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Abstract—It is an extreme challenge to produce a nonlinear 
SVM classifier on very large scale data.  In this paper we 
describe a novel P-packSVM algorithm that can solve the 
Support Vector Machine (SVM) optimization problem with an 
arbitrary kernel. This algorithm embraces the best known 
stochastic gradient descent method to optimize the primal 
objective, and has 𝟏/𝝐 dependency in complexity to obtain a 
solution of optimization error 𝝐. The algorithm can be highly 
parallelized with a special packing strategy, and experiences 
sub-linear speed-up with hundreds of processors. We 
demonstrate that P-packSVM achieves accuracy sufficiently 
close to that of SVM-light, and overwhelms the state-of-the-art 
parallel SVM trainer PSVM in both accuracy and efficiency. 
As an illustration, our algorithm trains CCAT dataset with 
800k samples in 13 minutes and 95% accuracy, while PSVM 
needs 5 hours but only has 92% accuracy. We at last 
demonstrate the capability of P-packSVM on 8 million training 
samples. 
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I. INTRODUCTION 
Since its first introduction by V. Vapnik in 1963 [26], 

support vector machine (SVM) has been a widely used 
supervised learning method for classification, regression [6] 
and ranking [13] problem. Strictly speaking, a set of training 
data, consisting of 𝑚 samples is given:  Ψ = (𝒙 , 𝑦 ) 𝒙 ∈ ℝ , 𝑦 ∈ {−1,1}  (1)

where 𝒙𝒊  is the feature vector for the ith sample and 𝑦  is 
either +1  or −1 , indicating the binary class this sample 
belongs to. The soft margin SVM problem [26] is aiming to 
find a maximum margin separating hyper-plane for the two 
classes, indicating by its normal vector, or predictor 𝒘, by 
minimizing the following quadratic convex objective, which 
is also known as the primal SVM objective: 

𝑓(𝒘) = 𝜎2 ‖𝒘‖ + 1𝑚 max{0,1 − 𝑦 〈𝒘, 𝜙(𝒙 )〉} (2)

where the first term is a 2-norm regularizer 1 2⁄ ‖𝒘‖  with 
the regularizer weight 𝜎 , while the second term is the 
empirical loss function: 

ℓ(𝒘) = 1𝑚 max{0,1 − 𝑦 〈𝒘, 𝜙(𝒙 )〉} (3)

Originally proposed by Aizerman et al [1], 𝜙(. ) is the 
mapping that projects the point from feature space to the 
Reproducing Kernel Hilbert Space (RKHS), satisfying 〈𝜙(𝒙𝒊) , 𝜙 𝒙𝒋 〉 = 𝒦 𝒙𝒊, 𝒙𝒋  for some Mercer kernel 𝒦(. , . ) . The integration of the kernel enables SVM to 
produce a non-linear predictor, 𝑤. This is often called non-
linear SVM or kernel SVM. For example, a polynomial 
kernel allows one to model feature conjunctions, while a 
Gaussian kernel enables us to pick out hyper spheres in 
features [20]. Recent works, such as PEGASOS, effectively 
solved the linear SVM problems [24] [14] [30]; however, to 
accelerate the kernel SVM is a very desirable and difficult 
research problem. 

We analyze in this paper a simple stochastic gradient 
descent (SGD) based algorithm that directly optimizes the 
primal objective (2), called packSVM, to solve SVM for an 
arbitrary kernel. The algorithm embraces a bunch of 
iterations. At each iteration, it first randomly picks up a 
single sample from the training sample pool to approximate ℓ(𝒘) , and then calculates the gradient and updates the 
predictor 𝒘 accordingly. It is worth noting that our proposed 
packSVM algorithm embraces the best known learning rate 
[24] and requires 𝑂(𝑚/𝜎𝜖𝛿)  in time, where 𝛿  is the 
confidence parameter and 𝜖  is the optimization error. This 
means, with probability at least 1 − 𝛿  we can obtain a 
predictor 𝒘 that is guaranteed to satisfy 𝑓(𝒘) ≤ 𝑓(𝒘∗) + 𝜖, 
if 𝑤∗ is the optimal solution.   

An important contribution of this paper is that we 
parallelize the above algorithm with the help of a distributed 
hash table and our innovative packing strategy. We call our 
proposed parallel algorithm P-packSVM. Notice that it is 
naturally difficult to parallelize SGD algorithms in hundreds 
of processors due to their huge communication cost. The 
packing strategy non-trivially reduces the communication 
cost and allows a sub-linear speed-up with 512 processors. 
The time complexity of P-packSVM is thus reduced to 𝑂(𝑚/𝜎𝑡𝛿𝑝)  if using 𝑝  processors. At the same time, P-
packSVM uses only 𝑂(𝑚/𝑝) space for each processor. 

We conduct extensive experiments and show that P-
packSVM overwhelms the state-of-the-art PSVM [5] in both 
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accuracy and efficiency, and runs hundreds of times faster 
than SVM-light. Meanwhile, its accuracy is comparable to 
SVM-light. For example, P-packSVM trains a CCAT dataset 
of 800k samples in 761 seconds with a speed-up of 295 times 
on 512 processors; it trains a CovType dataset of 500k 
samples in 236 seconds with a speed-up of 416 times on 512 
processors.  The 8 million MNIST8m test set has also been 
employed and we state that our proposed algorithm is 
capable of performing well in million scale data set. 

