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ABSTRACT
The key application scenario of wireless sensor networks is data

gathering : sensor nodes transmit data, possibly in a multi-hop

fashion, to an information sink. The performance of sensor net-

works is thus characterized by the rate at which information can

be aggregated to the sink. In this paper, we derive the first scal-

ing laws describing the achievable rate in worst-case, i.e. arbi-

trarily deployed, sensor networks. We show that in the physical

model of wireless communication and for a large number of prac-

tically important functions, a sustainable rate of Ω(1/ log2n) can

be achieved in every network, even when nodes are positioned in

a worst-case manner. In contrast, we show that the best pos-

sible rate in the protocol model is Θ(1/n), which establishes an

exponential gap between these two standard models of wireless

communication. Furthermore, our worst-case capacity result al-

most matches the rate of Θ(1/ log n) that can be achieved in

randomly deployed networks. The high rate is made possible by

employing non-linear power assignment at nodes and by exploit-

ing SINR-effects. Finally, our algorithm also improves the best

known bounds on the scheduling complexity in wireless networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Algorithms, Theory

Keywords
capacity, scheduling complexity, data gathering

1. INTRODUCTION
Most if not all application scenarios of wireless sensor

networks—both currently deployed and envisioned in the
future—broadly follow a generic data gathering and aggrega-
tion paradigm: By sensing a geographic area or monitoring
physical objects, sensor nodes produce relevant information
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that has to be transmitted to an information sink for fur-
ther processing. The primary purpose of sensor networks is
therefore to provide users access to the information gathered
by the spatially distributed sensors, rather than enabling
end-to-end communication between all pairs of nodes as in
other large-scale networks such as the Internet or wireless
mesh networks. The key technique that enables efficient us-
age of typically resource-limited wireless sensor networks is
in-network information processing. Sensor nodes cooperate
to process and aggregate information as it is transmitted to
the sink, ideally providing the sink with enough informa-
tion to compute the aggregate functions of interest, while
minimizing communication overhead.

The performance of a sensor network can therefore be
characterized by the rate at which data can be aggregated
and transmitted to the information sink. In particular, the
theoretical measure that captures the possibilities and lim-
itations of information processing in sensor networks is the
many-to-one data aggregation capacity, or its inverse, the
maximum sustainable rate (bit/s) at which each sensor node
can continuously transmit data to the sink.

Given the fundamental importance of this “computational
throughput capacity” in sensor networks [9], it is not sur-
prising that there already exists a rich literature that deals
with scaling laws for the achievable data aggregation rate in
wireless sensor networks under various models and for dif-
ferent functions, e.g. [8, 1, 19, 11]. In this paper, we take
an entirely new approach to the data aggregation problem
in sensor networks in particular, and to capacity problems
in wireless networks in general. We do so by complementing
and extending the current literature in two directions.

First and foremost, we initiate the study of the worst-
case capacity of sensor networks. Starting from the seminal
work of Gupta and Kumar [12], scaling laws on the capacity
in wireless networks have been almost exclusively derived
making assumptions regarding the placement of the nodes
in the network. The standard assumption is that nodes are
either located on a grid-like regular structure, or else are
randomly and uniformly distributed in the plane following
a certain density function.

In contrast, we advocate studying scaling laws that cap-
ture the achievable rate in worst-case, i.e., arbitrarily de-
ployed sensor networks. This novel notion of worst-case ca-
pacity concerns the question of how much information can
each node transmit to the source, regardless of the network’s
topology. The motivation for studying arbitrary node dis-
tributions stems from the following practical consideration.
Many sensor networks feature heterogenous node densities



and there are numerous application scenarios—for instance
networks deployed indoors, or along a road—where node
placement contains or resembles typical “worst-case” struc-
tures such as chains. Studying the worst-case capacity of
wireless networks therefore offers an exciting alternative to
the idealized capacity studies conducted so far.

One criticism that worst-case analysis is frequently con-
fronted with is that it tends to focus on oversimplified mod-
els for wireless communication in order to keep the analysis
concise enough for stringent proofs. And indeed, algorith-
mic work on data gathering and the many-to-one commu-
nication problem has been based on simplified protocol or
graph-based models, e.g. [15, 10, 3]. Similarly, with the ex-
ception of the work by Barton and Zheng [1], capacity stud-
ies in sensor networks have been using the protocol model
[8, 19]. Studying simplified models such as the protocol
model has generally been accepted as a reasonable first step
by both practitioners and theoreticians, because—that was
the premise—results obtained in these models do not divert
too dramatically from more realistic models and, ultimately,
from reality.

Surprisingly, this assumption turns out to be fundamen-
tally wrong when it comes to the worst-case capacity of
wireless sensor networks. Specifically, we prove that for a
large number of practically important functions, the achiev-
able rate in the protocol model is Θ(1/n), whereas a rate
of Ω(1/ log2n) can be achieved in every sensor network in
the physical SINR model. Hence, there is an exponential
gap between the maximally sustainable data rate that each
sensor node can transmit to the information sink between
these two standard models of wireless communication.

Although the paper thus generalizes the study of capacity
in sensor networks in two dimensions—arbitrary worst-case
network topologies and the physical SINR model—, it al-
most matches the best currently known rates that hold in
uniformly distributed networks under the protocol model.
In particular, for symmetric functions such as the max or
avg, a sustainable rate of Ω(1/ log2n) is achievable in every
network, even if its nodes are positioned in a worst-case man-
ner and without using block coding, or any other involved
coding technique. In comparison, it follows from a result
by Giridhar and Kumar that in the well-behaved setting of
uniformly distributed nodes and in the protocol model, the
maximum achievable rate is Θ(1/ log n) without using block
coding. This implies that the price of worst-case node place-
ment (the maximum ratio between the achievable rates in
worst-case and in uniformly distributed networks) is merely
a logarithmic factor in the physical model, whereas it is ex-
ponentially higher in the protocol model.

The key technique that allows us to break the capacity
barrier imposed by the protocol model is to employ an in-
volved, non-intuitive power level assignment at the nodes.
In particular, we make use of the fact that the wireless
medium can be “overloaded” (see Figure 1 in Section 2)
in the sense that links of different order of length can be
scheduled in parallel by scaling up the transmission power
of short links [22].

The paper also contains the following additional results.
First, the above rates can be improved using block coding
techniques described by Giridhar and Kumar in [8]. Using
these techniques in the phyisical model, the achievable rate
improves to Θ(1/ log log n) in worst-case networks. This is
an astonishing result, because it matches exactly the opti-

mal rate that can be achieved even in randomly deployed
networks. That is, when using block coding in combination
with our algorithm, the price of worst-case node placement
becomes a constant. It can also be shown that our algo-
rithm yields an improved scaling law result for the so-called
scheduling complexity of wireless networks [21].

