
Distributed Outlier Detection using Compressive Sensing

Ying Yan1, Jiaxing Zhang1, Bojun Huang1, Xuzhan Sun2∗, Jiaqi Mu3∗,
Zheng Zhang4†, Thomas Moscibroda1

1Microsoft Research, 2Peking University, 3UIUC, 4NYU Shanghai
1{ying.yan, jiaxz, bojhuang, moscitho}@microsoft.com,

2sunxuzhan@pku.edu.cn, 3jiaqimu2@illinois.edu, 4zz@nyu.edu

ABSTRACT

Computing outliers and related statistical aggregation func-
tions from large-scale big data sources is a critical operation
in many cloud computing scenarios, e.g. service quality as-
surance, fraud detection, or novelty discovery. Such problems
commonly have to be solved in a distributed environment
where each node only has a local slice of the entirety of the
data. To process a query on the global data, each node
must transmit its local slice of data or an aggregated subset
thereof to a global aggregator node, which can then compute
the desired statistical aggregation function. In this context,
reducing the total communication cost is often critical to the
overall efficiency.

In this paper, we show both theoretically and empirically
that these communication costs can be significantly reduced
for common distributed computing problems if we take ad-
vantage of the fact that production-level big data usually
exhibits a form of sparse structure. Specifically, we devise a
new aggregation paradigm for outlier detection and related
queries. The paradigm leverages compressive sensing for data
sketching in combination with outlier detection techniques.
We further propose an algorithm that works even for non-
sparse data that concentrates around an unknown value. In
both cases, we show that the communication cost is reduced
to the logarithm of the global data size. We incorporate
our approach into Hadoop and evaluate it on real web-scale
production data (distributed click-data logs). Our approach
reduces data shuffling IO by up to 99%, and end-to-end job
duration by up to 40% on many actual production queries.

1. INTRODUCTION
Large-scale data-intensive computation has become an in-

dispensable part of industrial cloud computing, and building
appropriate system support and algorithms for efficiently

∗This work was done when the authors were doing their
internships at Microsoft Research.
†This work was done when the author was working at Mi-
crosoft Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2747641.

analysing massive amounts of data has become a key focus,
both in industry as well as in the research community. For
example, data volume within Microsoft almost doubles every
year and there are thousands of business critical data ana-
lytics jobs running on hundreds of thousands of machines
everyday.

While each of these jobs is different, there are nevertheless
a few common characteristics. First, instead of requiring the
raw data records, many applications typically issue queries
against aggregated values (e.g. sum...group by...). For exam-
ple, our investigation in one of our own production clusters
reveals that 90% of 2,000 regular analytics jobs in this clus-
ter issue queries against such aggregated values. Secondly,
data analytics jobs over big data are often processed in a
shared-nothing distributed system that scales to thousands
of machines. In other words, the entirety of the data is dis-
tributed across a large set of nodes each of which contains a
slice of the data, and each node needs to transmit necessary
information about its data to some aggregator node which
then computes the desired function.
In this paper, we focus on a particularly important prob-

lem that falls within the above categorization: the distributed
outlier problem. We explain the problem using a concrete
scenario that arises in Microsoft Bing web search service
quality analysis engine. Here, to measure the users’ satisfac-
tion of search query results, each search query is assigned
either a positive (Success Click) or negative (Quick-Back
Click) score, depending on the user’s reaction to the shown
search results. These scores are logged in search event logs
at data centers across the globe, and stored in thousands of
remote and geo-distributed machines. In order to determine
the quality of a particular search query result, the task is
now to aggregate these scores from all the various distributed
search event logs. In a typical implementation of this ag-
gregation (Figure 1), each node first locally (and partially)
aggregates the scores (i.e., the values) grouping them by
market and vertical segments (i.e., the keys). Then, all the
nodes transmit their key-value pairs to a central node for
final aggregation. Figure 1(a) shows a typical global aggre-
gated result from the production logs. It can be seen that the
result exhibits a “sparse-like” structure: while a majority of
the values are concentrated around the mode b (1800 in the
example) and there is a small fraction of outliers (marked
with circles) whose values diverge greatly from b. Data from
different individual data centers may not be sparse when
considered independently. For obvious reasons, finding such
outliers across different markets and vertical segments is of

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

1800

0

Key

Key

Sum group by Key

Key Value

Market, Vertical Score

Data Center 1 Data Center 2 Data Center 3

(a) Motivating Example

Top K Absolute

value top K

Outlier K

mode=1800

(b) Global Top v.s. Outlier (=3)

Aggregator

Figure 1: Distributed outlier detection in web search service quality analysis

critical importance to the analysis of our company’s web
search service quality.

There are three challenges that make it difficult to find an
efficient solution to the above problem. 1) We have found
that the local outliers and mode are often very different
from the global ones. Without transmitting all the data, the
true global outliers can only be approximated, and finding
a high quality result is not guaranteed. As shown in Figure
1(a), the key k5 in the remote data centers appear ‘normal’.
However, after aggregation, it is an obvious outlier compared
to other keys. 2) As new data arrives—recall that terabyte
of new click log data is generated every 10 mins—, the global
outliers and mode will naturally change over time. Any
solution that cannot support incremental updates is therefore
fundamentally unsuited. 3) The number of distributed data
centers considered in the aggregation may also change. For
example, when a new data center joins the network, or the
number of data centers considered in the analysis changes,
the global outliers and mode may also change accordingly.
We seek a solution with the ability of incremental addition
and removal of data centers involved in the aggregation.

Formally, the above problem can be captured as a k-outlier
detection problem, which seeks to find the k values furthest
away from the mode b.1 In the context of a large-scale
production environment where data is located in many geo-
graphically distributed nodes, each node i holds a data slice
that is an N -dimensional vector xi ∈ R

N (ordered according
to a global key dictionary). In our concrete application, each
entry in the vector xi corresponds to the log entry of one
specific search query result stored at that particular node
i. The global data is the aggregation of these slice vectors
by summing up the values of each entry, i.e., x =

∑

i xi. In
our application, the global data is therefore the vector where
we sum up the log-entries for each query stored in all the
different nodes. Outlier detection seeks the top-k outliers
from this global data vector x.
The commonly-used baseline implementation for the dis-

tributed outlier problem is to first aggregate the slices in
“MapReduce-style”. The problem with this approach is that
the outliers and mode of the slices in different nodes are
different from each other, and also different from the global
outliers and mode after aggregation (see Figure 1). There-

1Note the difference between the k-outlier problem and the
top-k problem: the keys with most exceptional values are
not necessarily the top-k (or absolute top-k)keys (cf. Fig-
ure 1(b)).

fore, in order to get a global result of reasonable accuracy,
all data (or at least a large fraction of the data) would have
to be transmitted to the global aggregator node. This entails
heavy communication across machines, accompanied with
expensive disk I/O and computation (sort, partitioning and
so on). In many practical scenarios, the aggregation commu-
nication cost dominates system performance. In one study on
SCOPE clusters in Microsoft [42], for example, data-shuffling
I/O caused by aggregation incurs 58.6% of cross-rack traffic.
It is therefore not surprising that new techniques to reduce
aggregation communication have been researched (different
data compression, partial aggregation techniques, optimizing
the user-defined operators, etc [23]).

In this paper, we take a fundamentally different approach.
The key insight is that practical aggregated big data fre-
quently exhibits sparse structure. The above search quality
application is a typical example: most of the values concen-
trate around zero or some constant bias, yet users are mostly
interested in the analytics determined by the values that di-
verge from the majority of mass, such as querying for outliers,
mode and top-k. Intuitively, such queries have the potential
for reducing the required communication for aggregation by
exploiting the underlying data’s sparse structure. However,
capitalizing on this potential is challenging, because different
local data slices may not be equally sparse. In Figure 1,
for example, data x1,x2 and x3 do not have modes, while
–after aggregation–,the global x shows a clear mode. Thus,
whether we can exploit sparsity for our problem depends on
the existence of an efficient lossy compression algorithm that
keeps high accuracy on the high-divergence values while being
insensitive to the distribution difference between local slices
and the global data. Fortunately, we find that compressing
sensing is a suitable choice for such a compression algorithm,
due to its linearity in measurement (compression) as well as
its focus and “greediness” on the significant components in
recovery (decompression).