This reminder of this paper is organized as follows. We 
first state the related works of SVM in Section II. Next in 
Section III, we propose our P-packSVM algorithm by 
introducing its sequential implementation and then move 
onto the parallel one with introducing the distributed hash 
and the innovative packing strategy. We also emphasize the 
differences of our P-packSVM with other contemporary 
works in this section. Experimental results are then provided 
in Section IV. Finally we leave several enhancements to our 
algorithm in Section V and conclude our work in Section VI. 

II. RELATED WORKS 
Historically, the SVM problem has been well studied 

with the help of the dual objective. The method of 
Lagrangian multipliers introduces a transformation from the 
primal objective (2) into its dual form: min 12 𝜶 𝑸𝜶 − 𝜶 𝟏 , s. t. 𝟎 ≤ 𝜶 ≤ 𝑪, 𝒚 𝜶 = 0 (4)

where [𝑄] = 𝑦 𝑦 𝒦 𝑥 , 𝑥 , and 𝛼 ∈ ℝ  is the vector of 
the Lagrangian dual variable, also known as the support 
vector in SVM. The predictor 𝒘 is a superposition of 𝜙(𝑥 ), 
namely 𝒘 = ∑ 𝛼 𝑦 𝜙(𝒙 ). We divide the state-of-the-art 
SVM trainers mainly into the following three categories. 

Interior Point Method (IPM): minimizing the dual 
objective is a convex Quadratic Programming (QP) problem 
and can be solved via the primal-dual Interior-Point Method 
[21]. The idea of IPM is to incorporate Newton or Quasi-
Newton methods with the number of iterations proportional 
to log(1/ϵ) [27], where ϵ is the desired accuracy. However, 
the memory requirements of IPM are as high as 𝑂(𝑚 ) and 
the computational cost is 𝑂(𝑚 ) for each iteration. 

Recently, E. Y. Chang et al [5] proposed an algorithm 
called PSVM. It enables a parallel implementation of IPM 
and Incomplete Cholesky Factorization [9] (ICF) 𝑄 ≈ 𝐻𝐻 , 
where 𝐻 has the dimension 𝑚 × 𝑚 . [5] empirically showed 
that 𝑚 = 𝑚 .  gives a good approximation, and thus 
induced an algorithm with the time complexity of 𝑂(𝑚 𝑝⁄ ) 
for each iteration and the space requirement of 𝑂(𝑚 . /𝑝), 
where 𝑝  is the number of processors. To the best of our 
knowledge, E. Y. Chang et al firstly studied the parallel 
kernel SVM on 500 processors in experiments, and they 
reported a parallel speed-up of up to 169 times with 800k 
training samples. 

Sequential Minimal Optimization (SMO): to make SVM 
more practical, SMO algorithms are developed by 
decomposing the large QP problem into an inactive part and 
an active part – a so called “working set”. Many open source 

tools, like Osuna’s decomposition [7], libSVM [4] and 
SVM-light [12], are capable of training as large as several 
hundred thousand training samples on a single machine. 

Attempts to parallel SMO algorithms have also been 
made. For example, Zanghirati and Zanni [28] proposed a 
parallel implementation of SVM-light, especially effective 
for Gaussian kernels; Cao et al [3] also parallelized a slightly 
modified SMO algorithm. For these two papers, the authors 
conducted experiments on up to 32 processors with 60k 
training samples, claiming a speed-up of approximately 20 
times.  

Stochastic Gradient Descent (SGD): until recently, a 
growing amount of attention had been paid towards 
stochastic gradient descent algorithms, in which the gradient 
is approximated by evaluating on a single training sample. 
This algorithm has been applied to the primal objective of 
linear-SVM algorithms. T. Zhang [29] proved that a constant 
learning rate (no parameter sweep required) in SGD will 
numerically achieve good accuracy, enabling a running time 
of O(1/ϵ ) for a linear kernel. The algorithm Norma [16] 
suggests a learning rate proportional to 1/√𝑡, where 𝑡 is the 
number of iteration. Shai Shalev-Shwartz et al [24] 
aggressively adopted a learning rate of 1/𝜎𝑡. It turns out this 
learning rate is up-to-now the most efficient [24] for linear 
SVM, and even endowed with an inverse time dependency 
for fixed accuracy [25]. Notice that these works focus on 
linear predictors only. Some of them addressed their 
potential to be extended to kernel SVM, but with an extra 
time complexity of 𝑂(𝑚). 

Hush et al [10] proved that the convergence rate in the 
primal objective is slow when an algorithm tries to optimize 
the dual one instead. This applies to the algorithms in the 
first two categories. Our proposed method falls into the third 
category, and thus is born with advantages. We incorporate a 
distributed hash table to enable the parallelism and the 
packing strategy to facilitate the parallelism. We will show 
that though in general only the algorithm in the first category 
can be effectively parallelized, our proposed packing strategy 
reverses the adversity. 

III. THE ALGORITHM 
In this section we first adopt the stochastic gradient 

descent method to the kernel SVM problem, and provide the 
result of its convergence analysis. Next, we propose its 
parallel implementation and a special packing strategy. We 
finally compare our proposed method with other 
contemporary works. 

A. Sequential packSVM 
In this sub-section we describe a sequential stochastic 

gradient descent (SGD) algorithm on the primal SVM 
objective. With the incorporation of kernels, we call it S-
packSVM. We adopt the framework discussed in [24], which 
has the best known learning rate and an additional projection 
phrase. 