To the best of our knowledge, this paper presents the first
scaling laws on the worst-case capacity and on the price of
worst-case node placement in sensor networks in the physical
model. Our results imply that if achieving a high data rate
is a key concern, using an involved power control mechanism
at nodes is indispensable. Also, the exponential gap between
physical and protocol model in wireless networks renders the
study of simplified protocol models questionable.

Tables 1 and 2 summarize our new results on worst-case
capacity in sensor networks and compares them to the known
capacity results in uniformly distributed networks [8]. The
tables also show the fundamental price of worst-case node
placement in wireless sensor networks.

random, uniform worst-case “worst-case
deployment deployment penalty”

Protocol Θ(1/ log n) [8] Θ(1/n) linear
Physical Ω(1/ log n) Ω(1/ log2n) logarithmic

Table 1: Achievable rate without block-coding.

random, uniform worst-case “worst-case
deployment deployment penalty”

Protocol Θ(1/ log log n) [8] Θ(1/ log n) logarithmic
Physical Ω(1/ log log n) Ω(1/ log log n) constant

Table 2: Achievable rate with block-coding.

The remainder of the paper is organized as follows. Sec-
tion 2 formalizes the data gathering problem in sensor net-
works and defines the different models. While Section 3
proves a negative bound regarding the protocol model, our
main result—the algorithm achieving high rate even in worst-
case sensor networks—is presented in Section 4. Section 5
shows how block coding techniques from [8] can be used
to further improve the rate. The relationship between our
capacity results and the scheduling complexity of wireless
networks is briefly discussed in Section 6. Finally, Section 7
reviews related work.

2. PROBLEM STATEMENT AND MODELS

2.1 Network Model
We consider a network of n sensor nodes X = {x1, . . . , xn}

located arbitrarily in the plane. Additionally, there is one
designated sink node s, where the sensed data eventually has
to be gathered. The Euclidean distance between two nodes i
and j is denoted by dij and let dmax be the maximal distance
between any two nodes in the network. No two nodes are
exactly co-located, but mutual distances can be arbitrarily
small. As pointed out in the introduction, we investigate
the capacity of networks whose nodes may be placed in a
worst-case manner. Formally, we assume the existence of an
imaginary adversary that selects the node positions in such
a way as to minimize the achievable rate.

One crucial criterium according to which communication
models for wireless networks can be partitioned is the de-
scription of the circumstances under which a message is re-
ceived by its intended recipient. In the so-called protocol
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Figure 1: In the physical model, transmissions from
x1 to x2 and from x3 to x4 can simultaneously
be scheduled successfully, whereas in the protocol
model, two time slots are required.

model [12], a node xi can successfully transmit a packet to
node xj if dij ≤ ri, where ri is xi’s transmission range,
and if for every other simultaneously transmitting node xk,
dkj ≥ (1 + ∆)rk. That is, xj must be outside of every
such node’s interference range, which exceeds its transmis-
sion range by a factor of ∆.

The other standard model of wireless communication fre-
quently adopted in networking community is the physical
model [12]. In this model, the received power on the medium
is assumed to decay with distance deterministically at an
exponential rate with path-loss exponent α > 2, which is a
fixed constant between 2 and 6. Whether a message is re-
ceived successfully at the intended receiver depends on the
received signal strength, the ambient noise level, and the
interference caused by simultaneously transmitting nodes.
Formally, a message from xi is successfully received by xj , if
the perceived signal-to-noise-plus-interference ratio (SINR)
at xj is above a certain threshold β, i.e., if

Pi
d(xi,xj)α

N +
P

xk∈X\{xi}
Pk

d(xj ,xk)α

≥ β, (1)

where Pi denotes the transmission power selected by node
xi in the specific time slot. Since the main concern of this
paper is to obtain scaling laws for the worst-case capacity
as the number of nodes n grows, we assume α to be a fixed
constant strictly larger than 2. It is well-known that for
α equal to or very close to 2, no scheduling algorithm can
perform well [13].

It is important to observe that these two standard models
of wireless communication allow for fundamentally different
communication patterns. Assume that in the simple four
node example depicted in Figure 1 [22], node x1 wants to
transmit to x2, and x3 wants to transmit to x4. In the pro-
tocol model (and in any other graph-based model), at most
one of these two transmissions can successfully be sched-
uled in parallel, i.e., two time slots are required to schedule
both transmissions. In the physical model, for α = 3 and
β = 3, however, both transmissions can easily be scheduled
in a single time slot when setting the power levels appro-
priately. Specifically, assume that the transmission powers
are Px1

= 1dBm and Px3
= −15dBm, and let βx2

(x1) and
βx4

(x3) denote the SINR values at receivers x2 and x4 from
their intended senders x1 and x3, respectively. The follow-
ing calculation [22] shows that even when both transmissions
occur simultaneously, the receivers can decode their packets:

βx2
(x1) =

1.26mW/(7m)3

10µW + (31.6µW/(3m)3)
≈ 3.11

βx4
(x3) =

31.6µW/(1m)3

10µW + (1.26mW/(5m)3)
≈ 3.13

As we will see in Section 4, it is necessary to exploit these
physical model properties of wireless communication in or-
der to derive a high worst-case capacity in sensor networks.

2.2 Data Aggregation Problem
The maximum achievable rate in a packet-based collision

model of wireless sensor networks has first been formalized
and studied by Giridhar and Kumar in [8]. In this prob-
lem, each node xi periodically senses its environment, and
measures a value that belongs to some fixed finite set X (for
instance a temperature up to a certain precision). It is the
goal of a data gathering protocol to repeatedly compute the
specific function fn : Xn → Yn, and communicate its re-
sult to the sink s. Since sensor measurements are produced
periodically, the function of interest must be computed re-
peatedly at the sink. Formally, the period of time during
which every sensor node produces exactly one measurement
is called a measurement cycle, and the sink must compute
the value of fn for every such measurement cycle.

In this work, we consider a practically important set of
symmetric functions that we call “perfectly compressible”.
A function is perfectly compressible if all information con-
cerning the same measurement cycle contained in two or
more messages can be perfectly aggregated in a single new
packet of equal size. Functions such as the mean, max, or
various kinds of indicator functions belong to this category.

Notice that none of the results in this paper is based on
any kind of information-theoretic collaborative techniques
such as network coding [16], interference cancelation tech-
niques, or superposition coding [1]. The impact of block cod-
ing strategies [8], which are based on combining the function
computations of consecutive or subsequent measurement cy-
cles, are considered in Section 5. Sections 4 and 3 do not
consider block coding.

As customary, we assume without loss of generality that
time is slotted into synchronized slots of equal length [12,
8]. In each time slot t, each node xi is assigned a power
level Pi(t), which is strictly positive if the sensor node tries
to transmit a message to another node. A power assignment
φt : X 7→ R

+
0 determines the power level φt(xi) of each node

xi ∈ X in a certain time slot. If t is clear from the context,
we use the notational short-cut Pi = φt(xi).

