Predictive Representations in Hippocampal and Prefrontal Hierarchies
As we navigate the world, we use learned representations of relational structures to explore and to reach goals. Studies of how relational knowledge enables inference and planning are typically conducted in controlled small-scale settings. It remains unclear, however, how people use stored knowledge in continuously unfolding navigation (e.g., walking long distances in a city). We hypothesized that multiscale predictive representations guide naturalistic navigation in humans, and these scales are organized along posterior-anterior prefrontal and hippocampal hierarchies. We conducted model-based representational similarity analyses of neuroimaging data collected while male and female participants navigated realistically long paths in virtual reality. We tested the pattern similarity of each point, along each path, to a weighted sum of its successor points within predictive horizons of different scales. We found that anterior PFC showed the largest predictive horizons, posterior hippocampus the smallest, with the anterior hippocampus and orbitofrontal regions in between. Our findings offer novel insights into how cognitive maps support hierarchical planning at multiple scales.