Compressive Sensing (CS) is an efficient technique for sam-
pling high-dimensional data that has an underlying sparse
structure. Since its emergence, CS has found several key
applications, for example in the domain of photography [16],
image reconstruction and facial recognition [39], or network
traffic monitoring [43, 7]. In this paper, we show that apply-
ing CS can also yield significant benefits (both in theory and
practice) when applied to a classic distributed computing
problem. While we focus here on the specific distributed out-
lier problem at hand, our techniques may also be extended to

solve similar aggregation queries (mean, top-k, percentile,...)
in large-scale distributed systems.

In this paper, we make the following contributions:

• We devise a new communication-efficient aggregation
paradigm for the distributed outlier problem. The so-
lution leverages compressive sensing techniques and
exploits the underlying sparse structure of the data.
Technically, the algorithm compresses the data by a
random projection at each local node. This compressed
sketch is transmitted to the aggregator node, which
then uses a compressive sensing-based recovery algo-
rithm to determine the mode and the outliers simulta-
neously (see Figure 2).

• We propose Biased OMP (BOMP), a new recovery
algorithm to recover both the outliers and the mode
which can be any unknown value that the values of
the aggregate data are concentrated around. BOMP
thus supports a much wider set of scenarios compared
to existing compressive sensing-based recovery algo-
rithms [34, 37], which can only be applied to sparse
data concentrating at zero (sparse at zero).

• We show theoretically that our algorithm can find out-
liers with the aggregation communication reduced to
the logarithm of the global data size. Specifically, if
the data of size N satisfies an s-sparsity condition, our
algorithm can recover the outliers with O(sc · logN)
communication cost, where c is a small constant.

• We implement our algorithm in Hadoop. We show that
for the web search quality application described above,
our technique significantly outperforms existing algo-
rithms for outlier detection, reducing data-shuffling IO
by up to 99%. In our concrete production environment,
this IO reduction results in a reduction of end-to-end
job duration by up to 40%.

The remaining of the paper is organized as follows. Section
2 introduces preliminaries of outlier detection and compressive-
sensing techniques. Section 3 formulates the problem and
presents our algorithm for compressive-sensing based dis-
tributed outlier detection. Section 4 theoretically analyses
the performance of BOMP. Section 5 introduces how to imple-
ment our solution in Hadoop and discusses problems related
to system implementation. Experimental results are reported
in Section 6. Section 7 discusses related work and Section 8
concludes the paper.

2. PRELIMINARIES

2.1 Distributed Outlier Detection
We first give a formal definition of distributed outlier

detection. Suppose a data vector x = [x1, x2, ..., xN]T ∈ R
N

is distributed across L nodes such that each node l holds
a partial slice of the data xl = [xl1, xl2, ..., xlN]

T ∈ R
N

and
∑

xl = x. Now suppose an aggregator node wants to
compute some statistics on x. In order to do so each of the
L nodes can send information about its local data slice to
the global aggregator node.
One important data property that the aggregate data x

may satisfy is sparsity :

Definition 1 (s-sparse). A vector x = [x1, . . . , xn]
T ∈

RN is called s-sparse if it has s nonzero items.

Typically, aggregated big data in the real world is not sparse
in the strict sense of the above definition. However, it is
“sparse-like” if we consider a more general data property on
x. We study the Outlier Problem under this more general
property. In its most basic version, we assume the existence
of a dominating majority of the values of x. Formally, we
define a majority-dominated data as follows.

Definition 2 (majority-dominated). A vector x =
[x1, . . . , xn]

T ∈ RN is majority-dominated if there exists
b ∈ R such that the set O = {i : xi 6= b} has |O| > N

2
.

Given a majority-dominated data x, we call the items in
O the outliers. Note that the value of the majority b, if
it exists, is unique by definition. The k-outlier problem is
defined as finding a set Ok ⊆ O with min(k, |O|) elements
that are furthest away from b. Formally, for any i ∈ Ok and
j /∈ Ok, we have |xi − b| ≥ |xj − b|.
s-sparse data and majority-dominated data are simple

concepts of sparse data. In practice, data often exhibits
weaker notions of sparse structure. In Figure 1, for exam-
ple, values concentrate around a mode b, but they are not
necessarily equal to the exact b. Due to the imprecision of
‘concentration’, the outliers and the mode do not have unique
definitions on such data.
As discussed before, in many real-world applications the

number of keys N can be very large, so the goal is to find
distributed algorithms in which the total data volume trans-
mitted by all nodes is sub-linear (logarithmic, if possible)
in N . Also, due to the possibly large latency of data trans-
missions, we focus on single-round algorithms: every remote
node transmits information derived from its local data to
the aggregator in parallel, the aggregator receives all this
information, and then locally computes the global results.

2.2 Compressive Sensing and Recovery Algo-
rithms

The basic ideas and mathematical foundations of compres-
sive sensing were established in [8] [9] [15]. It is an efficient
way to sample and compress data that has a sparse represen-
tation. Compressive sensing has two phases: i) sampling the
data to a measurement and ii) recovering the data from the
sampled measurement. The sampling is done by linearly pro-
jecting a data vector x = [x1, x2, ..., xn]

T with a measurement
matrix Φ = [ϕ1, ϕ2, ..., ϕn] into y = Φx. Due to the linearity
in this sampling, compressive sensing seems uniquely suited
for data that is distributed across different locations or data
that is frequently updated, scenarios in which traditional
compression techniques often face challenges and may not
be applicable. In practice, Φ is randomly generated, which
was shown to be near-optimal [9] [15].

For the recovery algorithms, the ones most widely used are
Basis Pursuit (BP) [13] and (Orthogonal) Matching Pursuit
(OMP) [30, 34, 37], which try to decompose the signal to a
sparse representation via an over-complete dictionary. BP
recovers the data x by solving the optimization problem
minx‖x‖1 subject to y = Φx, which is transformed into a
linear programming problem. OMP is a greedy algorithm.
Starting from a residual r = y and an empty matrix Φ∗,
OMP performs a sequence of iterations. In iteration k, OMP
selects the column vectors ϕ ∈ Φ that has the largest inner

product with the current residual r. OMP appends this
column to Φ∗ and records its position in Φ by Ik. y is
projected to the subspace spanned by Φ∗ to get the represen-
tation z = [z1, z2, ..., zk]

T. Then the residual is updated by
r = y −Φ∗z. When OMP is finished after some iterations,
it gets the recovered x from z by setting xIk = zk and the
other positions in x to zero.

Compared to BP, OMP has several advantages when used
for the distributed k-outlier detection problem. First, OMP
is simple for implementation and faster than BP. Second, in
the outlier problem we are inherently interested are those
‘significant’ components instead of the entirety of the data.
OMP naturally recovers the ‘significant’ components during
the first several iterations, after which we can stop the execu-
tion of OMP without significant loss in accuracy. Exploiting
this feature of OMP is critically important when applying
compressive sensing to big data problems in general, and to
the outlier problem in particular, because the computational
burden of recovery would pose an unsurmountable obstacle
otherwise.

3. ALGORITHM
In this section, we introduce our CS-based algorithm for

the distributed k-outlier problem. We first show how we
compress the distributed data, and then present the recovery
algorithm that finds the outliers from the compressed data.

3.1 Distributed Compression
Each node contains up to N key-value pairs and we want to

get the k outliers of the globally aggregated values grouped
by the keys. Our solution consists of three phases. As
shown in Figure 2, the first phase is data compression. We
vectorize the key-value pairs into vectors and apply a random
projection locally at each node to get the local compression
(or measurement). Then, the compressed data is transmitted
to the aggregator who then directly computes a compressed
aggregate from the different compressed data. Finally, the
outliers and mode are recovered using the BOMP algorithm.
We now describe each of these steps in detail. Also, please
refer to Figure 3 for an example of how to apply the procedure
in the context of our web search quality application.