A schedule S = (φ1, . . . , φ|S|) is a sequence of |S| power
assignments, where φk denotes the power assignment in time
slot k. That is, a schedule S determines the power level Pi

for every node xi ∈ X for |S| consecutive time slots. A
strategy or scheme Sn determines a sequence of power as-
signments (φ1, φ2, . . .) and computations at sensors, which,

given any X̂ ∈ Xn, results in the result f(X̂) becoming
known to the sink. Finally, let T (Sn) denote the worst-case
time required by scheme Sn over all possible measurements
X̂ ∈ Xn and over all possible placements of n nodes in the
plane. The value R(Sn) := 1

T (Sn)
is the rate of Sn and

describes the worst-case capacity of the sensor network.

3. WORST CASE CAPACITY IN
PROTOCOL MODEL

From a worst-case perspective, the protocol model is much
simpler than the physical model discussed in Section 4. For
this model, Giridhar and Kumar prove a variety of asymp-
totically tight results on the achievable rate in single-hop
networks and networks that are deployed uniformly at ran-
dom [8]. If transmission powers are fixed, a worst case net-
work can clearly be as bad as a single-hop (collocated) net-
work because all nodes can be very close to each other. In
this section, we briefly sketch how to extend this result to



worst-case networks even when transmission powers at nodes
can be assigned optimally according to the given topology.

Theorem 3.1. In the protocol model with interference pa-
rameter ∆, the maximum rate for computing type sensitive
and type threshold functions is Θ( 1

n
) without block coding.

Proof. Consider nodes x1, . . . , xn located on a line with
sink s at position 0, and xi at position δi−1, for δ = 1 +
1
∆

. Due to the exponential increase of the inter-node dis-
tances, scheduling any link from a node xi interferes with
every other link to its left in the network. Therefore, under
the protocol model, this network behaves like a single-hop
network, even if transmission powers are chosen optimally.
Hence, the theorem follows from Theorem 3 in [8].

As shown in the next section, this result is worse by an
exponential factor compared to the achievable rate in worst-
case networks under the physical model, which drastically
separates these two standard models for wireless network
communication.

4. WORST CASE CAPACITY IN
PHYSICAL MODEL

In this section, we establish our asymptotic lower bound
on the worst-case capacity of sensor networks by design-
ing an algorithmic method whose input is the set of sen-
sor nodes and the aggregation function f , and whose out-
put is a scheme Sn that achieves an asymptotic rate of at
least Ω( 1

log2 n
) in every network. We describe the method

in a top-down way. First, we present a simple procedure
that computes the data gathering tree T (X) on which the
scheduling scheme is based. Second, we give a high-level
version of the function computation scheme that makes use
of an abstract implementation of a phase scheduler, which
manages to successfully and efficiently schedule transmis-
sions on the physical layer. The actual implementation of
the phase scheduler is then at the heart of the algorithm.

4.1 Data Gathering Algorithm - High Level
We begin by computing a hierarchical tree structure that

consists at most log n so-called nearest neighbor trees [6].
Throughout the procedure, an active set A of nodes is main-
tained. In each iteration, the algorithm computes a nearest
neighbor forest spanning A, in which there is a directed link
ℓij from each active node xi ∈ A to its closest active neigh-
bor xj ∈ A. At the end of an iteration, only one node of
each tree remains in A and continues executing the algo-
rithm. The union of links thus created is called T (X). Note
that every xi ∈ X has exactly one outgoing link in T (X).

Algorithm 1 Data Gathering Tree T (X)

1: A := X; T (X) := ∅;
2: while |A| > 1 do
3: for each xi ∈ A do
4: choose xj ∈ A \ {xi} minimizing d(xi, xj);
5: if ℓji /∈ T (X) then T (X) := T (X) ∪ ℓij ; fi
6: end for
7: for each xi ∈ A with ℓij ∈ T (X) do A := A\{xi};
8: end while
9: Add to T (X) a link from the last node xi ∈ A to s;

We next describe how the links of T (X) are scheduled to
achieve a good rate. Let DT (X) ≤ n denote the depth of tree

T (X) and define a variable hi for each node xi according to
its hop-distance in T (X) to the sink s: One-hop neighbors
of s have hi := DT (X) − 1, two-hop neighbors have hi :=
DT (X) − 2, and so forth. The node with the highest hop-
distance from the sink has hi := 0. The variables hi induce a
layering of T (X) with the first layer (the one being furthest
away from s) being assigned the value 0.

Consider the kth round of measurements taken by the
nodes. All data for this measurement is forwarded towards
the sink node in a hop-by-hop fashion and aggregated on
the way in each node. Since the measurement data of nodes
in different tree layers requires a different amount of time
to reach the sink, the forwarding of measurement data at
nodes close to the sink is delayed in such a way that data
aggregation at internal nodes is always possible. Hence, the
information is sent to the root in a pipelined fashion, ad-
vancing one hop in every L(X) time slots, where L(X) is
the number of consecutive time slots required until every
link in T (X) can be scheduled successfully at least once. In
our algorithm, L(X) will be c log2n for some constant c.

Algorithm 2 Forwarding & Aggregation Scheme

1: Node xi receives the data for the kth measurement from
each subtree in T (X) by time (hi + k)L(X);

2: Node xi aggregates the kth measurement data from all
its children;

3: Node xi sends the aggregated message over link ℓij to its
parent xj in T (X) in time slot (hi +k)L(X)+t(ℓij) with
transmission power P (ℓij), where t(ℓij) ∈ {0, . . . , L(X)}
is the intra-phase time slot allocated to link ℓij by the
phase scheduler.

The forwarding and data aggregation scheme described
in Algorithm 2 is straight-forward. However, notice that
it does not describe the actual physical scheduling proce-
dure of the forwarding scheme, thus leaving open its most
crucial aspect. In particular, Algorithm 2 uses an abstract
“phase scheduler” that assigns an intra-phase time slot and
transmission power level to each node in every phase of du-
ration L(X). The crucial ingredient to make the algorithm
work therefore lies in the allocation of the intra-phase time
slots t(ℓij) and power levels P (ℓij). In particular, we must
make sure that the proclaimed transmission can actually be
performed in a successful way in the physical model, even
in worst-case networks. Before defining and analyzing this
“phase scheduler”, we state the following general lemma.

Lemma 4.1. Consider a network X and its data gather-
ing tree T (X). Assume the existence of a phase scheduler
procedure that successfully schedules each link of T (X) at
least once in an interval of L(X) consecutive time slots. The
resulting data gathering scheme has a rate of Ω(1/L(X)).

