the term. The type ∃Z.((∃A) → A[Z]) is a
close relative of ∃Z.(A[Z] → (∀A)), the drinker’s paradox (“there exists Z such
that if Z drinks then everyone drinks”). The details of this translation, which
extends to systems with quantifiers, are however beyond the scope of this paper.

In particular, ε does not yield the full power of classical logic. We cannot
derive the classical drinker’s paradox, or the law of the excluded middle. (The
operator ε can be interpreted over a little 3-point Heyting algebra in which the
law of the excluded middle fails.)

7 Related and Further Work

The literature contains much material on the choice operator, on abstract data-
types, and on linking. Of course this material includes Hilbert’s original work.
It also includes many more recent—and sometimes more exotic—developments.
For instance, ε has been used in explaining natural-language quantifiers. In what
follows, we discuss the research most closely related to ours.

On the logical side, the most relevant research is that on the proof theory
of logical systems with choice. In particular, Leisenring studied cut elimination
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in a classical first-order logic with choice. Leisenring defined an order for re-
solving choices that depended on a delicate system of ranks. Flannagan later
discovered and corrected a flaw in Leisenring’s definition [8]. Mints also stud-
ied the proof theory of choice, in particular for intuitionistic systems [16] (see
also [17]). Leivant considered choice in intuitionistic arithmetic, where the ad-
dition of choice quickly leads to a classical system [15]. Some other prior work
is described for example in a recent encyclopedia article [1]. A general char-
acteristic of this work is that it relies on proof transformations with sensible
technical motivations but which do not necessarily correspond to sensible eval-
uation strategies from a computing perspective, as indicated in section 3.

On the computing side, choice is related to many familiar constructs and
phenomena—such as dynamic linking, as we argue in this paper, and others
discussed in the introduction. We are not however aware of any programming-
language treatment of the choice operator. Recently, in intriguing unpublished
work, J.-L. Krivine has been exploring the computational meaning of certain
classical-logic formulas that express choice principles [13]. Formally, our systems
are quite different, and Krivine tends to explain those formulas in terms of
object-oriented programming (rather than linking). Despite such differences, we
owe much to Krivine’s set-theoretic investigations in the late 1990s.

Considering that the choice operator can often be seen as syntactic sugar,
one might imagine that proof theory and type theory would hardly be affected
by the introduction of this operator. One might at least expect to transfer results
from systems with quantifiers. This point of view is unfortunately simplistic. In
particular, εX.A can be encoded as A[true/X] or as ¬A[false/X] in classical
propositional logic [18]; these trivial encodings preserve provability, but they do
not capture computational behavior, and they hardly give us new type systems.

Focusing on computation and types, this paper defines and studies a pro-
gramming calculus with a choice operator. This investigation suggests much
further work. This work includes syntax exploration as hinted in section 4.3 but
also extension with other familiar programming-language constructs, such as
subtyping, recursion, and mutable references. Another interesting track is to un-
derstand how the use of choice may be liberalized, relaxing restrictions adopted
in this paper. Finally, it would be worthwhile to reconsider the role of choice
in the context of mainstream programming systems—both explaining present
systems in logical terms and enriching those systems.
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