Node n2Node n1
Node nl

…

Aggregator

Global Key

Dictionary

Index Key

1

…

N

Partial

aggregation X1

x11

…

x1N

Global key

Dictionary

Partial

aggregation X2

x21

…

x2N

Partial

aggregation Xl

xl1

…

xlN

Global key

Dictionary
Global key

Dictionary

…

Detect outlier & mode using BOMP (y)

Outlier & Mode

Detection

Measurement

Transmission

Local Compression

Figure 2: CS-Based Solution for Distributed Outlier
and Mode Detection

Vectorization. Given a key space of size N , we can
build a global key dictionary : The values on each node l

are arranged by their key in a globally fixed order forming
a vector xl = [x1, x2, ..., xN]

T. If a key does not exist on a
node, we still keep an entry with value equals to 0. Thus, all
keys have the same fixed position in all local vectors xl; i.e.,
looking up the key dictionary with the position of a value,
we can find its key. Distributed outlier detection tries to seek
the outliers on the aggregated data x =

∑L
l=1 xl.

Local Compression. By a consensus, each node ran-
domly generates the same M ×N measurement matrix Φ0

with column ϕ1, ϕ2, ..., ϕN . Locally, each node l then mea-
sures its data xl by yl = Φ0xl, resulting in a vector of length
M . The fraction M

N
is the compression ratio, and we call yl

a local measurement.
Measurement Transmission. Each node now transmits

its local measurement yl to the aggregator. Assuming the
system consists of L nodes, the communication cost is thus
reduced from O(N · L) to O(M · L) compared to the trivial
algorithm in which all data is transmitted to the aggregator.2

Global Measurement. Once the aggregator receives all
local measurements yl, it aggregates them into a global
measurement y =

∑L
l=1 yl:

y =
L
∑

l=1

yl =
L
∑

l=1

Φ0xl = Φ0

L
∑

l=1

xl = Φ0x. (1)

Notice that y exactly corresponds to the measurements on
the aggregated data x =

∑L
l=1 xl.

3.2 BOMP Algorithm
In principle, we can now apply any recovery algorithm used

in the compressive sensing literature (e.g., OMP) to the global
measurement y and use the recovered data to determine the
outliers. However, when the values in x concentrate on an
unknown non-zero bias b, all existing compressive sensing
recovery algorithms are not applicable to this non-sparse
data. Therefore, to deal with this more general scenario, we
propose a novel recovery algorithm that uses the traditional
OMP algorithm as a subroutine. We call the new algorithm
“Biased OMP” (BOMP), because it can recover any set of
values that concentrate around an unknown non-zero bias.

The BOMP algorithm is based on the following intuition.
A data vector x whose values concentrate around b can be
decomposed into vectors x = b+ z̄, where z̄ is near-sparse.
By this decomposition, we reduce the recovery problem on
a non-sparse x into an equivalent problem of recovering a
near-sparse vector z̄ with a scalar b. Following this new
representation of x, measurement y = Φ0x can be written
as

y = Φ0 · (b+ z̄) =
N
∑

i

ϕi · b+Φ0z̄.

Carefully arranging the terms, we get another matrix-
vector multiplication form

y = [
1√
N

N
∑

i=1

ϕi,Φ0] ·
[√

Nb
z̄

]

= Φ · x. (2)

The form in (2) can be considered as a measurement on an ex-

tended vector z = [
√
Nb, z̄]T with an extended measurement

2In practice, additional compression techniques can be ap-
plied on the data measurement for further data reduction.

matrix Φ = [1√
N

∑N
i=1 ϕi,Φ0]. In this way, we essentially

give the vector y—which is originally a measurement on x—a
new explanation: it is also a measurement on z. Attractively,
z is sparse and has a one-to-one mapping with x. Thus, we
can use any existing compressive sensing recovery algorithm,
particularly OMP, to recover x, and finally assemble the vec-
tor x from z. Overall, BOMP reduces the recovery problem
on x to a recovery problem on z that is near-sparse by sepa-
rating the bias b from x into an extra component to extend
the vector that is to be recovered. This new recovery problem
is solvable by the standard OMP algorithm. Notice that this
new recovery problem has a different measurement matrix
(the left term in (2)) and data vector dimension (N +1) from
the original one’s.

Algorithm 1: BOMP

Input: Measurement matrix Φ0 = [ϕ1, ϕ2, ..., ϕN],
measurement y = Φ0x, iteration number R

Output: Outlier set O, mode b, recovered x̂
1: Extend the measurement matrix Φ← [ϕ0,Φ0], where

ϕ0 =
1√
N

∑N
i=1 ϕi

2: z = [z0, z1, ..., zN]T ← OMP recovery on y = Φz with R
iterations.

3: x̂← [z1 +
z0√
N
, z2 +

z0√
N
, ..., zN + z0√

N
]T , b← z0√

N
,

O ← {i|xi 6= b}
4: return O, b, x̂

Our BOMP recovery algorithm for the compressive sensing-
based outlier solution is illustrated in Algorithm 1 whose
detailed workings are illustrated in Figure 3. Besides recov-
ering the non-sparse data vector x, BOMP also estimates its
mode b and returns the outlier set O. Given the measure-
ment y = Φ0x on data vector x = [x1, x2, ..., xN]

T , where
Φ0 = [ϕ1, ϕ2, ..., ϕN] is a M ×N measurement, BOMP first
extends Φ0 to Φ = [ϕ0, ϕ1, ..., ϕN] by adding an extra col-
umn

ϕ0 =
1√
N

N
∑

i=1

ϕi. (3)

Then, BOMP applies a standard OMP algorithm with
R iterations to recover z = [z0, z1, ..., zN]

T from y = Φz.
Finally, we recover x through

x̂ = [z1 +
z0√
N
, z2 +

z0√
N
, ..., zN +

z0√
N

]T . (4)

BOMP takes b = z0/
√
N as the mode of x. Since the size

of z is upper bounded by R, it follows (4) that the recovered
x has at most R− 1 components apart from b; we take these
to be the outlier set O. Finally, the algorithm selects the k
elements from O which are furthest away from b. These are
the detected k outliers.

4. THEORETICAL ANALYSIS
We theoretically analyze BOMP to determine its appli-

cability and efficiency to the problem at hand. The key
fundamental difference between BOMP and the traditional
OMP is that in OMP, all random entries in the measurement
matrix are sampled independently. This matrix has been

=

Compression

=

Aggregation

…

Given

Goal

=

=

To be recovered

Using OMP to

recover

Mode
Recovery - BOMP algorithm

Assemble

=

=

…

Figure 3: Example of CS-based approach

proved to have the restricted isometry property (RIP) [5],
which is a guarantee for the recovery accuracy. However, in
BOMP, the first column in the extended measurement matrix
is the sum of all the other columns. This weak dependence
becomes negligible as the number of columns grows, but it
introduces substantial challenges to the theoretical analysis
of BOMP.
In this analysis, we apply BOMP to a biased s-sparse

vector, which has s outlier components differing from an
unknown bias, with all the other components equal to the
bias. We prove that BOMP shows good recovery performance
in Theorem 1. It requires M = Asa log (N/δ) measurements
to recover an N -dimensional s-sparse vector with probability
1− δ.

Theorem 1. Suppose that x ∈ R
N is a biased s-sparse

vector. Choose M = Asa log (N/δ) where A and a are abso-
lute constants. Draw a random M ×N measurement matrix
Φ0 whose entries are i.i.d N (0, 1/M). BOMP can success-
fully recover x from measurement y = Φ0x with probability
exceeding 1− δ. The theorem holds under the Near-Isometric

Transformation and Near-Independent Inner Product conjec-
tures described below.

In the following, we give a detailed proof sketch of Theo-
rem 1. Intuitively, OMP is a sequence of column selections
(see Algorithm 2). In each iteration, the column of the mea-
surement matrix Φ with the largest inner product with the
current residual r is selected. Then, the measurement vec-
tor y is projected to the subspace spanned by the selected
column vector set Φs, and a new residual is calculated by
y − proj(y,Φs), where proj(y,Φs) is the projected result.