Proof. Since every link of T (X) is scheduled at least
once in every phase of length L(X), the kth measurement
from a node xi moves (in a pipelined fashion) at least one
hop closer to the sink in L(X) time slots. Since we con-
sider perfectly compressible functions, and by the definition
of hi, if follows that node xi receives all aggregated informa-
tion from its entire subtree by the time (hi +k)L(X). It can
then aggregate its own kth measurement and send the new
message to its parent in T (X) in at least one time slot in
the interval (hi + k)L(X) + 1, . . . , (hi + k + 1)L(X). By in-
duction, the root receives the aggregated information about
one round of measurements in each time interval L(X).



4.2 Implementing the Phase Scheduler
The crucial component when devising a data gathering

scheme with high worst-case rate is an efficient phase sched-
uler. The difficulty of this stems from the fact that intuitive
scheduling and power assignment schemes fail in achieving
a good performance. It was shown in [21] that neither uni-
form power allocation nor the frequently studied distance-
depending power allocation strategy P ∼ dα (i.e., propor-
tionally to the length of the communication link) yields ac-
ceptable results. To see this, consider an exponential node
chain depicted in Figure 2. If every node transmits with the
same power, nodes on the left will experience too much inter-
ference and only a small constant number of nodes can send
simultaneously, resulting in a low rate of O(1/n). Similarly,
as shown formally in [21], if every node sends at a power
proportional to P ∼ dα, at most a small constant number
of nodes can transmit simultaneously because nodes close
to the sink will face too much interference. Again, the rate
with such a strategy cannot exceed O(1/n).

s x1 x2 x3 x4 xk

1 2 4 8 2k

Figure 2: Network in which achieving a rate better
than O(1/n) is difficult.

The key insight that allows to increase the rate in the
network shown in Figure 2 is to use an involved (and sig-
nificantly more complicated) power assignment scheme that
is based on the ideas exemplified in Figure 1. Intuitively,
senders of short links (those close to the root) must trans-
mit at a proportionally higher transmission power (higher
than P ∼ dα, but still less than uniform) in order to “over-
power” the interference created by simultaneously transmit-
ting nodes. Based on this high-level idea, we now present
a phase scheduler, which manages to successfully schedule
each link of the data gathering tree T (X) at least once in
O(log2n) time slots. In combination with Lemma 4.1, this
leads to the following main theorem.

Theorem 4.2. In the physical model and for perfectly com-
pressible functions, the achievable rate in worst-case sensor
networks is at least Ω(1/ log2n) even without the use of block
coding techniques.

We begin by describing the phase scheduler whose details
are given in Algorithm 3. The phase scheduler consists of
three parts: a pre-processing step, the main scheduling-loop,
and a test-subroutine that determines if a link is to be sched-
uled in a given time slot t, in which another set Lt of links
is already allocated.

In the pre-processing step, every link is assigned two val-
ues τij and γij . The value γij indicates into which of at most
ξ⌈log(ξβ)⌉ different “link sets” the link belongs. Each link
is in exactly one such set and only links with the same γij

values are considered for scheduling in the same iteration of
the main scheduling-loop. The reason for this partitioned
scheduling is that all links with the same γ value have the
property that their length is either very similar or vastly
different, but not in between. This will be essential in the
scheduling procedure. The value τij , further partitions the
requests. Generally, small values of τij indicate long commu-
nication links. More specifically, it holds that for two links
ℓij and ℓgh with τij < τgh, then dij ≥ 1

2
(ξβ)ξ(τgh−τij) · dgh.

Algorithm 3 Phase Scheduler for Tree T (X)

pre-processing(T (X)):
1: τcur := 1; γcur := 1; ξ := 2N(α − 1)/(α − 2);
2: last := dij for the longest ℓij ∈ T (X);
3: for each ℓij ∈ T (X) in decreasing order of dij do
4: if last/dij ≥ 2 then
5: if γcur < ξ⌈log(ξβ)⌉ then
6: γcur := γcur + 1;
7: else
8: γcur := 1; τcur := τcur + 1;
9: end

10: last := dij ;
11: end
12: γij := γcur; τij := τcur;
13: end

schedule(T (X)):

1: Define a large enough constant c1 and let t := 0;
2: for k = 1 to ξ⌈log(ξβ)⌉ do
3: Let Tk := {ℓij ∈ T (X) | γij = k};
4: while not all links in Tk have been scheduled do
5: Lt := ∅;
6: Consider all ℓij ∈ Tk in decreasing order of dij :
7: if check(ℓij , Lt) then
8: Lt := Lt ∪ {ℓij}; Tk := Tk \ {ℓij}
9: end if

10: For all ℓij ∈ Lt, set the intra-phase time slot
t(ℓij) := t and assign a transmission power
Pi(ℓij) = dα

ij · (ξβ)τij ;
11: t := t + 1;
12: end while
13: end for

check(ℓij,Lt)
1: for each ℓgh ∈ Lt do
2: if τgh = τij and c1 · dij > dig

3: then return false
4: if τgh ≤ τij and dgj < dgh

5: then return false
6: if τgh < τij ≤ τgh + log n and dhj < c1 · dgh

7: then return false
8: δig := τij − τgh;
9: if τgh + log n < τij and dhi < n1/α · dij · (ξβ)

δig+1

α

10: then return false
11: end for
12: return true

The main loop uses the subroutine check(ℓij,Lt) in order
to determine whether—given a set of links Lt that is already
selected for scheduling in intra-phase time slot t—an addi-
tional link ℓij /∈ Lt should simultaneously be scheduled or
not. The subroutine evaluates to true, if ℓij can be scheduled
in t, and false otherwise. The decision criteria that the link
must satisfy relative to every other link ℓgh ∈ Lt depends on
their relative length difference δig := τij − τgh. If there is no
relative length difference (τij = τgh), then the two senders
transmit at roughly the same transmission power and a stan-
dard spatial-reuse distance suffices (Line 2). It is well-known
that in scenarios in which all nodes transmit at roughly the
same transmission power, leaving some “extra space” (the
exact amount of which depends on α, β,. . . ) between any
pair of transmitters is enough to keep the interference level
sufficiently low at all receivers.



As pointed out, our algorithm does not employ a uniform
(or near-uniform) power allocation scheme, because any such
strategy is doomed to achieve a bad worst-case capacity.
That is, in scenarios with widely different link lengths (e.g.
Figures 2), nodes must transmit at widely different trans-
mission powers, which makes it difficult to select the right
“spatial reuse distance”. In fact, the example in Figures 1
shows that the very notion of a “reuse distance” is question-
able. In our algorithm, a link ℓij is only scheduled if for every
link ℓgh ∈ Lt, it holds that dhj ≥ c1 ·dgh, if τij ≤ τgh +log n

(Line 6); and dhi ≥ n1/α·dij ·(ξβ)(δig+1)/α, if τij > τgh+log n
(Line 9), respectively. Intuitively, as long as the length of
two links is not too far away, the algorithm performs a stan-
dard spatial reuse procedure. As soon as the relative length
difference becomes too large, δig > log n, however, the stan-
dard spatial reuse concept is no longer sufficient and the al-
gorithm uses a more elaborate scheme which achieves high
spacial reuse even in worst-case networks.