Considering the empirical loss (3), it averages the hinge 
loss among all training examples. In the spirit of the SGD 
algorithm, this empirical loss can be approximated by the 



 
hinge loss on a single training sample. Based on this idea, we 
propose our S-packSVM with 𝑇  iterations. At iteration 𝑡 ∈ {1, … 𝑇}, it picks up  a random example 𝑥 (𝑡), 𝑦 (𝑡) ∈Ψ, and approximates the empirical loss (3) and the objective 
(2) as the following:  ℓ(𝑤) ≈ ℓ (𝑤) ≔ max 0,1 − 𝑦 ( ) ∙ 〈𝒘, 𝜙 𝒙 ( ) 〉  𝑓(𝑤) ≈ 𝑓 (𝑤) ≔ 𝜎2 ‖𝑤‖ + ℓ (𝑤) 

(5)

Directly adopting the learning rate suggested in [24], we 
modify the predictor as below in iteration 𝑡: 𝒘 ← 𝒘 − 1𝜎𝑡 ∇𝑓 (𝒘) (6)

We notice that the operator ∇  does not require the 
differentiability of function 𝑓 , but the existence of its sub-
gradient [24] [23]. We write down the sub-gradient explicitly: ∇𝑓 (𝒘) = 𝜎𝒘 − 0, 𝑦 ( ) ∙ 〈𝒘, 𝜙 𝒙 ( ) 〉 ≥ 1𝑦 ( )𝜙 𝒙 ( ) , 𝑦 ( ) ∙ 〈𝒘, 𝜙 𝒙 ( ) 〉 < 1 (7)

When kernels are introduced, we usually write 𝒘 as a 
superposition of samples 𝒘 = ∑ 𝛼 𝑦 𝜙(𝒙 ) , and the 
subtraction in (6) simply consists of an overall shrinking and 
the addition of at most one term. 

 𝒘 ← 1 − 𝒘 +     0,        𝑦 ( ) ∙ 〈𝒘, 𝜙 𝒙 ( ) 〉 ≥ 1( ) ∙ 𝜙 𝒙 ( ) ,        𝑦 ( ) ∙ 〈𝒘, 𝜙 𝒙 ( ) 〉 < 1    (8)

After each update to 𝒘, a projection is applied to help 𝒘 
to get closer to the optimum [24]: 𝒘 ← min 1, 1/√𝜎‖𝒘‖  𝒘 (9)

In the implementation of S-packSVM, we express 𝒘 = 𝑠𝒗 where 𝑠 ∈ ℝ is a scalar that allows Line 6 and 8 of 
Figure 1 to run in a constant time. This is because when 
performing scaling we can simply change the value of 𝑠 
instead of modifying the coefficients of all the terms in 𝒘, 

and the adding 𝒘 ← 𝒘 + 𝜙(𝒙𝒊)  implies 𝒗 ← 𝒗 +𝜙(𝒙𝒊). Besides, a variable 𝑛𝑜𝑟𝑚 is employed to store the 
up-to-date value of ‖𝑤‖  , and a hash table ℋis used to store 
the key-value pairs (𝑥 , 𝛽 )  in the representation of 𝒗 =∑ 𝛽 𝜙(𝑥 ). Figure 2 gives the pseudo code of the algorithm 
presented in Figure 1.  

Considering that our objective (2) is a strongly convex 
function [23] with respect to 𝒘, we follow the convergence 
analysis in [24], which is a special case of S-packSVM when 
linear kernel is adopted. Due to limited space, we only 
provide the sketch of the proof, while the details simply 
follow the idea of [24].  

The first observation is that with the strong convexity, we 
can substitute the main result of [15], and arrive at the 
following inequality for some constant 𝐶: 1𝑇 𝑓 (𝒘𝒕) − 1𝑇 min𝒘∈S 𝑓 (𝒘) ≤ 𝐶 ∙ ln T𝑇𝜎  (10)

The second term above can be related to the optimal 
objective 𝑓(𝒘∗)  using Markov inequality, while the first 
term is related to the empirical objective. The final result is 
that S-packSVM requires 𝑇 = 𝑂(1/𝜎𝛿𝜖) iterations to obtain 
a predictor 𝒘, satisfying 𝑓(𝒘) ≤ 𝑓(𝒘∗) + 𝜖 with probability 
at least 1 − 𝛿, assuming 𝒘∗ to be the optimal predictor. This 
suggests a total running time of 𝑂(𝑚/𝜎𝛿𝜖) for S-packSVM, 
as all commands except Line 5 take a constant running time, 
while Line 5 needs a complete enumeration through all the 
entries of ℋ in at most 𝑂(𝑚) time.  

B. Parallel packSVM 
Although the complexity of S-packSVM depends linearly 

on 1/𝜖 , which is much better than the general SGD 
algorithm [29], its sequential behavior does not show a 
significant superiority in efficiency. This is because from 
many experimental observations, we find the optimal 𝜎 on 
the same order of 1/𝑚 (see Appendix), and thus the overall 
time complexity is in square dependence on the number of 
samples 𝑚 . In this sub-section, we provide the parallel 
packSVM, called P-packSVM, and show that it has some 
unique advantages in kernel SVM training. Before going into 

1. INPUT: 𝜎, 𝑇, training sample space 𝛹  
2. INITIALIZE: ℋ = ∅ , 𝑠 = 1, 𝑛𝑜𝑟𝑚 = 0 
3. FOR 𝑡 =  1,2, … , 𝑇 
4.  Randomly pick up (𝒙, 𝑦) ∈ 𝛹 
5.  𝑦 ← 𝑠〈𝒗, 𝜙(𝒙)〉 by iterating all entries in ℋ 
6.  𝑠 ← (1 − 1/𝑡)𝑠 
7.  IF 𝑦𝑦 < 1 THEN 

