Sample Optimality and All-for-all Strategies in Personalized Federated and Collaborative Learning
- Mathieu Even ,
- Laurent Massoulie ,
- Kevin Scaman
2022 Neural Information Processing Systems |
In personalized Federated Learning, each member of a potentially large set of agents aims to train a model minimizing its loss function averaged over its local data distribution. We study this problem under the lens of stochastic optimization. Specifically, we introduce information-theoretic lower bounds on the number of samples required from all agents to approximately minimize the generalization error of a fixed agent. We then provide strategies matching these lower bounds, in the all-for-one and all-for-all settings where respectively one or all agents desire to minimize their own local function. Our strategies are based on a gradient filtering approach: provided prior knowledge on some notions of distances or discrepancies between local data distributions or functions, a given agent filters and aggregates stochastic gradients received from other agents, in order to achieve an optimal bias-variance trade-off.