Example 4.1. Consider two links ℓij and ℓgh with γij =
γgh, τij = 16 and τgh = 3, and let n = 64. Assume that ℓgh

is already set to be scheduled in a given time slot, i.e., ℓgh ∈
Lt. When ℓij is considered, it holds that δig = τij−τgh = 13.
In this case, because τij > τgh + log n, ℓij is added to the set

of scheduled links Lt only if dhi ≥ n1/α · dij · (ξβ)
14
α holds.

The intuition behind this “reuse distance” function which
increases exponentially in δig is that in the power assignment
scheme adopted, the transmission power of senders with
small links is scaled up significantly. Therefore, schedul-
ing small links requires an enlarged safety zone in order
to avoid interference with simultaneously scheduled longer
links. This selection criterion is necessary to guarantee that
even in worst-case networks, many links can be scheduled in
parallel and yet, no receiver faces too much interference.

The phase scheduler’s main procedure executes ξ⌈log(ξβ)⌉
iterations, in each of which it attempts to quickly schedule
all links ℓij ∈ Tk, i.e., all links having γij = k. Essentially,
the procedure greedily considers all remaining nodes in Tk in
non-increasing order of dij , and verifies for each link in this
order whether it can be scheduled using the check(ℓij,Lt)
subroutine. If a link can be scheduled, its intra-phase time
slot t(ℓij) is set to the current value of t, and its transmission
power is set to Pi(ℓij) = dα

ij ·(ξβ)τij . In the following section,
we will argue that each set Tk can be scheduled in at most
O(log n) time slots, where the hidden constant depends on
the values of α, β, as well as the noise power level N , all of
which we consider to be a fixed constants. It then follows
that the entire procedure requires O(log2n) time slots.

4.3 Analysis
In order to prove Theorem 4.2, we need to show that the

assumptions of Lemma 4.1 are satisfied: every link of the
tree T (X) can be successfully scheduled at least once in time
L(X) ∈ O(log2n) time. We start by proving that the num-
ber of intra-phase time slots assigned by the phase scheduler
is bounded by O(log2n) in every network.

As shown in [6], the data gathering tree T (X) has the
following property: If we draw a disk with radius dij around
the sender xi of each link ℓij , then every node is covered by
at most 6 log n different disks. The following lemma makes
use of this result.

Lemma 4.3. Consider all links ℓij in T (X) of length dij ≥
R. It holds that in any disk of radius R, there can be at most
C log n end-points (receivers) of such links, for a constant C.

Proof. Since every node in T (X) is covered by at most
6 log n disks around links, the proof follows by standard geo-
metric arguments. Partition any disk D into a constant
number of cones of equal angle. For small enough angles
and for each cone, there must be a sender xi of a link ℓij

located in the cone, which is covered by at least a constant
fraction of the disks around other sending nodes in this cone.
With the result in [6], the lemma can thus be proven.

Lemma 4.4. Consider two links ℓij and ℓgh with γij =
γgh. If τij ≥ τgh, it holds that dgh ≥ 1

2
(ξβ)ξδig · dij, where

δig = τij − τgh.

Proof. Note that ℓij and ℓgh differ only in their τ val-
ues (and not in their γ values). By definition of the pre-
processing phase, it holds that in order to reach γij = γgh

for the next higher value of τ , γij must be increased exactly
ξ⌈log(ξβ)⌉ times (and reset to 0 once). Hence, it must hold
that γij was increased at least ξ(τij − τgh)⌈log(ξβ)⌉ times
since processing ℓgh. By the condition of Line 4, all but one
of these increases implies a halving of the length dij . From
this, the lemma can be derived by simple calculations.

In order to bound the number of time slots required to
schedule all links in the main loop, we use the notion of
blocking links [21].

Definition 4.1. A link ℓgh is a blocking link for ℓij if
γgh = γij, dgh ≥ dij, and check(ℓij,Lt) evaluates to false
if ℓgh ∈ Lt. Bij denotes the set of blocking links of ℓij.

Blocking links ℓgh ∈ Bij are those links that may prevent a
link ℓij from being scheduled in a given time slot. Because
a single blocking link can prevent ℓij from being scheduled
in at most a single time slot per phase (when it is scheduled
itself), it holds that even in the worst-case, ℓij is scheduled
at the latest in time slot t ≤ |Bij | + 1 of the for-loop itera-
tion when k = γij . In the sequel, we bound the maximum
cardinality of |Bij | of links ℓij . Notice that only larger links
can be blocking links due to the decreasing order in Line 6.
Let B=

ij and B>
ij be the set of blocking links ℓgh ∈ Bij with

τij = τgh and τij > τgh (i.e., significantly longer blocking
links), respectively. Lemmas 4.5 and 4.6 bound these sets.

Lemma 4.5. For all links ℓij ∈ T (X), the number of block-
ing links in B=

ij is at most |B=
ij | ∈ O(log n).

Proof. Because of τij = τgh for every ℓgh ∈ B=
ij , it fol-

lows from Lemma 4.4 and the decreasing order in Line 6 that
dij ≤ dgh ≤ 2dij . By Lemma 4.3, we know that there can
be at most C log n receivers of blocking links with length at
least dij in any disk of radius dij . Because c1dij > dig holds
for any blocking link in B=

ij , every receiver of a blocking link
must be located inside a disk D of radius (c1+2)dij centered
at xi. Because this disk D can be covered by smaller disks
of radius dij in such a way that every point in the plane is
covered by at most two small disks, it follows that

|B=
ij | ≤ C log n ·

2π(c1 + 2)2d2
ij

πd2
ij

= 2(c1 + 2)2C log n.

Bounding the cardinality of B>
ij is significantly more in-

volved. In particular, we need to distinguish three kinds
of blocking links in B>

ij , depending on which line of the
check(ℓij,Lt) subroutine caused the returning of false.

Lemma 4.6. For all links ℓij ∈ T (X), the number of block-
ing links in B>

ij is at most |B>
ij | ∈ O(log2n).



Proof. The proof unfolds in a series of three separate
bounds that characterize the number of blocking links that
can block ℓij in Lines 4, 6, and 9, respectively. It follows
directly from the property proven in [6] that the number of
blocking links that may prevent ℓij from being scheduled in
Line 4 of the subroutine is at most C log n.