Algorithm 2: Column Selection in OMP [37]

Input: Matrix Φ = [ϕ0, ϕ1, ..., ϕN], measurement vector y
Output: selected column set Φs

1: Initialize Φs as an empty set
2: r← y
3: while ‖r‖2 > 0 do
4: ϕ← argmaxϕ∈Φ |〈ϕ, r〉|
5: Φs ← Φs ∪ {ϕ}
6: r← y − proj(y,Φs)
7: end while
8: return Φs

Without loss of generality, assume the s outliers occur
in the first s dimensions of x. Accordingly, partition the
extended measurement matrix Φ into [Φ∗,Ψ], where Φ∗
includes the column vectors corresponding to the bias and
the s outliers. It is easy to prove that, if the first s + 1
iterations in Algorithm 2 always select the columns in Φ∗,
BOMP will stop after s+ 1 steps and x is exactly recovered.
In each iteration of Algorithm 2, statement 4 selects a new
column by comparing the inner product. Thus, to ensure
BOMP’s successful execution, it is sufficient that for any r
in the subspace span(Φ∗) that is spanned by columns in Φ∗,
there is

ρ(r) =
maxψ∈Ψ |〈ψ, r〉|
maxϕ∈Φ∗ |〈ϕ, r〉|

< 1

in all the s+ 1 steps. In a single step

P{ρ(r) < 1} ≥P
{

maxψ∈Ψ |〈ψ, r〉|
‖ΦT∗ · r‖2/(

√
s+ 1)

< 1

}

≥P
{ |〈ψ, r〉|
‖ΦT∗ · r‖2

<
1√
s+ 1

}N−s
. (5)

Due to the independence property, in (5) ψ can be any
column in Ψ. Thus, our goal is to evaluate the value of

ρ′(r) =
|〈ψ, r〉|
‖ΦT∗ · r‖2

.

To achieve a high success probability, we would like ρ′(r)
to be as small as possible. That is ‖ΦT

∗ · r‖2 is much larger
than |〈r, ψ〉|.

4.1 Near-Isometric Transformation
In ‖ΦT

∗ · r‖2, the vector r is linearly transformed by ΦT
∗ . If

all the entries in Φ∗ are independent, a simple proof in [5, 37]
shows that the norm of r is preserved with high probability,

P{‖ΦT
∗ r‖2 ≥ 0.5‖r‖2} ≥ 1− e−cM . (6)

Now, the first column ϕ0 in Φ∗ has a very weak dependence
with the other s columns. Depicting this dependence, it can
be seen that the covariance matrix between ϕ0 and any other
column only has a non-zero diagonal 1/

√
N . When N is

much larger than s, this dependence becomes smaller and
smaller, and ultimately negligible. So, we believe that the
near-isometric transformation property in (6) holds in spite
of the weak-dependence. We formulate these intuitions in
the following conjecture.

Conjecture 1 (Near-Isometric Transformation).
Given a M × (s+ 1) randomly generated matrix Φ∗ whose
entries are all N (0, 1/M). The first column vector is weakly
dependent with any other column with covariance matrix ζI,
where |ζ| is sufficiently small. The other s column vectors are
independent with each other. For any r ∈ span(Φ∗), there
is P{‖ΦT

∗ r‖2 ≥ 0.5‖r‖2} ≥ 1− e−cM where c is an absolute
constant.

We conducted extensive numerical experiments to verify
the validity of Conjecture 1. We find that when s = 2,
M > s and ζ gets its largest value 1/

√
s: c is around 0.4.

When M and s are larger than 10 which is the case in real
applications, we observe ‖ΦT

∗ r‖2 ≥ 0.5‖r‖2 always holds by
a large margin.

4.2 Inner Product between Random Vectors
We now discuss the second major component of the proof

which relates the inner product between random vectors. Let
u = 0.5r

‖ΦT
∗ r‖2

. Then

ρ′(r) = 2|〈ψ,u〉|.
This is an inner product between two random vectors ψ
and u. All entries in ϕ are independent N (0, 1/M); by
Conjecture 1, ‖u‖2 ≤ 1 with probability P1 = 1 − e−cM .
If ψ and u are independent, then it follows from standard
techniques (see [37]) that

P {|〈ψ,u〉| ≤ ǫ} ≥ 1− e−ǫ2M/2.
In our case, ϕ is weakly dependent with u. When u = ϕ0

‖ϕ0‖2 ,

the dependence is the strongest. In that case, the covariance
matrix only has a non-zero diagonal 1/

√
N . When N is

sufficiently large, this dependence is so small that its influence
on the inner product becomes negligible. We formalize this
insight as follows.

Conjecture 2 (Near-Independent Inner Product).
Suppose x and y are two M-dimensional vectors. Both of
them have i.i.d N (0, 1/M). x and y are statistically depen-
dent with each other with covariance E(xyT) = ζI. Nor-
malize y as y′ = y/‖y‖2. If |ζ| is sufficiently small, then

P {|〈x,y′〉| ≤ ǫ} ≥ 1− e−ǫ2aM/2 where a is an absolute con-
stant.

Again, we conducted extensive experimental evaluations
to verify Conjecture 2. When setting a = 1.1, we never
observed any counter-examples; in fact, the condition was
satisfied by a wide margin in all cases.

4.3 Success Probability
Using the two previous conjectures, we now have the in-

gredients to conclude the proof. Specifically, it holds that

P

{

ρ′(r) <
1√
s+ 1

}

= P

{

|〈ψ,u〉| < 1

2
√
s+ 1

}

≥
(

1− e−(1

2
√

s+1
)2aM/2

)

· P1

≥
(

1− e− bM
sa

)(

1− e−cM
)

,

where a and c are the constant values defined in Conjectures 1
and 2 respectively; b is a constant derived from a. Plugging
this probability into (5), we get

P{ρ(r) < 1} ≥
(

1− e− bM
sa

)N−s
·
(

1− e−cM
)N−s

≥
(

1− (N − s)e− bM
sa

)

·
(

1− (N − s)e−cM
)

≥ 1−Ne−BM
sa ,

where B is a new constant. Applying the union bound on
all the s + 1 steps, we can upper bound the final success
probability

P {Esucc} ≥ 1− (s+ 1)(1− P{ρ(r) < 1})
≥ 1− (s+ 1)Ne−

BM
sa

Let P {Esucc} ≥ 1 − δ. The final conclusion is that taking
measurement size M = Asa log (N/δ), the recovery failure

probability of BOMP recovery failure probability is δ, where
A and a are constants.

5. HADOOP IMPLEMENTATION
We implement our solution on Hadoop, version 2.4.0. In

this implementation, the mappers are responsible for collect-
ing and aggregating the data for each key in the global key
list with length N , and then compress the partial results
into a vector with length M using the CS-Mapper method
as introduced in Algorithm 3. The reducer receives the M -
length vectors and then recovers the k−outlier and mode
using the CS-Reducer method. The recovered results are
output to HDFS. As illustrated in Algorithm 4, the recovery
process calls the BOMP algorithm. In the implementation,
we optimized the matrix computation in the recovery using
QR factorization [6] with Gram-Schmidt process which is
implemented with Intel Math Kernel Library(MKL) in C
and is pre-built in shared objects. We use Java Native In-
terface(JNI) to call the functions from Hadoop code. Our
solution can greatly save the communication cost, which
consists of the mapper output IO and shuffling in the re-
ducer. Although the recovery process may bring additional
overhead, the end-to-end latency is still greatly improved.
As the input file size becomes bigger, the saving of end to
end time is more significant: This is because each mapper
needs to process a larger number of file chunks, which in turn
implies that our method yields biggest savings in terms of
communication costs, thus further reduces the waiting time
of reducers. Thus, for larger input files, reducers need to wait
for a longer time period to get all the outputs from the map-
pers. Our compressive sensing-based solution speeds up the
mapping time which correspondingly reduces the reducer’s
waiting time. As such, the total latency is greatly reduced.