8.   𝑛𝑜𝑟𝑚 ← 𝑛𝑜𝑟𝑚 + ∙ 𝑦 + 𝒦(𝒙, 𝒙) 
9.   IF  key 𝒙 is found in ℋ, THEN add its value by  in ℋ;  

                 ELSE add ℋ a new entry 𝒙,  

10.   IF 𝑛𝑜𝑟𝑚 > 1/𝜎 THEN 𝑠 ← 𝑠 ∙ √ ∙ ; 𝑛𝑜𝑟𝑚 ← 1 𝜎⁄  
11. RETURN 𝑠𝒗 by iterating all entries in ℋ 

Figure 2. S-packSVM pseudo-code 

1. INPUT: 𝜎, 𝑇, training sample space 𝛹  
2. INITIALIZE: 𝒘 = 0 
3. FOR 𝑡 =  1,2, … , 𝑇 
4.  Randomly pick up (𝒙, 𝑦) ∈ 𝛹 
5.  Predict 𝑦 ← 〈𝒘, 𝜙(𝒙)〉 
6.  𝒘 ← (1 − 1/𝑡)𝒘 
7.  IF 𝑦𝑦 < 1 THEN 𝒘 ← 𝒘 + 𝜙(𝒙) 

8.  𝒘 ← min 1, /√‖𝒘‖  𝒘 
9. RETURN 𝒘 

Figure 1. S-packSVM algorithm 



 
detail, we consider the two characteristics related to the 
parallelism that packSVM embodies: 

• Merit: A single iteration can be highly parallelized. 
The sole time-consuming process – the calculation 
of  〈𝒗, 𝜙(𝒙)〉  can be highly parallelized via a 
distributed storage of the entries (𝑥 , 𝛽 ) in ℋ. 

• Defect: Too many iterations exist. 
It initiates at least one communication request 
among all processors in each iteration. The mass 
communication will slow down the parallel program 
when the number of processors increases (This is 
due to the synchronization overhead). 

Considering the above two characteristics, we propose a 
distributed hash table to develop the merit, and a packing 
strategy to overcome the defect.  
Distributed Hash Table. We enable a distributed hash table 
to speed up the bottleneck process in Line 5 of Figure 2. 
Entries in ℋ  are averagely divided to all the processors. 
Suppose the 𝑖th processor saves a subset ℋ = 𝒙 , , 𝛽 , |ℋ | ⊂ ℋ 

to represent 𝒗 = ∑ 𝛽 , 𝜙(𝒙 , ) . Specifically, we explain 
two important operations: 

• Enumeration (Line 5 of Figure 2): the calculation of 
inner product 〈𝒗, 𝜙(𝑥)〉 can be distributed to all the 
processors, by each calculating 〈𝒗 , 𝜙(𝑥)〉 =∑ 𝛽 , 𝒦(𝒙 , , 𝒙)  and a sum-up via inter-processor 
communications, like AllReduce in MPI [22]. 

• Look-up & Modification (Line 9 of Figure 2): all 
the processors check whether the given key 𝒙 exists 
in the local hash table ℋ . If any of the processors 
finds the key, it simply updates the value and 
informs other processors of the existence of the key; 
otherwise the new entry is inserted to the least-
occupied processor. 

The above parallelization of packSVM, shown in Figure 
3 can be experimentally shown to overwhelm many 

contemporary kernel SVM tools and run well on up to 
hundreds of thousands of training samples. We go one step 
further by introducing the following packing strategy. 
Packing Strategy. Given an integer 𝑟 ,we aim to pack 𝑟 
iterations into a single one, and thus reduce the number of 
communications by a factor of 𝑂(𝑟). Notice that the total 
bits in communication will not be reduced in our proposed 
strategy. Nevertheless, the reduction of communication 
frequency speeds up the algorithm significantly, as to be 
shown in Section IV.C. 

We use notations 𝒘 , 𝒙 , 𝑦  to denote the predictor 𝒘 and 
the random sample (𝒙 , 𝑦 ) in the 𝑡  iteration. Considering 
equation (8) and (9), the calculation from 𝒘  to 𝒘  
actually needs no more than two scaling processes and one 
additional term. For the sake of simplicity, we combine them 
and write the recursive formula implicitly, where 𝑎 , 𝑏  are 
calculated from 𝒘 , 𝒙 , 𝑦 : 𝒘 = 𝑎 𝒘 + 𝑏 𝜙(𝒙 )  (11)

In the iteration 𝑡, we need to calculate 𝑦 = 〈𝒘 , 𝜙(𝒙 )〉, 
but 𝒘  is dependent on the previous iteration, since 𝑎  and 𝑏  
can only be calculated in iteration 𝑡 − 1. At first glance, this 
suggests it is  
unrealistic to calculate an iteration before the previous one 
ends. Next, we will show how to calculate 𝑦 , … 𝑦  
simultaneously. 