We now bound the number of links that may block ℓij in
Line 6. By the definition of the check(ℓij,Lt) subroutine,
the receiver of each such potential blocking link must be
located within distance c1·ℓgh of xi. Consider a set of smaller
disks of radius ℓgh/2, that completely cover the large disk
of radius c1 · ℓgh centered at xi. By a covering argument, it
holds that 8c2

2 smaller disks are sufficient to entirely cover
the larger disk. From Lemma 4.3, we know that each such
small disk may contain at most C log n receivers of links of
length ℓgh/2 or longer. From this, it follows that at most
8c2

2C log n links with a specific τ = τgh may be blocking
in Line 6. Because only link-classes τgh with τij − log n <
τgh < τij may cause a blocking in Line 6, the total number
of blocking nodes for ℓij in Line 6 cannot surpass log n ·
8c2

2C log n ∈ O(log2n).
Finally, consider the third case: the set of potential block-

ing links ℓgh in B>
ij for which δig > log n. Again, we show

that there are at most O(log2n) potential blocking nodes
in this category. Notice that we need an entirely different
proof technique for this case, because—unlike in the case of
Line 6—there may be up to n − log n many different such
link-classes τgh. Hence, it is not sufficient to bound the
number of blocking nodes in each length class individually.

We begin by showing that there exist at most O(log n)
blocking links ℓgh whose receiver xh is located in the range

dih ≤ n1/α · (ξβ)log n/α · dij

from xi. By Lemma 4.4, we know that for every link ℓgh

with τij > τgh + log n, it holds that

dgh ≥
1

2
(ξβ)ξ log ndij > n1/α · (ξβ)log n/α · dij ,

where the second inequality is due to the definition of ξ. It
follows that every potential blocking link of Line 9 is longer
than the radius of a disk of radius n1/α · (ξβ)log n/α · dij

around xi. Hence, Lemma 4.3 implies that there can be at
most O(log n) such potential blocking links in this range.

We now show that for any integer ϕ ≥ 0, there are O(log n)
different blocking links ℓgh for which dih is in the range

n
1
α · (ξβ)αϕ−1 log n · dij < dih ≤ n

1
α · (ξβ)αϕ log n · dij . (2)

Let Bϕ
ij denote the set of potential blocking links having its

receiver in the range for a specific ϕ. By comparing the
“spatial reuse” condition in the check(ℓij,Lt) subroutine
with the above range, it can be observed that every link
ℓgh ∈ Bϕ

ij must satisfy (δig + 1)/α > αϕ−1 log n, and there-
fore δig ≥ αϕ log n. Plugging this lower bound on δig into
Lemma 4.4 allows us to derive a minimum length for each
blocking link ℓgh ∈ Bϕ

ij with dih in the specified range: The
length of each such ℓgh ∈ Bϕ

ij must be at least

dgh ≥
1

2
(ξβ)ξαϕ log n · dij . (3)

The important thing to realize is that the length of each
blocking link is therefore longer than the outer range of the
spatial reuse interval we consider, because

n
1
α (ξβ)αϕ log n · dij ≤

1

2
(ξβ)ξαϕ log n · dij ,

Therefore, we can apply the bound given in Lemma 4.3.
Particularly, at most C log n receivers of links in Bϕ

ij can be
located in any ring between the radii specified in (2).

With this result, we can now conclude the proof of the
lemma. We know that for any integer ϕ ≥ 0, there are at
most C log n blocking links in Bϕ

ij . The maximum and min-
imum value for δig of potential blocking links ℓgh in Line 9
is log n and n, respectively. Hence, we only need to con-
sider values of ϕ, such that αϕ−1 log n ≤ n. Solving this
equation for ϕ shows that for constant α, there are no more
than O(log n) such values for ϕ. In other words, there are at
most O(log n) “rings” around xi, each of which can contain
the receivers of at most C log n blocking links. The total
number of potential blocking links in Line 9 is therefore at
most in the order of O(log2n).

Because every blocking link can cause the check(ℓij,Lt)
subroutine to evaluate to false for a link ℓij at most once per
phase (when it is scheduled itself), we can combine Lem-
mas 4.5 and 4.6 and prove the following theorem.

Theorem 4.7. The phase scheduler assigns each link ℓij ∈
T (X) an intra-phase time slot 0 ≤ t(ℓij) ≤ C log2n for some
constant C.

The first part of the analysis has shown that the intra
phase scheduler is able to quickly schedule all links in T (X).
It now remains to show that the scheme is actually valid,
i.e., the interference at all intended receivers remains low
enough so that all messages arrive. The proof consists of
four lemmas that bound the total cumulated interference
created by a certain subset of simultaneously transmitting
sensor nodes (depending on their τ value). Lemmas 4.8
and 4.9 start by bounding the interference created by all
simultaneous transmitters of shorter links. In all proofs,
Ixi(xr) denotes the interference power at xi created by xr.

Lemma 4.8. Consider an arbitrary receiver xj of a link
ℓij ∈ Lt scheduled in an intra-phase time slot t. The cumu-
lated interference power I1

xj
at a receiver xj created by all

senders of links ℓgh ∈ Lt with τij < τgh ≤ τij + log n is at
most I1

xj
≤ 1

4
(ξβ)τij−1.

Proof. We first bound the cumulated interference at xj

created by all simultaneous transmitters having τ = τgh for
a specific value of τgh and then sum up over all possible
values in the range τij < τgh ≤ τij + log n. Let Sgh denote
this set of senders. It follows from the definition of the
check subroutine that no interfering sender xg ∈ Sgh can
be within distance c1dij of receiver xj .

Consider a series of rings R1, R2, . . . , R∞ around xj with
ring Rλ having inner radius c1λℓij and outer radius c1(λ +
1)ℓij . Consider all senders xg ∈ Sgh that are located in a
ring Rλ. Because all of these senders have the same τ and γ
value, they all have the same length (up to a factor of 2), and
hence, by Line 2 of the check subroutine, they must have
a distance of at least c1

2
ℓgh from each other. From this, it

follows that disks of radius c1
4

ℓgh around each xg ∈ Sgh do

not overlap. Each such disk has an area of (c2
1/16)ℓ

2
ghπ and

is located entirely inside an extended ring R′
λ of inner radius

c1λℓij −
c1
4

ℓgh ≥ (λ− 1
4
)c1ℓij and outer radius (λ+1)c1ℓij +

c1
4

ℓgh ≤ (λ + 5
4
)c1ℓij . From this, it follows that there can

be at most�
(λ + 5

4
)2 − (λ − 1

4
)2
�
ℓ2ijc

2
1π

c2
1

16
ℓ2ghπ

<
72λℓ2ij

ℓ2gh



simultaneous transmitters xg ∈ Sgh in Rλ. Because each of
them has a distance of at least c1λℓij from xj , the cumulated
interference from nodes in Sgh ∩ Rλ is at most

Ixj(Sgh∩Rλ) ≤
(ξβ)τgh(2ℓgh)α

(c1λℓij)α
·
72λℓ2ij

ℓ2gh

≤
72 · 2α

cα
1

·
(ξβ)τgh

λα−1
·

�
ℓgh

ℓij

�α−2

≤
Lm 4.4

C′(ξβ)τij+δgi

λα−1(ξβ)ξδgi(α−2)
≤

C′(ξβ)τij−δgi

λα−1
,

for some constant C′. Summing up over all rings Rλ gives

Ixj (Sgh) ≤ C′ · (ξβ)τij−δgi

∞X
λ=1

1

λα−1
< C′(ξβ)τij−δgi

α − 1

α − 2
.