Algorithm 3: CS-Mapper

Input: Raw data, M , KeyList and seed
Output: Compressed data vector y with length M
N ← KeyList.length
Generate random M ×N measure matrix Φ0 with seed
Load raw data and do partial aggregation for each key in
the global KeyList, vector x← aggregation values ordered
by KeyList
y ← Φ0x
return y;

Algorithm 4: CS-Reducer

Input: Compressed vector y, KeyList, K and seed
Output: Recovered s, outlier set O, mode b
N ← KeyList.length, M ← y.length
Generate random M ×N measure matrix Φ0 with seed
return BOMP(Φ0, y, f(k))

One practical problem we encountered arises due to floating
point precision when using the Gram-Schmidt process for QR
factorization. The floating point error becomes non-negligible
compared to the values in the remaining uncompressed vector
as the recovery iteration increases, which may significantly
influence the recovery result. To reduce this effect, our
solution is to terminate the recovery process once the residual

stops decreasing which seems to be very effective and accurate
in practice.
An important optimization to speed up the recovery pro-

cess is to select a proper iteration count R. The choice of R
is affected by the value of k and data sparsity. In practice, as
in Algorithm 4, we denote R as f(k) since through parameter
tuning, we find that R ∈ [2k, 5k] is good enough for both
recovery accuracy and efficiency.

Finally, note that the recovery algorithm can be accelerated
with 30X ∼ 40X speed-up [2, 20] using GPU which is our
on-going work.

6. PERFORMANCE EVALUATION
We begin by evaluating the performance of the CS-based

distributed k-outlier detection algorithm BOMP. To have a
thorough performance evaluation, we first conduct experi-
ments on the result quality and effectiveness of our solution
in Section 6.1. Then, we implement a compressive sensing
based Hadoop system to evaluate the efficiency of our tech-
nique in Section 6.2. We use both synthetic and real-world
production workloads in the experiments.

6.1 Effectiveness of BOMP
The effectiveness metrics we focus on are communication

cost and recovery quality. Given the true k-outliers OT which
is a set of key and value pairs <OT .Key, OT .V alue>, |OT | = k
and a k-outliers estimation OE , |OE | = k, the error of the
estimation is measured by the errors on keys and values:

1. Error on Key (EK): EK = 1 − |OT .Key∩OE .Key |
K

,
EK ∈ [0, 1]. It is the error on precision of the key set.

2. Error on Value (EV): Both OT and OE are ordered

according to the value. EV = ‖OT .V alue−OE .V alue‖2
‖OT .V alue‖2 ,

EV ∈ [0, 1]. It is the relative L2 error on the ordered
value set.

A good approximate k-outlier solution should have small
EK and EV .

Our solution is independent of how the keys are distributed
over the different nodes. Given a fixed number of nodes, the
communication cost is only determined by the size of the
measurement matrix M . The evaluations in this section
focus on the recovery process using the BOMP algorithm
with different measurement matrix size M .

To evaluate the sensitivity of our solution to different data
distributions and parameters, we use a synthetic data set in
Section 6.1.1. In Section 6.1.2, we then show the effectiveness
of our algorithm in terms of communication cost on a real
search quality analysis production workload, and compare
with alternative approaches.

6.1.1 Effectiveness of BOMP on Synthetic Data

We use two synthetic data sets as the aggregated scores
in this group of experiments. The first one is a majority-
dominated data set containing N observations with a mode
b. There are N − s observations having the value of b. The
remaining s observations are not equal to b. b is set to be
5000. We change the sparsity of the data through varying
the parameter s. The second one is a Power-Law distribu-
tion with skewness parameter α. Since it is distributed as
a continuous heavy-tailed distribution, there is no pair of

0%

20%

40%

60%

80%

100%

100 200 300 400 500 600 700 800 900 1000

P
ro

b
ab

il
it

y
 o

f
E

x
ac

t
R

ec
o

v
er

y

M (Size of Measure Matrix)

BOMP S=50
BOMP S=100
BOMP S=200
OMP+known mode S=50
OMP+known mode S=100
OMP+known mode S=200

(a) Probability of Exact Recovery

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

V
al

u
e

o
f

M
o

d
e

(B
ia

s)

Number of Iteration

s=50
s=100
s=200

s=50 s=100 s=200

(b) Value of Mode(Bias) in Each Iteration

Figure 4: BOMP on majority dominated data

observations with the same value. The mode can be consid-
ered as the peak of its density function. We show that our
algorithm can still show good performance over Power-Law
distributions. The length of the data N to set to 1K in the
experiments.
We being by examining the probability of exact recovery

on majority-dominated data. In an exact recovery, EK =
EV = 0 and the number of outliers k equals s. For each
measurement matrix of size M , we test 1000 times each
time with a randomly generated measurement matrix, from
which the recovery percentage can be estimated. The number
of recovery iterations is min{M, s + 1}. We also test the
standard OMP algorithm under the assumption that the
mode b is known in advance. We can see in Figure 4(a),
BOMP has a similar performance as OMP even though
BOMP does not need knowledge of b. However, if the mode
is not known in advance (which is the more general case),
OMP needs to transmit additional 2s + 1 data to get the
mode. When s = 200, BOMP can save up to 40% of the
communication cost.

Then, for each s, we choose M to be the size of 100% exact
recovery and log the value of bias b (which is the mode) in
each iteration in the recovery. The first 300 iterations of
BOMP are plotted in Figure 4(b). We can see that when
the iteration number equals the sparsity s + 1, b starts to
stabilize which is of great interest, because it confirms in
practice the theoretical findings in Theorem 1.

In the second experiment, we examine the recovery quality
over Power-Law distributed data with α = 0.9 and 0.95,
respectively and N = 10K. The errors EK and EV with
K = 5, 10 and 20 are illustrated in Figures 5 and 6. For
each M , we run 100 times compression and recovery with
randomly generated measurement matrices. As such, we get
the MAX, MIN and AVG EK and EV errors in the 100 runs.

We can see that even for Power-Law distributed data, we
can still correctly detect k-outliers with smaller M .

6.1.2 Effectiveness of CS-Based Solution on Real Pro-
duction Data

In this group of experiments, we evaluate the perfor-
mance of our solution with real production workload used
for analysing Bing web search service quality as introduced
in Section 1. We use three production workloads with the
following template:

SELECT Outlier K SUM(Score),G1...Gm

FROM Log Streams PARAMS(StartDate,EndDate)

WHERE Predicates

GROUP BY G1...Gm;

There are more than 600 such aggregation jobs running in pro-
duction environment everyday, which consume large amounts
of communication and computation resources. We choose
three representative queries with different types of scores in
the experiments: advertise click score, core-search click score,
and answer click score. The GROUP-BY attributes including
QueryDate, Market, Vertical, RequestURL, DataCentre and
so on. The one-week log stream is 65TB total in size, and
is merged from 8 geographically distributed data centers.
The log contains the information from 49 Markets and 62
Verticals. After being filtered by the predicates, the total
number of keys N that the three queries are interested in
are 10.4K, 9K and 10K, respectively.

The performance metric we evaluate is communication cost
computed from Nt · St, where Nt is the number of tuples
transmitted and St is the number of bytes we use to represent
a tuple. In our solution, the tuple on each node is represented
as a 1-dimension data vector with length N . Given L nodes,
M measurements of SM bytes each, the total communication
cost is L ·M · SM . In our experiment, SM is 64 bits.
To the best of our knowledge, there is no existing dis-

tributed technique explicitly targeted for distributed outlier
detection. In practice, all data is usually transmitted to
the aggregator node. We consider this basic approach as
one of our baselines. Using this vectorized approach, the
communication cost is L ·N ·Sv, Sv is 64 bits. Alternately, if
the number of non-zero keys ni is small on each node, we can
reduce the communication cost by shipping key-value pairs.
As such, the communication cost is

∑l
i=1 ni · St, where St is

the size of keyid-value pair which is 96 bits. Our experience
working with the production data has shown that when trans-
mitting all data, the communication cost of the vectorized
approach is much smaller than shipping keyid-value pairs.
We call this baseline ALL.