As illustrated in Figure 4, we expand the formula of 𝑦 = 〈𝒘 , 𝜙(𝒙 )〉  to terms of 𝑤 , 𝜙(𝑥 ), … 𝜙(𝑥 ) , for 𝑖 = 𝑡 … 𝑡 + 𝑟 − 1, and hide those complex coefficients. One 
can see that although coefficients ∎  are unknown at the 
iteration 𝑡 , we can pre-calculate the time-consuming part 〈𝒘𝒕, 𝜙(𝒙𝒊)〉 for 𝑖 = 𝑡, … , 𝑡 + 𝑟 − 1 all together at iteration 𝑡. 
Besides, the pair-wise values 𝒦(𝒙𝒊, 𝒙𝒋) for 𝑡 ≤ 𝑖 < 𝑗 ≤ 𝑡 +𝑟 − 1 can also be pre-processed in a distributed manner. This 
all needs two communication requests like AllReduce in 
MPI. We summarize our packing algorithm for 𝑟 consecutive 
iterations 𝑡, … , 𝑡 + 𝑟 − 1 as follows: 

            𝑦 = 〈𝒘 , 𝜙(𝒙 )〉 
     𝑦 = ∎〈𝒘 , 𝜙(𝒙 )〉 + ∎𝒦 (𝒙 , 𝒙 )  
    𝑦 = ∎〈𝒘 , 𝜙(𝒙 )〉 + ∎𝒦 (𝒙 , 𝒙 ) + ∎𝒦 (𝒙 , 𝒙 )  
     … 𝑦 = ∎〈𝒘 , 𝜙(𝒙 )〉 + ∎𝒦 (𝒙 , 𝒙 ) + ⋯ + ∎𝒦 (𝒙 , 𝒙 ) 
 

These 𝑟 inner products can be calculated
via a single communication request 

 𝒕 𝒕 + 𝟏 … 𝒕 + 𝒓 − 𝟏  

Pack the consecutive 𝑟 iterations 

Figure 4. Packing strategy. 
We use ∎ to hide the complex coefficients.

PROCESSOR 𝑖 
1. INPUT: 𝜎, 𝑇, training sample space 𝛹  
2. INITIALIZE: ℋ = ∅ , 𝑠 = 1, 𝑛𝑜𝑟𝑚 = 0 
3. FOR 𝑡 =  1,2, … , 𝑇 
4.  All processors pick up the same random (𝒙, 𝑦) ∈ 𝛹 
5.  𝑦 ← 𝑠〈𝒗𝒊, 𝜙(𝒙)〉 by iterating all entries in ℋ  
6.  Sum up 𝑦 ← 𝑦  via inter-processor communication 
7.  𝑠 ← (1 − 1/𝑡)𝑠 
8.  IF 𝑦𝑦 < 1 THEN 

9.   𝑛𝑜𝑟𝑚 ← 𝑛𝑜𝑟𝑚 + ∙ 𝑦 + 𝒦(𝒙, 𝒙) 
10.   IF  key 𝒙 is found in ℋ  THEN add its value by /𝑠 in ℋ ; 
11.   IF no processor reports the existence 

   THEN Find a least occupied processor 𝑗 
             and add ℋ  a new entry 𝒙, /𝑠  

12.   IF 𝑛𝑜𝑟𝑚 > 1/𝜎 THEN 𝑠 ← 𝑠 ∙ √ ∙ ; 𝑛𝑜𝑟𝑚 ← 1 𝜎⁄  
13. RETURN 𝑠𝒗 by iterating all entries in ℋ , … 𝐻  

Figure 3. P-packSVM pseudo-code, without packing 



• Pre-calculate 𝑦 = 〈𝒘𝒕, 𝜙(𝒙𝒊)〉 for 𝑖 = 𝑡 … 𝑡 + 𝑟 − 1 
• Pre-calculate 𝒦(𝒙𝒊, 𝒙𝒋) for 𝑡 ≤ 𝑖 < 𝑗 ≤ 𝑡 + 𝑟 − 1 
• Iterate 𝑖  through 𝑡  to 𝑡 + 𝑟 − 1  and process the 𝑖 th 

iteration as before. Whenever iteration 𝑖 is finished, 𝑎 , 𝑏  can be calculated and 𝑦 , … 𝑦  are 
updated offline (without communication): 𝑦 ← 𝑎 𝑦 + 𝑏 𝒦 𝒙𝒊 𝒋, 𝒙𝒊  

• Update the distributed hash table ℋ  after all 𝑟 
iterations finish, by communicating to confirm the 
existing entries, and then add new entries to the 
least occupied processors. 

We provide the pseudo-code of P-packSVM with the 
packing strategy in Appendix. We remark on the coefficient 𝑟 that it is not the larger the better. As one may see from the 
pre-calculation of 𝒦(𝒙𝒊, 𝒙𝒋) , it needs 𝑂(𝑟 𝑑/𝑝)  in time, 
assuming 𝑑 to be the feature dimension. If this time exceeds 
the communication cost saved by the packing strategy, the 
acceleration will be undermined. We will practically show 
that 𝑟 = 100 is a good parameter in Section IV.C. 

C. Comparisons 
After introducing our algorithm, P-packSVM (based on 

SGD method), we are ready to compare it with other 
sequential or parallel trainers mentioned in Section II, for the 
large scale kernel SVM training. 
Accuracy. The prediction accuracy is associated with two 
factors: how well we optimize the objective and how well 
the objective is related to the accuracy. Since we are only 
considering the SVM trainers, we ignore the latter and only 
pay attention here the former – the optimization error. 