Summing up over all possible values of τgh in the range
τij < τgh < τij + log n yields a total cumulated interference
from simultaneous transmitters in this category of at most

I1
xj

≤
Pτij+log n

τgh=τij+1 Ixj (Sgh) ≤ 2C′(ξβ)τij−1 α−1
α−2

because the

terms Ixj (Sgh) form a geometric series for increasing τgh.
Choosing C′ large enough concludes the lemma.

The next lemma considers the interference from all those
links ℓgh that are even shorter compared to to ℓij . Bound-
ing the interference from such links is crucial, because they
transmit at a high power, relative to their length due to the
algorithm’s power scaling.

Lemma 4.9. Consider an arbitrary receiver xj of a link
ℓij ∈ Lt scheduled in an intra-phase time slot t. The cu-
mulated interference I2

xj
at xj created by all senders of links

ℓgh ∈ Lt with τij + log n < τgh is at most I2
xj

≤ (ξβ)τij−1.

Proof. The interference created by xg at xj is given by�
(ξβ)τghℓα

gh

�
/dα

gj . Because the check subroutine evaluated
to true at the time ℓgh was scheduled, we know that dgj ≥

n1/α(ξβ)
δgj+1

α ℓgh and hence,

Ixj (xg) ≤
(ξβ)τghℓα

gh

n · (ξβ)δgj+1ℓα
gh

=
1

n
(ξβ)τij−1.

Since there are at most n nodes in the network, the lemma
follows by summing up the interference over all nodes.

Having bounded the interference from shorter links, the
next two lemmas bound the cumulated interference created
by simultaneously transmitting senders of longer links and
roughly equal-length links with same τ value. Since the
ideas of the respective proofs are already contained in the
proof of Lemma 4.8, we defer the proof to the appendix
(Lemma 4.10) and omit it (Lemma 4.11), respectively.

Lemma 4.10. Consider an arbitrary receiver xj of a link
ℓij ∈ Lt scheduled in an intra-phase time slot t. The cu-
mulated interference I3 at xj created by all senders of links
ℓgh ∈ Lt with τgh < τij is at most I3

xj
≤ 1

4
(ξβ)τij−1.

Lemma 4.11. Consider an arbitrary receiver xj of a link
ℓij ∈ Lt scheduled in an intra-phase time slot t. The cu-
mulated interference I4 at xj created by all senders of links
ℓgh ∈ Lt with τgh = τij is at most I4

xj
≤ 1

4
(ξβ)τij−1.

Combining the previous four lemmas and noting that the
interference of every simultaneously transmitting node is
captured in exactly one of these lemmas, we can derive the
following theorem.

Theorem 4.12. Every message sent over a link ℓij ∈
T (X) scheduled in intra-phase time slot t, i.e., ℓij ∈ Lt,
is successfully received by the intended receiver.

Proof. Let Sij be the set of nodes that are scheduled to
transmit in the same intra-phase time slot as link ℓij . Using
Lemmas 4.8 through 4.11, we bound the total interference
Ixj at the intended receiver xj as

Ixj ≤
4X

a=1

Ia
xj

≤
7

4
(ξβ)τij−1 =

7

4ξ
ξτij βτij−1.

All that remains to be done is to compute the signal-to-
noise-plus-interference ratio at the intended receiver xj , i.e.,

SINR(xj) ≥
(dα

ij · (ξβ)τij )/dα
ij

N + 7
4ξ

ξτij βτij−1
> β.

Hence, every intended receiver xj can correctly decode the
packet sent by xi.

Theorem 4.7 shows that the number of intra-phase time
slots assigned by the procedure is in O(log2n), and Theo-
rem 4.12 that all messages arrive at their receiver correctly.
Combining the two theorems therefore proves Theorem 4.7.

Remark 1: Notice that the algorithm as presented in
this section assumes that, theoretically, every sensor node
has the capability of sending at an arbitrarily high power
level. While this is unrealistic in practice, the assumption
can be alleviated by using techniques developed in [6].

Remark 2: One of the key techniques employed in the
above algorithm is non-linear power scaling of senders trans-
mitting over short links (compare Line 10 of the algorithm).
Using a recent result presented in [21], it can be shown that
this power scaling is a necessary condition to achieve a high
rate in worst-case networks. In particular, it was shown that
if nodes transmitted at constant power, or if nodes transmit-
ted at a power proportional to dα when transmitting over
a distance d, then at most a constant number of nodes can
transmit in parallel in worst-case networks. From this, it
immediately follows that even in the physical model, the
achievable rate when using either of these two (intuitive)
power allocation methods is at most O(1/n).

5. BLOCK CODING
So far, we have not allowed to algorithms to perform block

coding, i.e., strategies that combine several consecutive func-
tion computations that correspond to long blocks of mea-
surements. That is, data aggregation was only allowed be-
tween data of the same measurement cycle, not between
subsequent cycles. As it turns out, the block coding tech-
niques introduced and studied in [8] can help in significantly
reducing the achievable worst-case rate for some perfectly
compressible, so-called type-threshold functions. Intuitively,
type-threshold functions are functions, whose outcome can
be computed even if knowing only a fixed number of known
arguments (see [8] for a formal definition). In the case of
perfectly compressible functions studied in this paper, the
max or min are type-threshold functions, whereas avg is not.

The following theorem can be derived by combining The-
orem 4.2 with the techniques developed in the proofs of The-
orems 4 and 5 of [8], respectively.

Theorem 5.1. In the physical model and for perfectly-
compressible type-threshold functions, the achievable rate in
a worst-case sensor network is Ω(1/ log log n) when block
coding techniques are allowed.



6. SCHEDULING COMPLEXITY
The rate R of sensor network quantifies the maximum

amount of information that can periodically be transmitted
to the sink. In recent literature on wireless networks, the
scheduling complexity of wireless networks [14, 21, 23] has
been proposed as a complementing measure for character-
izing the possibilities and limitations of communication in
shared wireless media. Intuitively, the scheduling complex-
ity of wireless networks describes the minimum amount of
time required to successfully schedule a set of communica-
tion requests. Formally, it is defined as follows [21]:

Definition 6.1. Let Γ be the set of communication re-
quests (si, ti) between two nodes. The scheduling complex-
ity T (Γ) of Γ is the minimal number of time slots T such
that all requests in Γ can simultaneously be scheduled.

The scheduling complexity therefore reflects how fast all
requests in Γ can theoretically be satisfied (that is, when
scheduled by an optimal MAC-layer protocol).