As a second baseline, we also implement an approximate
approach called k+ δ based on [10]’s three rounds framework.
In the first round, each node samples g keys (g keys’ ids
are the same across different nodes) and sends them to the
aggregator. Then, the aggregator computes an average value
b from the aggregation values of g groups. In the second
round, the aggregator transmits the value b to each remote
node. In the last round, each remote node transmits back
the k + δ − g outliers considering b as the mode. Finally,
the aggregator outputs the k-outliers and mode b based
on the aggregation results of the data received. As such,
the communication cost by shipping keyid-value pairs is
L · (K + δ) ·St, where St is the size of keyid-value pair which
is 96 bits. Clearly, the communication cost of this approach

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 K
ey

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(a) k=5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 K
ey

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(b) k=10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 K
ey

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(c) k=20

Figure 5: Error on key for different k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 V
al

u
e

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(a) k=5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 V
al

u
e

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(b) k=10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 100 200 300 400 500 600 700 800 900 1000

E
rr

o
r

o
n

 V
al

u
e

M (Size of Measure Matrix)

alpha = 0.9 Max
alpha = 0.9 Min
alpha = 0.9 Avg
alpha = 0.95 Max
alpha = 0.95 Min
alpha = 0.95 Avg

(c) k=20

Figure 6: Error on value with different k

depends on how the values of different keys are distributed
over different nodes. When the values are distributed with
big standard deviations, the mode and outliers on each node
are vastly different from the global ones and the estimation
of outliers may have large errors. However, if the values
are uniformly distributed across the nodes, the estimation
based on the local data can be a good approximation of the
global distribution. We therefore compare against this simple
k + δ-approach in order to determine how–on real data–this
natural approach compares against our CS-based algorithm.
We call this baseline K+δ.

In the first group of experiments, we evaluate the accuracy
of outlier detection with different communication cost. We
use three production workloads on finding k-outliers over
sum of core-search, ads and answer click score. The keys
are defined from grouping by QueryDate, Market, Vertical,
RequestURL and DataCentre attributes. We partition the
data exactly as it is partitioned on the different Microsoft
data centers.
We compare the CS-Based algorithm with ALL and K+δ.

For ALL, we adopt the vectorized approach because the total
communication cost using keyid-value pairs is more than 3
times larger. In K+δ, the number of keys g to be sampled in
the first round for the mode estimation should be big enough,
since it is important to the estimation of mode, and thus the
key to computing the outliers. From our investigation, the
value of the sampled mode is relative stable when g is bigger
than (K + δ)/2. To this end, given a communication cost
budget, we always choose g to be 50% of the communication
cost in the evaluation in order to get a fair comparison
among the three solutions. The communication cost of our
CS-Based approach and the K+δ approach is normalized with
the transmitting ALL solution.

The evaluation results on core-search score data are shown
in Figures 7 and 8. Given a target communication cost, we

run the CS-based approach 100 times with different random
measurement matrices and report MAX, MIN and AVG
errors on key and value. We see that when the communicate
cost is only 1% of ALL, the CS-Based approach yields accurate
key results with K = 5. The error on value under the
same setting is only 4%. When K grows bigger, we need
more measurements to get the result with the same accuracy
compared to smaller K. However, even when K = 20, we
only need 15% of the communication cost to get accurate key
set. In contrast, the K+δ approach returns big errors on
both key and value even with much larger communication
cost.
The trend in the results of ads and answer click score

data are similar to the result above. In fact, the CS-based
algorithm significantly outperforms the other approaches
consistently over all benchmarks and data workloads.
The mode b in each iteration of the three production

data sets are shown in Figure 9. The values on y-axis are
anonymized. We can see that b becomes stable after 300, 650
and 610 iteration (M=500, 800 and 800, respectively), from
which we can also derive the sparsity of production data.

6.2 Efficiency of BOMP on Hadoop
In this group of experiments, we want to evaluate the

performance of BOMP on MapReduce implementation. Since
we can not find an existing Hadoop implementation on outlier
detection, we compare our solution with traditional Top-k
computing on Hadoop. Our solution can be extended directly
to solve distributed Top-k problem when the data’s mode
is 0. All experiments are conducted on Hadoop 2.4.0 with
both synthetic (Power-Law distribution with α = 1.5, N =
100Kto1M) and product data set as introduced in Section
6.1.2. We change the data’s mode to 0 by subtracting the
model from all the data. All experiments are running on a 10-
node cluster with Intel Core Xeon (CPU E5-2665@2.40GHz),

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

E
rr

o
r

o
n

 K
ey

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(a) k=5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

E
rr

o
r

o
n

 K
ey

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(b) k=10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

E
rr

o
r

o
n

 K
ey

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(c) k=20

Figure 7: Error on key over production data

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

220%

240%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

E
rr

o
r

o
n

 V
al

u
e

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(a) k=5

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

220%

240%

260%

1% 2% 3% 4% 5% 6%

E
rr

o
r

o
n

 V
al

u
e

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(b) k=10

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

220%

240%

260%

280%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

E
rr

o
r

o
n

 V
al

u
e

Communication Cost Nomalized by Transmitting All

K+delta
BOMP Avg
BOMP Max
BOMP Min

(c) k=20

Figure 8: Error on value over production data

100GB of RAM and Cent OS 6.3 64bit. Network bandwidth
is 1Gbps.
Firstly, we set N = 100K. Compared to traditional Top-

k computation on Hadoop, our solution can greatly save
the mappers’ output IO cost and shuffling cost in reducer.
However, it should also bring additional recovery cost. The
amount of savings as well as overhead is mainly determined
by the size of measurement matrix M . The input file size of
synthetic data is 600M, as shown in Figure 10(a), the end
to end time of our solution is smaller than the traditional
implementation when M < 1100. The breakdown latencies
of both mapper and reducer are shown in Figures 11(a)
and 11(d). When we increase the input file size to 600G,
the savings become more significant which is demonstrated
in Figure 10(b). Interestingly, the savings on reducer as
shown in Figure 11(e) is more significant. As discussed in
Section 6.2, the reducer’s waiting time can be further reduces
if we can greatly save mapper time. BOMP can achieve
that. For production data, the input file size is 12G. The
comparison result is illustrated in Figure 10(c). When M
grows bigger than 1600, the overhead of the recovery process
in the reducer is much bigger. As such, end to end time can
not be saved. Optimistically, both EV and EK are below
5% when M = 400 for α = 1.5 and M = 300 for product
data, under which settings our solution is more efficient than
traditional Hadoop implementation.
To show scalability of our approach, and to examine the

effects of key size N on the efficiency, we increase N from
100K to 5M with fixed input file size 10G in the following
group of experiments. Both Traditional top-k approaches
and BOMP with k = 5 are tested in each evaluation. As
N increases, the IO and shuffling cost of the traditional
approach increases, which slows down the query processing.
The response time of our solution–BOMP–also increases with
the increase of N . This is because of the overhead introduced

from matrix operations when N is large. However, compared
to the IO and shuffling cost, this overhead shows less impact
on the overall efficiency compared to traditional approach.
Thus, BOMP manages to effectively trade-off an increase
of computation cost for a reduction of communication cost.
As shown in Figure 12, with different N , our solution shows
better efficiency over the traditional top-k approach.

7. RELATED WORK

7.1 Theory of Distributed Outlier Detection
In the most basic version of distributed data statistics, the

partial data xl ∈ {0, 1}N is a binary vector. A well-known
problem in this setting is the set disjointness problem [25] [36]
[28] [1]. Suppose each of two nodes has a set of n elements
S1 and S2, the problem asks the two nodes to exchange as
few bits of information as possible to determine whether the
two sets are disjoint (i.e. S1

⋂

S2 = φ). Razborov proved in
[36] that Ω(n) bits are needed for any algorithm to solve set
disjointness with constant success probability. Alon et al. [1]
extended this linear lower bound to the multi-node scenario,
showing that for L nodes with sets |S1| = · · · = |SL| = n and
n ≥ L4, Ω(n/L3) bits are necessary to know whether the
sets S1 . . . SL are pairwise disjoint. These lower bounds also
apply to problems in more general settings with non-binary
data, and they have been used as building blocks to prove
various other lower bounds.

