Stroke recovery gets a boost from Kinect

Published

The aftermath of a stroke can be overwhelming for any patient—from the physical and emotional toll to the cost of stroke-related treatment. Recent evidence1 points to the advantages of task-specific training as effective rehabilitation, but in practice, this requires simple, repetitive movements, which may bore patients, lowering their motivation to continue the training. However, new hope for stroke patients has arrived in the form of Stroke Recovery with Kinect, a research project to build a cost-effective, interactive, home-rehabilitation system for motor recovery after a stroke—based on Microsoft Kinect technology.

Kinect offers a new approach to physical therapy

 Stroke Recovery with Kinect is a collaborative project between Microsoft Research Asia and Seoul National University—with funding from the Korean Government Collaboration Program—that provides a virtual reality system to help stroke survivors improve their upper-limb motor functioning in the comfort of their own home. “Most people who suffer a stroke experience paralysis in their arms and legs,” states Professor Nam-Jong Paik of Seoul National University, who is principal investigator of the project. “They can do the therapy at home by using Microsoft’s Kinect—without coming to the hospital—and we can measure their recovery level. Since it’s like a game, patients also have fun while rehabilitating at home.”

Spotlight: Event Series

Microsoft Research Forum

Join us for a continuous exchange of ideas about research in the era of general AI. Watch the first three episodes on demand.

The prototype Stroke Recovery with Kinect system was built by using the Microsoft Kinect for Windows software development kit (SDK). It uses the Kinect sensor’s three-dimensional camera to capture the movements of 48 skeletal points on the patient while he or she performs the therapy. Stroke Recovery with Kinect interprets the movement data, enabling the system to measure and evaluate the patient’s movements and assess their rehabilitation progress. The system uses the patient’s scores from previous sessions to adjust the level of difficulty for subsequent therapy sessions.

One of the three programs in the Stroke Recovery with Kinect system is the classic box-and-block test (BBT). This program application evaluates patients’ coordination, gross manual dexterity, and motor skills as they (virtually) attempt to pick up blocks one-by-one and put them into a box in a set amount of time. Similar to a computer game, Stroke Recovery with Kinect displays patients’ scores as soon as they finish a session, providing immediate reinforcement when scores improve from session to session.

The box-and-block test in Stroke Recovery with Kinect evaluates a patient’s coordination, manual dexterity, and motor skills.
The box-and-block test in Stroke Recovery with Kinect evaluates a patient’s coordination, manual dexterity, and motor skills.

Another program in Stroke Recovery with Kinect challenges the patient to assume a target pose displayed on the computer monitor and then duplicate the target’s position as it moves. The patient then receives what is known as a Fugl-Meyer Assessment (FMA) score, based on his or her success. Because Stroke Recovery with Kinect enables patients to face these challenges within the privacy of their own homes, they may be more relaxed and likely to persevere.

The third program in Stroke Recovery with Kinect is an outer-space game that enables patients to exercise their reflex and reaction abilities as they guide a spaceship through space while attempting to avoid oncoming asteroids. Stroke Recovery with Kinect tracks the stroke patient’s hand trajectory—relative to and in conjunction with the movement of the elbow and/or shoulder. The stroke patient experiences a fun and enjoyable therapy session that a traditional rehabilitative setting usually cannot provide.

[]

 Long-term plans for Stroke Recovery with Kinect include integrating social networking into the system so that stroke patients can connect with one another and participate jointly in the rehabilitative programs, building a sense of camaraderie that could offer emotional and psychological support and motivation. Within the community, patients will have the opportunity to communicate about their condition and receive encouragement as they advance toward recovery. Future updates will make it possible for doctors to monitor the patient’s rehabilitation from the hospital or their office, and to communicate with the patient regarding their treatment and progress. Additionally, as the system becomes more widely used, we anticipate incorporating machine learning into the system.

Finally, this home-based rehabilitation system also has potential cost benefits. The expense of ongoing stroke-related office visits for rehabilitation burdens healthcare systems and patients worldwide.

I look forward to future collaborative efforts between Microsoft Research Asia and Seoul National University on the Stroke Recovery with Kinect project. We expect Stroke Recovery with Kinect to pave the way for stroke patients to save both time and money through a convenient, effective, and enjoyable rehabilitation program.

—Miran Lee, Senior Manager, Microsoft Research Connections

Learn more

_______________
1Kleim JA, Jones TA: “Principles of experience-dependent neural plasticity: implication for rehabilitation after brain damage,” J Speech Lang Hear Res 2008, 51:225-39.

Return to blog