
Consensus on Transaction Commit

Jim Gray and Leslie Lamport

Microsoft Research

1 January 2004

revised 19 April 2004, 8 September 2005, 5 July 2017

MSR-TR-2003-96

This paper appeared in ACM Transactions on Database Systems, Volume 31, Issue
1, March 2006 (pages 133-160). This version should differ from the published one
only in formatting, except that it corrects one minor error on the last page.

Copyright 2005 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
fax +1 (212) 869-0481, or permissions@acm.org.

Abstract

The distributed transaction commit problem requires reaching agreement
on whether a transaction is committed or aborted. The classic Two-Phase
Commit protocol blocks if the coordinator fails. Fault-tolerant consensus
algorithms also reach agreement, but do not block whenever any majority
of the processes are working. The Paxos Commit algorithm runs a Paxos
consensus algorithm on the commit/abort decision of each participant to
obtain a transaction commit protocol that uses 2F + 1 coordinators and
makes progress if at least F+1 of them are working properly. Paxos Commit
has the same stable-storage write delay, and can be implemented to have
the same message delay in the fault-free case, as Two-Phase Commit, but it
uses more messages. The classic Two-Phase Commit algorithm is obtained
as the special F = 0 case of the Paxos Commit algorithm.

Contents

1 Introduction 1

2 Transaction Commit 2

3 Two-Phase Commit 5
3.1 The Protocol . 5
3.2 The Cost of Two-Phase Commit 6
3.3 The Problem with Two-Phase Commit 7

4 Paxos Commit 7
4.1 The Paxos Consensus Algorithm 7
4.2 The Paxos Commit Algorithm 10
4.3 The Cost of Paxos Commit 13

5 Paxos versus Two-Phase Commit 15

6 Transaction Creation and Registration 16
6.1 Transaction Creation . 17
6.2 Joining a Transaction . 17
6.3 Committing a Transaction . 18
6.4 Learning the Outcome . 19

7 Conclusion 21

A The TLA+ Specifications 23
A.1 The Specification of a Transaction Commit Protocol 23
A.2 The Specification of the Two-Phase Commit Protocol 24
A.3 The Paxos Commit Algorithm 27

1 Introduction

A distributed transaction consists of a number of operations, performed at
multiple sites, terminated by a request to commit or abort the transaction.
The sites then use a transaction commit protocol to decide whether the
transaction is committed or aborted. The transaction can be committed
only if all sites are willing to commit it. Achieving this all-or-nothing atom-
icity property in a distributed system is not trivial. The requirements for
transaction commit are stated precisely in Section 2.

The classic transaction commit protocol is Two-Phase Commit [?], de-
scribed in Section 3. It uses a single coordinator to reach agreement. The
failure of that coordinator can cause the protocol to block, with no process
knowing the outcome, until the coordinator is repaired. In Section 4, we use
the Paxos consensus algorithm [?] to obtain a transaction commit protocol
that uses multiple coordinators; it makes progress if a majority of the co-
ordinators are working. Section 5 compares Two-Phase Commit and Paxos
Commit. We show that Two-Phase Commit is a degenerate case of the Paxos
Commit algorithm with a single coordinator, guaranteeing progress only if
that coordinator is working. Section 6 discusses some practical aspects of
transaction management. Related work is discussed in the conclusion.

Our computation model assumes that algorithms are executed by a col-
lection of processes that communicate using messages. Each process exe-
cutes at a node in a network. A process can save data on stable storage that
survives failures. Different processes may execute on the same node. Our
cost model counts inter-node messages, message delays, and stable-storage
writes, and stable-storage write delays. We assume that messages between
processes on the same node have negligible cost. Our failure model assumes
that nodes, and hence their processes, can fail; messages can be lost or dupli-
cated, but not (undetectably) corrupted. Any process executing at a failed
node simply stops performing actions; it does not perform incorrect actions
and does not forget its state. Implementing this model of process failure
requires writing information to stable storage, which can be an expensive
operation. We will see that the delays incurred by writes to stable storage
are the same in Two-Phase Commit and Paxos Commit.

In general, there are two kinds of correctness properties that an algorithm
must satisfy: safety and liveness. Intuitively, a safety property describes
what is allowed to happen, and a liveness property describes what must
happen [?].

Our algorithms are asynchronous in the sense that their safety properties
do not depend on timely execution by processes or on bounded message

1

delay. Progress, however, may depend on how quickly processes respond
and how quickly messages are delivered.