Numerous studies consider the communication complexity
to learn statistical features of distributed positive data. In
these works, the partial data xl ∈ N

N is a vector of natural
numbers that typically corresponds to some counters over the
set {1, . . . , N}. Various features have been considered:

• Kuhn et al. [27] consider the aggregation data x as a
frequency histogram of a sorted list a1 ≤ a2 ≤ · · · ≤ am

 50 100 150 200 250 300 350 400 450 500

V
al

u
e

o
f

M
o

d
e

(B
ia

s)

Number of Iteration

s=300

(a) Core Search Click Score Data

 0 100 200 300 400 500 600 700 800

V
al

u
e

o
f

M
o

d
e

(B
ia

s)

Number of Iteration

s=650

(b) Ads Click Score Data

 0 100 200 300 400 500 600 700 800

V
al

u
e

o
f

M
o

d
e

(B
ia

s)

Number of Iteration

s=610

(c) Answer Click Score Data

Figure 9: Mode in the recovery iterations

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
im

e(
s)

M

BOMP

Traditional Top-K

(a) α=1.5 small

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e(
s)

M

BOMP
Traditional Top-K

(b) α=1.5 big

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e(
s)

M

BOMP

Traditional Top-K

(c) Product

Figure 10: End-to-end time on Hadoop

(where m =
∑N
i=1 xi and aj ∈ {1 . . . N}), and study

the problem of determining the median element in this
sorted list {aj}, and more generally of determining the
kth smallest element ak for any 1 ≤ k ≤ m.

• Alon et al. [1] study the problem of determining the
k-order frequency moment of the aggregation data Fk =
∑N
i=1(xi)

k. In this seminal paper, the authors consider
the space complexity (i.e. how many bits of space are
needed) to solve the problem in a streaming model (where
the input data can only be processed in one pass), the re-
sults also apply to the communication complexity scenario
in distributed computing. Specifically, their work adapts
the lower bound technique in [28] and shows that for k ≥ 6,

at least Ω(N1−5/k) bits need to be exchanged between
the nodes for any randomized algorithm in order to ap-
proximate Fk by F̂k such that P[|F̂k−Fk| > 0.1Fk] < 1/2.

On the other hand, an O(N1−1/k logN) algorithm was
proposed in [1], which works in both the streaming model
and the distributed model.

• A special case of the frequency moment problem is to
determine the sparsity of the aggregation data x, which
asks how many components in x are non-zero (i.e. F0).
Again, the set disjointness lower bound implies a lower
bound of Ω(N) for any algorithm to exactly solve the
sparsity problem [35]. Efficient algorithms to compute
F0 in expectation were proposed in [21] [17].

• Finding the largest value in x is another problem closely
related to the frequency moment problem in that
limk→∞ Fk = maxxi. Kuhn et al. point out that the
lower bound of the set disjoint problem, again, applies
to this problem, leading to a randomized lower bound
of Ω(N/(xmax)

5), where xmax = maxxi [26]. On the
other hand, this work also proposes a randomized algo-
rithm that solves the problem with high probability using
O(F2

x2max
· logN) bits. Note that F2

x2max
≤ F0 is guaranteed

to be less than the number of non-zero items in x, and
may break the linear lower bound when F0 is sublinear to
N . The key idea of the algorithm is to randomly partion
all N values into two groups and sum up the values of
keys assigned to the same group, so that the key with the
largest value is more likely to stay in the group with larger
sum. Repeating this routine (in parallel) multiple times
can amplify this probabilistic fact to make the largest
value stand out quickly.

The top-k problem is a generalization of the maximum
problem in which the k largest values in x have to be iden-
tified. This problem has been extensively studied in the
database community assuming a limited number of nodes
[18] [31] [3] [32] [4] [19]. In particular, a seminal work by
Fagin et al. in [19] proposed the famous Threshold Algorithm
(TA), which was also independently discovered in [32] and
[4]. The TA algorithm runs in multiple rounds. The idea is
to calculate the SUM of the values ordered at the same rank
in each node as a threshold. The algorithm stops when there
are k keys whose SUM values are bigger than the threshold,
because the threshold is an upper bound on the total value
for the keys it has not seen.
Although working well in many database scenarios, the

threshold algorithm suffers from limited scalability with re-
spect to the number of nodes as it fundamentally runs in
multiple rounds. Inspired by Fagin’s work, Pei Cao and Zhe
Wang [10] proposed the TPUT algorithm, which consists
of three rounds: i) estimate the lower bound of the kth
value, ii) prune keys using the lower bound and iii) exact
top-k refinement. Charikar et al. [11] proposed an approx-
imation algorithm that finds k keys with values at least
(1− ǫ)xk with high probability under the streaming model,
using O((k+ F2/x

2
k) · logN) bits of memory. This algorithm

can also be adapted to approximate the top-k results between
distributed nodes with O((k + F2/x

2
k) · logN) bits.

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200

T
im

e(
s)

M

BOMP Mapper

Traditional Mapper

(a) α=1.5Small map

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 400 800 1200 1600 2000

M

BOMP Mapper

Traditional Mapper

(b) α=1.5Big map

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 400 800 1200 1600 2000

M

BOMP Mapper

Traditional Mapper

(c) Product map

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200

M

BOMP Reducer

Traditional Reducer

(d) α=1.5Small reduce

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 400 800 1200 1600 2000

M

BOMP Reducer

Traditional Reducer

(e) α=1.5Big reduce

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 400 800 1200 1600 2000

M

BOMP Reducer

Traditional Reducer

(f) Product reduce

Figure 11: Breakdown time on Hadoop

 0

 50

 100

 150

 200

 250

 300

 350

 400

100K 200k 500K 1M 5M

T
im

e(
s)

Number of Key

Traditional topK
BOMP M=50
BOMP M=100

(a) End-to-end Efficiency

 0

 50

 100

 150

 200

 250

 300

 350

 400

100K 200K 500K 1M 5M

T
im

e(
s)

Number of Key

Traditional topK
BOMP M=50
BOMP M=100

(b) Map Efficiency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100K 200K 500K 1M 5M

T
im

e(
s)

Number of Key

Traditional topK
BOMP M=50
BOMP M=100

(c) Reduce Efficiency

Figure 12: Efficiency with different key size N

Different from all work above, our work extends the partial
data xl ∈ R

N to the real field. Particularly xij can be nega-
tive numbers. The top-k problem over the natural number
field can be seen as a special case of the k-outlier problem
over the real field as considered in this paper. However, note
that the fact that the partial data can be negative in the
k-outlier problem invalidates key assumptions made in [19,
10], namely that the partial sum is a lower bound on the
aggregated sum. This means that TA and TPUT proposed for
the top-k problem cannot be easily adapted to the k-outlier
problem. Besides, the top-k values are not necessarily the
k-outlier values when negative values are involved.
The top-1 algorithm proposed in [26] may be adapted

to solve the k-outlier problem with O(k2 logN) messages
with high probability. However, this would require multiple
iterations and rounds (specifically, k rounds) of communica-
tion. In contrast, in this paper we focus on a non-adaptive
algorithm that finds all k outliers in a single round.

7.2 Compressive Sensing and Data Sketches
Compressive Sensing (CS) is a breakthrough in the signal

processing community. Its basic ideas and mathematical
foundations have been established in [8, 9, 15, 37]. CS
is an efficient approach to sample and reconstruct sparse
data, and has found many applications (e.g., photography
[16], image reconstruction and recognition [39], and network
traffic monitoring [43]). In our work, we use CS to compress
and recover sparse data vectors.
One technique for reducing communication cost is data

compression. Lossless compression usually does not help
a lot when each slice contains a large number of different
non-zero real-values. Alternatively, some existing approaches
conduct lossy compression (also known as sketches) [12, 24,
22] on the slice in each node. However, these scattered slices
could have different distributions or structures from each
other. The traditional sketching techniques applied locally

may encounter the risk of losing substantial information that
is necessary for accurately answering the query on the global
data.