First of all, IPM and SMO algorithms both focus on the 
dual objective, but Hush et al [10] proved that this dual 
approach converges slowly in the desired primal objective. 
On the contrary, our P-packSVM directly optimizes on the 
primal. If the algorithm terminates early, the optimization on 
the primal produce better solution than on the dual. Secondly, 
we consider the optimization effectiveness – how fast each 
algorithm converges to its own objective. IPM and SMO 
algorithms do well in this aspect, since the predictor always 
goes closer to the optimal in every step. SGD algorithms do 
not have such property and the accuracy fluctuate as the 
number of iterations increases. However, the strong 
convexity [23] [24] ensures that P-packSVM achieves good 
accuracy, as we analyzed in Section III.A. 
Speed on a single machine. SGD algorithms are the fastest 
for linear SVM [25], and SMO algorithms are generally 
believed the fastest for non-linear kernels [12], while IPM 
algorithms fall far behind. Few of the papers substantially 
address the incorporation of kernels in SGD, because before 
the introduction of the best known learning rate in [24], SGD 
algorithms like [16] take a much longer time than SMO. We 
will show in Section IV.A that our SGD algorithm, P-
packSVM, can achieve similar efficiency as SMO on a 
single machine.  
Parallel speed-up. Regarding the parallel capability, we 
need to consider the following two factors: 

• The communication cost.  
With the increasing number of processors, 
communications start to become the bottleneck, so 
the algorithm that invokes fewer communications 
shows its superiority. Under such a magnitude, IPM 
algorithms take the lead, for their number of 
iterations is logarithmic to 1/𝜖 [27], while SMO and 
SGD both experience a large number of iterations. 
In this paper we turn the tide and reduce the number 
of communications requests by a factor of 𝑟. This 
makes our P-packSVM highly parallelized. 

• The parallel efficiency - Amdahl’s law. [2] 
The law states that a small portion of the program 
that cannot be parallelized will limit the overall 
speed-up. In the view-point of Amdahl’s law, IPM 
algorithms are the most difficult to be parallelized, 
due to its complex matrix operations. In PSVM [5] 
there exists a small scale Cholesky factorization in 
each iteration that cannot be parallelized, which 
becomes the bottleneck as to be shown in Section 
IV.C. SMO algorithms are relatively easier but need 
modification, like [3]. Our proposed P-packSVM 
has highly parallelized each iteration, except for 
only a constant number of commands, and thus 
attains the potential to reach high scalability. 

Compare with PSVM. We pay special attention to the 
comparisons with our well-matched adversary PSVM. Firstly, 
in order to achieve an endurable speed, PSVM forces an 
approximation to the kernel matrix. This approximation, by 
Incomplete Cholesky Factorization, lacks theoretical error 
bounds. We empirically show in the next section that this 
decomposition is not accurate enough in many datasets. On 
the contrary, though in stochastic manner, the theoretical 
convergence analysis on P-packSVM guarantees good 
accuracy.  Secondly, as previously stated, PSVM optimizes 
the dual objective while our P-packSVM directly optimizes 
on the primal. Thirdly, the parallel speed-up of PSVM 
cannot achieve the height of P-packSVM, due to Amdahl’s 
law mentioned above. Fourthly, the memory requirement for 
PSVM is as high as 𝑂(𝑚 . /𝑝), while P-packSVM uses only 𝑂(𝑚/𝑝)  for each processor, making memory no longer a 
bottleneck for the algorithm. 

IV. EXPERIMENTS 
In this section we perform experiments on training sets 

varying in size from 1,000 to 8,000,000 samples. We use 144 
equally configured machines in our data center, where each 
machine is equipped with two 2.5GHz Intel Xeon CPUs with 
a total of eight cores and a memory of 16GB. We use the 
Message-Passing Interface (MPI) as our parallel platform 
[22]. We first introduce the binary classification datasets in 
the experiments: 

• CCAT dataset, retrieved from RCV1 collection [18].  
The samples are scaled by the author and have a 
sparsity of 0.16%. 

• CovType dataset, prepared by J. T-Y Kwok [17]. No 
normalization has been performed on this dataset, 
and it has 54 features in total. 



TABLE I.  COMPARISONS ON THE TRAINING TIME. #PROCESSORS IS ONLY APPLIES TO PSVM AND P-PACKSVM. 

Data set #samples(train/test) #features #processors SVM-light PSVM P-pack 1 P-pack 1.5 P-pack 2
Splice1 1,000 / 2,175 60 8 0.3s 0.6s 2s 3s 4s 
Adult3 32,561 / 16,281 123 128 1103s 12s 5s 8s 12s 
Web3 49,749 / 14,951 300 128 2483s 17s 8s 14s 19s 

CovType3 522,910 / 58,102 54 256 280101s 748s 321s 574s 864s 
CCAT3 781,265 / 23,149 47,236 256 219744s 18173s 918s 1741s 2739s 

RCV1-All3 781,265 / 23,149 47,236 256 3819441s 74888s4 32363s 55323s 79686s
MNIST8m2 8,000,000 / 10,000 784 512 - - 12880s 41866s 145248s

1 We used 𝑇 = 10𝑚, 15𝑚, 20𝑚 for P-pack 1 / 1.5 / 2 resp., and 𝑚 = 0.1𝑚 for PSVM. 
2 We used 𝑇 = 𝑚/8, 𝑚/4, 𝑚/2 for P-pack 1 / 1.5 / 2 resp. In this set, both SVM-light and PSVM fail to run within ten days. 
3 For the rest of the datasets, we used 𝑇 = 𝑚, 1.5𝑚, 2𝑚 for P-pack 1 / 1.5 / 2 resp. 
4 We forced to use m = m .  instead of m .  to reduce PSVM’s running time. 

 
• Splice / Web / Adult prepared by the libSVM project 

team [8]. They are three relatively small datasets. 
• RCV1-All, the entire 103 categories in RCV1 topics 

collection. This is a multi-label problem and we 
consider it as 103 binary classifications and add the 
correct / incorrect predictions together to verify the 
accuracy.  