We define a nonfaulty node to be one whose processes respond to mes-
sages within some known time limit. A network of nodes is nonfaulty iff
all its nodes are nonfaulty and messages sent between processes running on
those nodes are delivered within some time limit.

The main body of this paper informally describes transaction commit
and our two protocols. The Appendix contains formal TLA+ [?] specifica-
tions of their safety properties—that is, specifications omitting assumptions
and requirements involving progress or real-time constraints. We expect
that only the most committed readers will look at those specifications. The
progress properties of our algorithms and the concomitant definition of non-
faulty can also be formalized—for example, as in the Termination property
of De Prisco, Lampson, and Lynch [?]—but we explain them only informally.

2 Transaction Commit

In a distributed system, a transaction is performed by a collection of pro-
cesses called resource managers (RMs), each executing on a different node.
The transaction ends when one of the resource managers issues a request
either to commit or to abort the transaction. For the transaction to be
committed, each participating RM must be willing to commit it. Other-
wise, the transaction must be aborted. Prior to the commit request, any
RM may spontaneously decide to abort its part of the transaction. The
fundamental requirement is that all RMs must eventually agree on whether
the transaction is committed or aborted.1

To participate, an RM must first join the transaction. For now, we
assume a fixed set of participating RMs determined in advance. Section 6.2
discusses how RMs join the transaction.

We abstract the requirements of a transaction commit protocol as fol-
lows. We assume a set of RM processes, each beginning in a working state.
The goal of the protocol is for the RMs all to reach a committed state or all
to reach an aborted state.

Two safety requirements of the protocol are:

Stability Once an RM has entered the committed or aborted state, it
remains in that state forever.

1In some descriptions of transaction commit, there is a client process that ends the
transaction and must also learn if it is committed. We consider such a client to be one of
the RMs.

2

Consistency It is impossible for one RM to be in the committed state
and another to be in the aborted state.

These two properties imply that, once an RM enters the committed state,
no other RM can enter the aborted state, and vice versa.

Each RM also has a prepared state. We require that

• An RM can enter the committed state only after all RMs have been in
the prepared state.

These requirements imply that the transaction can commit, meaning that
all RMs reach the committed state, only by the following sequence of events:

• All the RMs enter the prepared state, in any order.

• All the RMs enter the committed state, in any order.

The protocol allows the following event that prevents the transaction from
committing:

• Any RM in the working state can enter the aborted state.

The stability and consistency conditions imply that this spontaneous abort
event cannot occur if some RM has entered the committed state. In practice,
a working RM will abort when it realizes that it cannot perform its part of
the transaction.

These requirements are summarized in the state-transition diagram of
Figure 1.

The goal of the algorithm is for all RMs to reach the committed or aborted
state, but this cannot be achieved in a non-trivial way if RMs can fail or
become isolated through communication failure. (A trivial solution is one
in which all RMs always abort.) Moreover, the classic theorem of Fischer,
Lynch, and Paterson [?] implies that a deterministic, purely asynchronous

?

working

?

prepared

�
�	

@
@R

committed aborted

Figure 1: The state-transition diagram for a
resource manager. It begins in the working
state, in which it may decide that it wants to
abort or commit. It aborts by simply enter-
ing the aborted state. If it decides to commit,
it enters the prepared state. From this state,
it can commit only if all other resource man-
agers also decided to commit.

3

algorithm cannot satisfy the stability and consistency conditions and still
guarantee progress in the presence of even a single fault. We therefore
require progress only if timeliness hypotheses are satisfied. Our two liveness
requirements for a transaction commit protocol are:

Non-Triviality If the entire network is nonfaulty throughout the exe-
cution of the protocol, then (a) if all RMs reach the prepared state,
then all RMs eventually reach the committed state, and (b) if some
RM reaches the aborted state, then all RMs eventually reach the
aborted state.

Non-Blocking If, at any time, a sufficiently large network of nodes is
nonfaulty for long enough, then every RM executed on those nodes
will eventually reach either the committed or aborted state.

A precise statement of these two conditions would require a precise definition
of what it means for a network of nodes to be nonfaulty. The meaning of
“long enough” in the Non-Blocking condition depends on the response times
of nonfaulty processes and communication networks. The Non-Triviality and
Non-Blocking conditions can be stated precisely, but we will not do so here.

