A Semantics for Imprecise Exceptions
- Simon Peyton Jones ,
- Tony Hoare ,
- Alastair Reid ,
- Simon Marlow ,
- Fergus Henderson
Proceedings of the ACM SIGPLAN '99 Conference on Programming Language Design and Implementation |
Published by Association for Computing Machinery, Inc.
Some modern superscalar microprocessors provide only imprecise exceptions. That is, they do not guarantee to report the same exception that would be encountered by a straightforward sequential execution of the program. In exchange, they offer increased performance or decreased chip area (which amount to much the same thing). This performance/precision tradeoff has not so far been much explored at the programming language level. In this paper we propose a design for imprecise exceptions in the lazy functional programming language Haskell. We discuss several designs, and conclude that imprecision is essential if the language is still to enjoy its current rich algebra of transformations. We sketch a precise semantics for the language extended with exceptions. The paper shows how to extend Haskell with exceptions without crippling the language or its compilers. We do not yet have enough experience of using the new mechanism to know whether it strikes an appropriate balance between expressiveness and performance.
Copyright © 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.