• Class 2 in the MNIST8m dataset, prepared by the 
libSVM project team [8]. This set contains 8.1 
million samples and was generated [19] by 
performing careful elastic deformation of the 
original MNIST training set. We use the scaled 
version, with values in [0,1]. 
We use the first 8 million samples as training data, 
and prepare two sets of testing data: the last 100,000 
samples in MNIST8m, and the 10,000 samples in the 
original MNIST testing set. 

For convenience, throughout the experiments we stick to 
the Gaussian 𝑟𝑏𝑓 kernel 𝒦(𝑥 , 𝑥 ) = exp (−𝑟𝑏𝑓 ∙ ‖𝑥 − 𝑥 ‖ ) 
though our proposed algorithm can deal with arbitrary 
kernels like the polynomial kernel, Laplacian kernel, etc. 

A. Performance Test 
In the first experiment we compare the running time and 

the accuracy of our proposed P-packSVM against two state-
of-the-art SVM trainers: SVM-light [12] and PSVM [5]. For 
SVM-light we use its default convergence parameters. For 
PSVM we set a gap threshold and the residual (primal & 
dual) threshold to 0.1, and an upper limit of 1000 iterations. 
Unless otherwise state, we adopt the suggested 𝑚 = 𝑚 .  
approximation (see Section II), which was claimed to 
balance the accuracy and the efficiency in [5]. 
For all of the test sets, we choose the best selected 𝜎(𝐶 =1/𝑚𝜎 in SVM-light) and 𝑟𝑏𝑓 for the Gaussian kernel (see 
Appendix for a detailed configuration). These parameters are 
equally set to the three trainers. In our P-packSVM, we set 𝑇 = 𝑚, 1.5𝑚, 2𝑚  as three different iteration limits, and 
notate them as P-pack 1, P-pack 1.5 and P-pack 2. The 
program runs three times and the mean accuracy, mean 
number of support vectors and mean training time are 
calculated. We give special regard to the fact that for the 

small training set splice, neither PSVM nor P-packSVM can 
achieve reasonable accuracy under the above configurations, 
and thus we choose 𝑚 = 0.1𝑚  for PSVM and  𝑇 =10𝑚, 15𝑚, 20𝑚 for P-packSVM. 

Considering the training time in TABLE I. Our poposed 
method is undoubtedly the fastest for large-scale learning. 
Notice that the column “#processors” applies to both PSVM 
and P-packSVM, while SVM-light is a sequential SVM 
trainer. We conclude that P-packSVM is hundreds of times 
faster than SVM-light and several times faster than PSVM 
for large datasets like CovType and CCAT. Notice that, by 
performing simple multiplication, one can see even in a 
single machine, our proposed P-packSVM may achieve a 
similar speed as SVM-light for large scale data.  

The number of support vectors in our model is the 
smallest among the three (Figure 5), partially because the 
number of iterations is limited and some samples are not 
selected in the entire execution of P-packSVM. The accuracy 
report in Figure 6 demonstrates that our proposed method 
can get accuracy very close to  SVM-light’s, and overwhelm 
the state-of-the-art trainer PSVM on datasets except CovType. 
We remark here that the approximation – incomplete 
Cholesky decomposition – makes PSVM not accurate 
enough for datasets with large-rank kernel matrices, like 
CCAT. 

RCV1-All. We test on a sequential of 103 labels in RCV1, 
and add the number of correct / incorrect instances together. 
We pay special attention to this test because most of the 
labels are extremely biased (number of negative samples 
dominate). Results in Figure 7 show that our proposed P-
packSVM can handle this situation successfully. In sharp 
contrast, PSVM receives no more than 50% in the F1 
measure [11]  (we use 𝑚 = 𝑚 .  to make PSVM stop in 
several days). 

MNIST8m. We emphasize that our proposed method can run 
against the very large scale dataset MNIST8m with 8 million 
training samples. For the lack of computing resources, we 
did not spend extra time choosing the best fit 𝜎 and 𝑟𝑏𝑓 (see 
Appendix). To the best of our knowledge, no generic kernel 
SVM trainer has claimed its success on training this dataset. 
[19] used the invariance property of MNIST8m and achieved 
an accuracy of 99.33% for all 10 classes in 8 days (predicting 
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TABLE II.  SCALABILITY TEST FOR PSVM AND P-PACKSVM. (MEAN TIME OF THREE RUNS, 𝑇 = 𝑛) 

Data set Algorithm 𝒑 = 𝟖 𝒑 = 𝟏𝟔 𝒑 = 𝟑𝟐 𝒑 = 𝟔𝟒 𝒑 = 𝟏𝟐𝟖 𝒑 = 𝟐𝟓𝟔 𝒑 = 𝟓𝟏𝟐
CCAT PSVM 278780s 138246s 71933s 46989s 31235s 18313s 12917s 
CCAT P-packSVM, 𝑟 = 1 30599s 15976s 8528s 4793s 2928s 2570s 3282s 
CCAT P-packSVM, 𝑟 = 10 29308s 14734s 7386s 3631s 1930s 1122s 1265s 
CCAT P-packSVM, 𝑟 = 100 28061s 13838s 6953s 3307s 1552s 917s 761s 

CovType PSVM 14294s 7099s 5626s 2866s 1342s 934s 1587s 
CovType P-packSVM, 𝑟 = 1 13224s 6374s 3144s 1529s 1144s 1128s 1346s 
CovType P-packSVM, 𝑟 = 10 12895s 6014s 2728s 959s 544s 390s 389s 
CovType P-packSVM, 𝑟 = 100 12267s 5710s 2611s 924s 514s 316s 236s 

 

 
Figure 9. CovType speed-up. 