We can more precisely specify a transaction commit protocol by specify-
ing its set of legal behaviors, where a behavior is a sequence of system states.
We specify the safety properties with an initial predicate and a next-state
relation that describes all possible steps (state transitions). The initial pred-
icate asserts that all RMs are in the working state. To define the next-state
relation, we first define two state predicates:

canCommit True iff all RMs are in the prepared or committed state.

notCommitted True iff no RM is in the committed state.

The next-state relation asserts that each step consists of one of the following
two actions performed by a single RM:

Prepare The RM can change from the working state to the prepared
state.

Decide If the RM is in the prepared state and canCommit is true, then
it can transition to the committed state; and if the RM is in either
the working or prepared state and notCommitted is true, then it
can transition to the aborted state.

4

3 Two-Phase Commit

3.1 The Protocol

The Two-Phase Commit protocol is an implementation of transaction com-
mit that uses a transaction manager (TM) process to coordinate the decision-
making procedure. The RMs have the same states in this protocol as in the
specification of transaction commit. The TM has the following states: init
(its initial state), preparing, committed, and aborted.

The Two-Phase Commit protocol starts when an RM enters the prepared
state and sends a Prepared message to the TM. Upon receipt of the Prepared
message, the TM enters the preparing state and sends a Prepare message
to every other RM. Upon receipt of the Prepare message, an RM that is
still in the working state can enter the prepared state and send a Prepared
message to the TM. When it has received a Prepared message from all RMs,
the TM can enter the committed state and send Commit messages to all the
other processes. The RMs can enter the committed state upon receipt of
the Commit message from the TM. The message flow for the Two-Phase
Commit protocol is shown in Figure 2.

Figure 2 shows one distinguished RM spontaneously preparing. In fact,
any RM can spontaneously go from the working to prepared state and send
a prepared message at any time. The TM’s prepare message can be viewed
as an optional suggestion that now would be a good time to do so. Other
events, including real-time deadlines, might cause working RMs to prepare.
This observation is the basis for variants of the Two-Phase Commit protocol
that use fewer messages.

An RM can spontaneously enter the aborted state if it is in the working
state; and the TM can spontaneously enter the aborted state unless it is in

RM1
Other
RMs TM

XXXXXXXXXXXz
�������9

Prepared

Prep
are

XXXXXXXz

Prepared

�������9

�����������)

9

Prep
are

Com
mit

Figure 2: The message flow
for Two-Phase Commit in the
normal failure-free case, where
RM1 is the first RM to enter
the prepared state.

5

the committed state. When the TM aborts, it sends an abort message to all
RMs. Upon receipt of such a message, an RM enters the aborted state. In
an implementation, spontaneous aborting can be triggered by a timeout.2

In Two-Phase Commit, as in any asynchronous algorithm, process failure
and restart is easy to handle. Each process records its current state in
stable storage before sending any message while in that state. For example,
upon receipt of a Prepared message, the TM records in stable storage that
it has entered the preparing state and then sends the Prepare messages.
When a failed process is restarted, it can simply restore its state from stable
storage and continue executing the algorithm. Process failure and restart is
equivalent to the process pausing, which is permitted by an asynchronous
algorithm. Section 6.4 discusses in more detail what happens when a process
fails and restarts in our transaction commit protocols.

Two-Phase Commit is described in many texts [?]; it is specified formally
in Section A.2 of the Appendix, along with a theorem asserting that it
implements the specification of transaction commit. This theorem has been
checked by the TLC model checker for large enough configurations (numbers
of RMs) so it is unlikely to be incorrect.

3.2 The Cost of Two-Phase Commit

The important efficiency measure for a transaction commit protocol is the
cost of the normal case, in which the transaction is committed. Let N be
the number of RMs. The Two-Phase Commit protocol sends the following
sequence of messages in the normal case:

• The initiating RM enters the prepared state and sends a Prepared
message to the TM. (1 message)

• The TM sends a Prepare message to every other RM. (N −1 messages)

• Each other RM sends a Prepared message to the TM. (N−1 messages)

• The TM sends a Commit message to every RM. (N messages)

Thus, in the normal case, the RMs learn that the transaction has been
committed after four message delays. A total of 3N − 1 messages are sent.
It is typical for the TM to be on the same node as the initiating RM. In
that case, two of the messages are intra-node and can be discounted, leaving
3N − 3 messages and three message delays.

2In practice, an RM may notify the TM when it spontaneously aborts; we ignore this
optimization.

6

As discussed in Section 3.1, we can eliminate the TM’s Prepare messages,
reducing the message complexity to 2N . But in practice, this requires either
extra message delays or some real-time assumptions.