The results of this paper give raise to a number of novel
results that bound the scheduling complexity in wireless net-
works. In particular, the following result is implicit in the
proof of Section 4.

Theorem 6.1. The scheduling complexity of connectiv-
ity [21] is bounded by O(log2n): In every network, a strongly
connected topology can be scheduled using O(log2n) time slots.

Notice that this improves on the best previously known
bound on the scheduling complexity of connectivity by a
logarithmic factor [23]. By simultaneously improving results
on the capacity of sensor networks as well as the scheduling
complexity of wireless networks, the algorithm makes a first
step towards gaining a unified understanding of these two
important concepts in wireless networks.

7. RELATED WORK
The study of capacity in wireless networks was initiated

in the seminal work of Gupta and Kumar in [12]. Ever since,
there has been a flurry of new results that characterize the
capacity of different wireless networks in a variety of models.
The first work to derive capacity bounds explicitly for the
data aggregation problem in sensor networks is by Marco et
al. [19]. In this work, the capability of large-scale sensor net-
works to measure and transport a two-dimensional station-
ary random field using sensors is investigated. Giridhar and
Kumar in [8] study the more general problem of comput-
ing and communicating symmetric functions of the sensor
measurements. They show that in a random planar multi-
hop network with n nodes, the maximum rate for comput-
ing divisible functions—a subset of symmetric functions—is
Θ(1/ log n). Using the block-coding technique, they further
show that in networks in which nodes are deployed uniformly
at random, so-called type-threshold functions can be com-
puted at a rate of Θ(1/ log log n), which is the same rate as
we achieve with block coding even in worst-case networks.

More recently, Ying et al. have studied in [25] the problem
of minimizing the total transmission energy used by sensor
nodes when computing a symmetric function, subject to the
constraint that this computation is correct with high prob-
ability. In [1], Barton and Zheng prove that no protocol can
achieve a better rate than Θ(log n/n) in collocated sensor
network in the physical model. They improve on the rate of
Θ(1/n) shown in [8] by employing cooperative time-reversal

communication techniques. Further work on data aggrega-
tion/capacity in sensor networks includes [20, 2, 11, 4, 7].

All of the above works derive capacity bounds in either
collocated networks (single-hop) or in multi-hop networks
in which nodes are assumed to be randomly placed. In
contrast, capacity problems in worst-case networks have re-
ceived considerably less attention. In [18, 17], algorithmic
aspects of wireless capacity are considered, however, with-
out deriving explicit scaling laws that describe the achiev-
able capacity in terms of the number of nodes. Moreover,
the works of [18, 17] are based on the protocol model of
wireless communication or simplistic graph models. Given
the exponential gap between these models and the physical
model proven in this paper, these models do not adequately
capture the achievable worst-case capacity in wireless net-
works. There have been numerous proposals for efficient
data gathering algorithms and protocols in sensor networks,
many of which are graph-based and focus on the important
aspect of energy-efficiency [10, 15, 3, 24].

The scheduling complexity of wireless networks has been
introduced and first studied in [21]. Subsequent papers have
improved and generalized the results in [21] and have ap-
plied the concepts to wide-band networks [14] as well as to
topology control [23]. Earlier work on scheduling with power
control includes for instance [5].

Finally, notice that our results have implications on the
design of efficient data gathering protocols. In particu-
lar, our results show that any data gathering protocol that
achieves a high rate must make explicit use of SINR prop-
erties: All protocols that operate using uniform power as-
signment (or even linear power assignment) must inherently
perform suboptimally in certain networks. This, in turn,
gives clear design-guidelines for protocol designers.

8. CONCLUSIONS
In this paper, we have initiated the study of worst-case

capacity in wireless sensor networks. The achievable rate of
Ω(1/ log2n) in worst-case sensor networks shows that in the
physical model, the price of worst-case node placement is
small, at most a logarithmic factor, whereas in the protocol
model, it is significantly higher. In particular, by making
use of specific physical SINR characteristics, the physical
model allows for rates that exceed the rates achievable in
the protocol model by an exponential factor. This sheds
new light into the fundamental relationship between these
two important models in wireless communication: Whereas
in randomly deployed networks, the capacity of wireless net-
works has been shown to be robust with regard to the two
models, the same is not the case when it comes to worst-
case capacity. From a practical perspective, this implies that
every sensor network data gathering protocol which adheres
to the protocol model (for instance by assigning constant
transmission power to nodes, or by using schedules that are
based on colorings of an interference graph) is inherently
suboptimal in worst-case networks.

It is interesting to point out that our results are positive
in nature. While the seminal capacity result by Gupta and
Kumar [12] has often been regarded as an essentially neg-
ative result that limits the possible scalability of wireless
networks, our result shows that in sensor networks—even
if node placement is worst-case—a high rate can be main-
tained. The theoretically achievable worst-case rate in sen-
sor networks remains high even as network size grows.
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Appendix: Proof of Lemma 4.10
Proof. The proof is similar to the proof of Lemma 4.8.

We know by Line 4 of the subroutine that dgj ≥ dgh. We
first bound the total amount of interference created at xj

from all links having τ = τgh for a specific value of τgh.
Summing up over all 1 ≤ τgh < τij will conclude the proof.

Consider rings R1, R2, . . . , R∞ around xj with ring Rλ

having inner and outer radius (2λ − 1)ℓgh and 2λℓgh, re-
spectively. Since we consider only links having τ = τgh, we
know by Line 2 of the subroutine that no two simultane-
ous senders can be too close to each other. In particular,
it holds that disks of radius c1

4
ℓghπ around each sender do

not overlap. Furthermore, if the sender xg of such a link is
located in ring Rλ, its corresponding disk of radius c1

4
ℓghπ is

entirely contained in the ring R′
λ of inner and outer radius

(2λ − 5
4
)ℓgh and (2λ + 1

4
)ℓgh, respectively. This extended

ring R′
λ has an area of (6λ − 3

2
)ℓ2ghπ. By the standard area

argument, it follows that the total interference from senders
with τ = τgh in this ring is at most

Ixj (Sgh ∩ Rλ) ≤
(ξβ)τgh(2ℓgh)α

(2λ − 1)αℓα
gh

·
16(6λ − 3

2
)

c2
2

<
2α+4(ξβ)τgh

c2
1(2λ − 1)α−1

≤
2α+4(ξβ)τgh

c2
1λ

α−1
.

Again, we can sum up over all rings to obtain the total
amount of interference that simultaneous transmitters with
τgh can cause, and then sum up over all possible values of
1 ≤ τgh < τij . Specifically, the total amount of interference
at xj from these nodes is at most

I3
xj

≤

τij−1X
τgh=1

∞X
λ=1

2α+4(ξβ)τgh

c2
1λ

α−1
≤

2α+5(ξβ)τij

c2
1λ

α−1

α − 1

α − 2
, (4)

which concludes the proof when setting the constant c1 to a
large enough value.


