Orca: Progressive Learning from Complex Explanation Traces of GPT-4

  • Subhabrata (Subho) Mukherjee ,
  • Arindam Mitra ,
  • Ganesh Jawahar ,
  • Sahaj Agarwal ,
  • Hamid Palangi ,

arXiv: Computation and Language |

Publication

Recent research has focused on enhancing the capability of smaller models through imitation learning, drawing on the outputs generated by large foundation models (LFMs). A number of issues impact the quality of these models, ranging from limited imitation signals from shallow LFM outputs; small scale homogeneous training data; and most notably a lack of rigorous evaluation resulting in overestimating the small model’s capability as they tend to learn to imitate the style, but not the reasoning process of LFMs. To address these challenges, we develop Orca, a 13-billion parameter model that learns to imitate the reasoning process of LFMs. Orca learns from rich signals from GPT 4 including explanation traces; step-by-step thought processes; and other complex instructions, guided by teacher assistance from ChatGPT. To promote this progressive learning, we tap into large-scale and diverse imitation data with judicious sampling and selection. Orca surpasses conventional state-of-the-art instruction-tuned models such as Vicuna-13B by more than 100% in complex zero-shot reasoning benchmarks like Big-Bench Hard (BBH) and 42% on AGIEval. Moreover, Orca reaches parity with ChatGPT on the BBH benchmark and shows competitive performance (4 pts gap with optimized system message) in professional and academic examinations like the SAT, LSAT, GRE, and GMAT, both in zero-shot settings without CoT; while trailing behind GPT4. Our research indicates that learning from step-by-step explanations, whether these are generated by humans or more advanced AI models, is a promising direction to improve model capabilities and skills.

Research Forum Keynote: Research in the Era of AI

Microsoft Research Forum, January 30, 2024 Peter Lee, Corporate Vice President, Microsoft Research and Incubations, discusses how recent developments in AI have transformed the way Microsoft approaches research. See more at https://aka.ms/ResearchForum-Jan2024