In addition to the message delays, the two-phase commit protocol incurs
the delays associated with writes to stable storage: the write by the first RM
to prepare, the writes by the remaining RMs when they prepare, and the
write by the TM when it makes the commit decision. This can be reduced
to two write delays by having all RMs prepare concurrently.

3.3 The Problem with Two-Phase Commit

In a transaction commit protocol, if one or more RMs fail, the transaction
is usually aborted. For example, in the Two-Phase Commit protocol, if the
TM does not receive a Prepared message from some RM soon enough after
sending the Prepare message, then it will abort the transaction by sending
Abort messages to the other RMs. However, the failure of the TM can cause
the protocol to block until the TM is repaired. In particular, if the TM fails
right after every RM has sent a Prepared message, then the other RMs have
no way of knowing whether the TM committed or aborted the transaction.

A non-blocking commit protocol is one in which the failure of a single
process does not prevent the other processes from deciding if the transaction
is committed or aborted. They are often called Three-Phase Commit proto-
cols. Several have been proposed, and a few have been implemented [?, ?, ?].
They have usually attempted to “fix” the Two-Phase Commit protocol by
choosing another TM if the first TM fails. However, we know of none that
provides a complete algorithm proven to satisfy a clearly stated correctness
condition. For example, the discussion of non-blocking commit in the clas-
sic text of Bernstein, Hadzilacos, and Goodman [?] fails to explain what a
process should do if it receives messages from two different processes, both
claiming to be the current TM. Guaranteeing that this situation cannot
arise is a problem that is as difficult as implementing a transaction commit
protocol.

4 Paxos Commit

4.1 The Paxos Consensus Algorithm

The distributed computing community has studied the more general problem
of consensus, which requires that a collection of processes agree on some
value. Many solutions to this problem have been proposed, under various

7

failure assumptions [?, ?]. These algorithms have precise fault models and
rigorous proofs of correctness.

In the consensus problem, a collection of processes called acceptors co-
operate to choose a value. Each acceptor runs on a different node. The basic
safety requirement is that only a single value be chosen. To rule out trivial
solutions, there is an additional requirement that the chosen value must be
one proposed by a client. The liveness requirement asserts that, if a large
enough subnetwork of the acceptors’ nodes is nonfaulty for a long enough
time, then some value is eventually chosen. It can be shown that, with-
out strict synchrony assumptions, 2F + 1 acceptors are needed to achieve
consensus despite the failure of any F of them.

The Paxos algorithm [?, ?, ?, ?] is a popular asynchronous consensus al-
gorithm. It uses a series of ballots numbered by nonnegative integers, each
with a predetermined coordinator process called the leader. The leader of
ballot 0 is called the initial leader. In the normal, failure-free case when the
initial leader receives a proposed value, it sends a phase 2a message to all
acceptors containing this value and ballot number 0. (The missing phase 1
is explained below.) Each acceptor receives this message and replies with a
phase 2b message for ballot 0. When the leader receives these phase 2b mes-
sages from a majority of acceptors, it sends a phase 3 message announcing
that the value is chosen.

The initial leader may fail, causing ballot 0 not to choose a value. In
that case, some algorithm is executed to select a new leader—for example,
the algorithm of Aguilera et al. [?]. Selecting a unique leader is equivalent
to solving the consensus problem. However, Paxos maintains consistency,
never allowing two different values to be chosen, even if multiple processes
think they are the leader. (This is unlike traditional Three-Phase commit
protocols, in which multiple coordinators can lead to inconsistency.) A
unique nonfaulty leader is needed only to ensure liveness.

A process that believes itself to be a newly-elected leader initiates a
ballot, which proceeds in the following phases. (Since there can be multiple
leaders, actions from several phases may be performed concurrently.)

Phase 1a The leader chooses a ballot number bal for which it is the
leader and that it believes to be larger than any ballot number for
which phase 1 has been performed. The leader sends a phase 1a
message for ballot number bal to every acceptor.

Phase 1b When an acceptor receives the phase 1a message for ballot
number bal , if it has not already performed any action for a bal-
lot numbered bal or higher, it responds with a phase 1b message

8

containing its current state, which consists of

• The largest ballot number for which it received a phase 1a
message, and

• The phase 2b message with the highest ballot number it has
sent, if any.

The acceptor ignores the phase 1a message if it has performed an
action for a ballot numbered bal or greater.