 
Figure 10. CCAT speed-up. 

 
no extra effort since our algorithm in Figure 1 already 
calculates the hinge loss for random examples), and if this 
value is numerically stable enough, the program can 
automatically stop. Experimental results show that the 
iteration limit 𝑇 is around the sample size 𝑚. 

Extension to other loss. We emphasize that our proposed 
algorithm can be easily generalized to convex loss functions, 
other than the hinge loss. For example, L2 Kernel Logistic 
Regression can be similarly solved where we only need to 
slightly change ∇𝑓  in Equation (7). We have shown that the 
convergence rate still holds in a counterpart of this paper 
[30].  We will perform this research in our further work. 

VI. CONCLUSION 
This paper analyzes a stochastic gradient descent method 

that optimizes the primal SVM objectives for arbitrary 
kernels. Parallel implementation is provided by introducing a 
distributed hash table and the innovative packing strategy. 
The proposed algorithm, P-packSVM, averagely distributes 
the support vector to all processors, and the 𝑟 consecutive 
gradient descent steps can be packed with constant times of 
communications requests. We emphasize that this packing 
strategy compensates for the defect of SGD – large 
communication cost, and is effective in increasing the 
parallel speed-up. 

We conduct extensive experiments on benchmark 
datasets that vary in size, in sparsity and in the number of 
features. Extensive experimental results show that our 
proposed algorithm can run much faster than the state-of-the-
art parallel SVM trainer PSVM [5], and hundreds of times 
faster than the sequential trainer SVM-light. For example, P-
packSVM trains CovType with 500k samples in 4 minutes 

and CCAT with 800k samples in 13 minutes. We emphasize 
that P-packSVM attains accuracy that is sufficiently close to 
SVM-light, and prevails over that of PSVM. 
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APPENDIX 

PROCESSOR 𝑖 
1. INPUT: 𝜎, 𝑇, 𝑟, training sample space 𝛹  
2. INITIALIZE: ℋ = ∅ , 𝑠 = 1, 𝑛𝑜𝑟𝑚 = 0 
3. FOR 𝑡 =  1,2, … , 𝑇/𝑟 
4.  Randomly pick up 𝑟 samples (𝒙 , 𝑦 ) … (𝒙 , 𝑦 ) ∈ 𝛹. Ensure all processors receive the same samples. 
5.  FOR 𝑘 =  1, … 𝑟 DO 
6.   𝑦 , ← 𝑠〈𝒗𝒌, 𝜙(𝒙𝒊)〉 by iterating all entries in ℋ  
7.  Communicate with other processors to get 𝑦 = ∑ 𝑦 , ′ 
8.  Calculate 𝑝𝑎𝑖𝑟 , = 𝒦(𝑥 , 𝑥 ) in distribution 
9.  𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑡 ← ∅  
10.  FOR 𝑘 = 1, … 𝑟 DO 
11.   𝑠 ← (1 − 1/𝑡)𝑠 
12.   FOR 𝑙 = 𝑘 + 1 … 𝑟 DO 𝑦 ← (1 − 1/𝑡)𝑦  
13.   IF 𝑦 𝑦 < 1 THEN 

14.    𝑛𝑜𝑟𝑚 ← 𝑛𝑜𝑟𝑚 + ∙ 𝑦 + 𝑦𝑘𝜎𝑡 2 𝑝𝑎𝑖𝑟𝑘,𝑘 

15.    𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑡 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑡 ∪ (𝒙𝒌, 𝑦𝑘𝜎𝑡 /𝑠)  

16.    For 𝑙 = 𝑘 + 1 … 𝑟 DO   𝑦 ← 𝑦 + ∙ 𝑝𝑎𝑖𝑟 ,  
17.    IF 𝑛𝑜𝑟𝑚 > 1/𝜎 THEN 
18.     𝑠 ← 𝑠 ∙ √ ∙ ;   𝑛𝑜𝑟𝑚 ← 1 𝜎⁄  

19.     FOR 𝑙 = 𝑘 + 1 … 𝑟 DO 𝑦 ← (1 − 1/𝑡)𝑦  
20.  Update ℋ  according to 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑡, for those elements reported not existed in ℋ … ℋ , 

  add them to the least occupied processors. 
21. RETURN 𝑠𝒗𝒊 by iterating all entries in ℋ , … ℋ  

Figure 11. P-packSVM pseudo-code, with packing strategy 



TABLE III.  THE PARAMETERS USED IN EXPERIMENTS. 

Data set 𝝈 𝑪 = 𝟏/𝒎𝝈 𝒓𝒃𝒇 rank_ratio = 𝒎 /𝒎 
 (PSVM)

𝒓
(P-packSVM) 

splice 0.001 1 0.01 0.1 100 
adult 0.0001 0.307116 1 0.0055418(𝑚 = 𝑚 . ) 100 
web 0.00001 2.010091 1 0.00448341(𝑚 = 𝑚 . ) 100 

CovType 0.000005 0.382475 0.002 0.00138289(𝑚 = 𝑚 . ) 100 
CCAT 0.00001 0.127998 1 0.00113136(𝑚 = 𝑚 . ) 100 

RCV1-All 0.00001 0.127998 1 0.000291287(𝑚 = 𝑚 . ) 100 
MNIST8m 0.000001 0.123457 1 - 100 

 