7.3 Communication-Efficient System Design
Communication-efficient distributed computation of statis-

tics is also attractive to distributed system design, e.g. [41].
Many efforts have been made to optimize query processing
in MapReduce-type distributed systems. [33, 38] propose
techniques designed for reducing the Mapper and Reducer’s
communication cost through job sharing. The authors of
[29, 14, 40] apply sampling to reduce the MapReduce jobs
processing cost. Although these works are not tailored for
outlier computation, they could be adjusted and applied
together with our solution to further speed up MapReduce
jobs.

8. CONCLUSIONS
Production-level big data usually exhibits a sparse struc-

ture. It is attractive to leverage this sparsity to reduce the
communication cost in various distributed aggregation algo-
rithms, such as the detection of outliers, mode, top-k, and
so on. However, the distribution skew among data slices
allocated in a shared-nothing distributed system impedes
traditional techniques that are based on first compressing
(sketching) local slices separately and then issuing the query
to these aggregated sketches. In this paper, we make a case
that compressive sensing-based compression and recovery
techniques may be ideally suited in such a distributed con-
text, especially in MapReduce-type systems. Specifically, we
show in this paper empirically and theoretically that such an
approach can be beneficial for the distributed outlier detec-
tion problem. More generally, we believe that there will be
many more applications of compressive sensing in distributed
computing.

9. REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, pages
20–29, New York, NY, USA, 1996. ACM.

[2] M. Andrecut. Fast gpu implementation of sparse signal
recovery from random projections. Engineering Letters,
17(3):151–158, 2009.

[3] B. Babcock and C. Olston. Distributed top-k
monitoring. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages
28–39. ACM, 2003.

[4] W.-T. Balke and W. Kießling. Optimizing multi-feature
queries for image databases. VLDB,(Sep 2000), pages
10–14, 2000.

[5] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin.
A simple proof of the restricted isometry property for
random matrices. Constructive Approximation,
28(3):253–263, 2008.

[6] T. Blumensath and M. E. Davies. On the difference
between orthogonal matching pursuit and orthogonal
least squares, 2007.

[7] T. Bu, J. Cao, A. Chen, and P. P. Lee. A fast and
compact method for unveiling significant patterns in
high speed networks. In INFOCOM 2007. 26th IEEE
International Conference on Computer
Communications. IEEE, pages 1893–1901. IEEE, 2007.

[8] E. J. Candès, J. Romberg, and T. Tao. Robust
uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. Information
Theory, IEEE Transactions on, 52(2):489–509, 2006.

[9] E. J. Candes and T. Tao. Near-optimal signal recovery
from random projections: Universal encoding
strategies? Information Theory, IEEE Transactions on,
52(12):5406–5425, 2006.

[10] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. In S. Chaudhuri and S. Kutten,
editors, PODC, pages 206–215. ACM, 2004.

[11] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Automata,
Languages and Programming, pages 693–703. Springer,
2002.

[12] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS, pages 34–43, 1998.

[13] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM journal on
scientific computing, 20(1):33–61, 1998.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
J. Gerth, J. Talbot, K. Elmeleegy, and R. Sears. Online
aggregation and continuous query support in
mapreduce. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
pages 1115–1118. ACM, 2010.

[15] D. L. Donoho. Compressed sensing. Information
Theory, IEEE Transactions on, 52(4):1289–1306, 2006.

[16] M. F. Duarte, M. A. Davenport, D. Takhar, J. N.
Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk.
Single-pixel imaging via compressive sampling. Signal
Processing Magazine, IEEE, 25(2):83–91, 2008.

[17] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In Algorithms-ESA 2003, pages 605–617.
Springer, 2003.

[18] R. Fagin. Combining fuzzy information from multiple
systems. In Proceedings of the fifteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 216–226. ACM, 1996.

[19] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In P. Buneman, editor,
PODS. ACM, 2001.

[20] Y. Fang, L. Chen, J. Wu, and B. Huang. Gpu
implementation of orthogonal matching pursuit for
compressive sensing. In Proceedings of the 2011 IEEE
17th International Conference on Parallel and
Distributed Systems, ICPADS ’11, pages 1044–1047,
Washington, DC, USA, 2011. IEEE Computer Society.

[21] P. Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. Journal of
computer and system sciences, 31(2):182–209, 1985.

[22] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’98, pages 331–342, New York, NY, USA,
1998. ACM.

[23] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou,
S. McDirmid, C. Liu, W. Lin, J. Zhou, and L. Zhou.
Spotting code optimizations in data-parallel pipelines
through periscope. In OSDI, pages 121–133, 2012.

[24] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational
database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[25] B. Kalyanasundaram and G. Schintger. The
probabilistic communication complexity of set
intersection. SIAM J. Discret. Math., 5(4):545–557,
Nov. 1992.

[26] F. Kuhn, T. Locher, and S. Schmid. Distributed
computation of the mode. In Proceedings of the
twenty-seventh ACM symposium on Principles of
distributed computing, pages 15–24. ACM, 2008.

[27] F. Kuhn, T. Locher, and R. Wattenhofer. Tight bounds
for distributed selection. In Proceedings of the
nineteenth annual ACM symposium on Parallel
algorithms and architectures, pages 145–153. ACM,
2007.

[28] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, New York,
NY, USA, 1997.

[29] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate
results for advanced analytics on mapreduce.
Proceedings of the VLDB Endowment, 5(10):1028–1039,
2012.

[30] S. G. Mallat and Z. Zhang. Matching pursuits with
time-frequency dictionaries. Signal Processing, IEEE
Transactions on, 41(12):3397–3415, 1993.

[31] A. Marian, N. Bruno, and L. Gravano. Evaluating
top-k queries over web-accessible databases. ACM
Transactions on Database Systems (TODS),
29(2):319–362, 2004.

[32] S. Nepal and M. Ramakrishna. Query processing issues
in image (multimedia) databases. In Data Engineering,

1999. Proceedings., 15th International Conference on,
pages 22–29. IEEE, 1999.

[33] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: sharing across multiple queries in
mapreduce. Proceedings of the VLDB Endowment,
3(1-2):494–505, 2010.

[34] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad.
Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet
decomposition. In Signals, Systems and Computers,
1993. 1993 Conference Record of The Twenty-Seventh
Asilomar Conference on, pages 40–44. IEEE, 1993.

[35] B. Patt-Shamir. A note on efficient aggregate queries in
sensor networks. Theoretical Computer Science,
370(1):254–264, 2007.

[36] A. A. Razborov. On the distributional complexity of
disjointness. Theoretical Computer Science,
106(2):385–390, 1992.

[37] J. A. Tropp and A. C. Gilbert. Signal recovery from
random measurements via orthogonal matching pursuit.
Information Theory, IEEE Transactions on,
53(12):4655–4666, 2007.

[38] G. Wang and C.-Y. Chan. Multi-query optimization in
mapreduce framework. Proceedings of the VLDB
Endowment, 7(3), 2013.

[39] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and
Y. Ma. Robust face recognition via sparse
representation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(2):210–227,
2009.

[40] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded
sampling for analytics on big sparse data. PVLDB,
7(13):1508–1519, 2014.

[41] J. Zhang, Y. Yan, L. J. Chen, M. Wang,
T. Moscibroda, and Z. Zhang. Impression store:
Compressive sensing-based storage for big data
analytics. In 6th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 14), Philadelphia, PA,
June 2014. USENIX Association.

[42] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin,
J. Y. Li, W. Lin, J. Zhou, and L. Zhou. Optimizing
data shuffling in data-parallel computation by
understanding user-defined functions. In NSDI,
volume 12, pages 22–22, 2012.

[43] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu.
Spatio-temporal compressive sensing and internet
traffic matrices. In ACM SIGCOMM Computer
Communication Review, volume 39, pages 267–278.
ACM, 2009.