Phase 2a When the leader has received a phase 1b message for ballot
number bal from a majority of the acceptors, it can learn one of
two possibilities:

Free None of the majority of acceptors report having sent a
phase 2b message, so the algorithm has not yet chosen a
value.

Forced Some acceptor in the majority reports having sent a
phase 2b message. Let µ be the maximum ballot number
of all the reported phase 2b messages, and let Mµ be the
set of all those phase 2b messages that have ballot number
µ. All the messages in Mµ have the same value v , which
might already have been chosen.

In the free case, the leader can try to get any value accepted; it
usually picks the first value proposed by a client. In the forced case,
it tries to get the value v chosen by sending a phase 2a message with
value v and ballot number bal to every acceptor.

Phase 2b When an acceptor receives a phase 2a message for a value
v and ballot number bal , if it has not already received a phase 1a
or 2a message for a larger ballot number, it accepts that message
and sends a phase 2b message for v and bal to the leader. The
acceptor ignores the message if it has already participated in a
higher-numbered ballot.

Phase 3 When the leader has received phase 2b messages for value v
and ballot bal from a majority of the acceptors, it knows that the
value v has been chosen and communicates that fact to all interested
processes with a phase 3 message.

Ballot 0 has no phase 1 because there are no lower-numbered ballots, so
there is nothing for acceptors to report in phase 1b messages.

An explanation of why the Paxos algorithm is correct can be found in
the literature [?, ?, ?, ?]. As with any asynchronous algorithm, process

9

failure and restart is handled by having each process record the necessary
state information in stable storage.

The algorithm can be optimized in two independent ways. We can reduce
the number of messages in the normal fault-free case by having the leader
send phase 2a messages only to a majority of the acceptors. The leader
will know that value v is chosen if it receives phase 2b messages from that
majority of acceptors. It can send phase 2a messages to additional acceptors
if it does not receive enough phase 2b messages. The second optimization
is to eliminate the message delay of phase 3, at the cost of extra messages,
by having acceptors send their phase 2b messages directly to all processes
that need to know the chosen value. Like the leader, those processes learn
the chosen value when they receive phase 2b messages from a majority of
the acceptors.

The Paxos algorithm guarantees that at most one value is chosen despite
any non-malicious failure of any part of the system—that is, as long as pro-
cesses do not make errors in executing the algorithm and the communication
network does not undetectably corrupt messages. It guarantees progress if
a unique leader is selected and if the network of nodes executing both that
leader and some majority of acceptors is nonfaulty for a long enough period
of time. A precise statement and proof of this progress condition has been
given by De Prisco, Lampson, and Lynch [?].

In practice, it is not difficult to construct an algorithm that, except dur-
ing rare periods of network instability, selects a suitable unique leader among
a majority of nonfaulty acceptors. Transient failure of the leader-selection
algorithm is harmless, violating neither safety nor eventual progress. One
algorithm for leader selection is presented by Aguilera et al. [?].

4.2 The Paxos Commit Algorithm

In the Two-Phase Commit protocol, the TM decides whether to abort or
commit, records that decision in stable storage, and informs the RMs of its
decision. We could make that fault-tolerant by simply using a consensus
algorithm to choose the committed/aborted decision, letting the TM be the
client that proposes the consensus value. This approach was apparently first
proposed by Mohan, Strong, and Finkelstein [?], who used a synchronous
consensus protocol. However, in the normal case, the leader must learn that
each RM has prepared before it can try to get the value committed chosen.
Having the RMs tell the leader that they have prepared requires at least one
message delay. How our Paxos Commit algorithm eliminates that message
delay is described below.

10

Paxos Commit uses a separate instance of the Paxos consensus algorithm
to obtain agreement on the decision each RM makes of whether to prepare
or abort—a decision we represent by the values Prepared and Aborted . So,
there is one instance of the consensus algorithm for each RM. The trans-
action is committed iff each RM’s instance chooses Prepared ; otherwise the
transaction is aborted. The idea of performing a separate consensus on each
RM’s decision can be used with any consensus algorithm, but how one uses
this idea to save a message delay depends on the algorithm.

Paxos Commit uses the same set of 2F + 1 acceptors and the same
current leader for each instance of Paxos. So, the cast of characters consists
of N RMs, 2F + 1 acceptors, and the current leader. We assume for now
that the RMs know the acceptors in advance. In ordinary Paxos, a ballot 0
phase 2a message can have any value v . While the leader usually sends such
a message, the Paxos algorithm obviously remains correct if the sending of
that message is delegated to any single process chosen in advance. In Paxos
Commit, each RM announces its prepare/abort decision by sending, in its
instance of Paxos, a ballot 0 phase 2a message with the value Prepared or
Aborted .

Execution of Paxos Commit normally starts when some RM decides to
prepare and sends a BeginCommit message to the leader. The leader then
sends a Prepare message to all the other RMs. If an RM decides that it
wants to prepare, it sends a phase 2a message with value Prepared and
ballot number 0 in its instance of the Paxos algorithm. Otherwise, it sends
a phase 2a message with the value Aborted and ballot number 0. For each
instance, an acceptor sends its phase 2b message to the leader. The leader
knows the outcome of this instance if it receives F + 1 phase 2b messages
for ballot number 0, whereupon it can send its phase 3 message announcing
the outcome to the RMs. (As observed in Section 4.1 above, phase 3 can
be eliminated by having the acceptors send their phase 2b messages directly
to the RMs.) The transaction is committed iff every RM’s instance of the
Paxos algorithm chooses Prepared ; otherwise the transaction is aborted.

For efficiency, an acceptor can bundle its phase 2b messages for all in-
stances of the Paxos algorithm into a single physical message. The leader
can distill its phase 3 messages for all instances into a single Commit or
Abort message, depending on whether or not all instances chose the value
Prepared .

The instances of the Paxos algorithm for one or more RMs may not
reach a decision with ballot number 0. In that case, the leader (alerted by a
timeout) assumes that each of those RMs has failed and executes phase 1a
for a larger ballot number in each of their instances of Paxos. If, in phase 2a,

11

the leader learns that its choice is free (so that instance of Paxos has not
yet chosen a value), then it tries to get Aborted chosen in phase 2b.

An examination of the Paxos algorithm—in particular, of how the deci-
sion is reached in phase 2a—shows that the value Prepared can be chosen in
the instance for resource manager rm only if rm sends a phase 2a message for
ballot number 0 with value Prepared . If rm instead sends a phase 2a message
for ballot 0 with value Aborted , then its instance of the Paxos algorithm can
choose only Aborted , which implies that the transaction must be aborted.
In this case, Paxos Commit can short-circuit and use any broadcast protocol
to inform all processes that the transaction has aborted. (Once a process
knows that the transaction has been aborted, it can ignore all other protocol
messages.) This short-circuiting is possible only for phase 2a messages with
ballot number 0. It is possible for an instance of the Paxos algorithm to
choose the value Prepared even though a leader has sent a phase 2a message
(for a ballot number greater than 0) with value Aborted .

We briefly sketch an intuitive proof of correctness of Paxos Commit. Re-
call that, in Section 2, we stated that a non-blocking algorithm should satisfy
four properties: Stability, Consistency, Non-Triviality, and Non-Blocking.
The algorithm satisfies Stability because once an RM receives a decision
from a leader, it never changes its view of what value has been chosen. Con-
sistency holds because each instance of the Paxos algorithm chooses a unique
value, so different leaders cannot send different decisions. Non-Triviality
holds if the leader waits long enough before performing phase 1a for a new
ballot number so that, if there are no failures, then each Paxos instance will
finish performing phase 2 for ballot 0. The Non-Blocking property follows
from the Paxos progress property, which implies that each instance of Paxos
eventually chooses either Prepared or Aborted if a large enough network of
acceptors is nonfaulty. More precisely, the Non-Blocking property holds if
Paxos satisfies the liveness requirement for consensus, which is the case if the
leader-selection algorithm ensures that a unique nonfaulty leader is chosen
whenever a large enough subnetwork of the acceptors’ nodes is nonfaulty for
a long enough time.

The safety part of the algorithm—that is, the algorithm with no progress
requirements—is specified formally in Section A.3 of the Appendix, along
with a theorem asserting that it implements transaction commit. The cor-
rectness of this theorem has been checked by the TLC model checker on
configurations that are too small to detect subtle errors, but are probably
large enough to find simple “coding” errors. Rigorous proofs of the Paxos
algorithm convince us that it harbors no subtle errors, and correctness of the
Paxos Commit algorithm is a simple corollary of the correctness of Paxos.

12

RM1
Other
RMs

Initial
Leader Acceptors

XXXXXXXXXXXz

BeginCommit
PPPPPPPPPPPPPPPPPPq

2a Prepared

�������9 Prep
are

XXXXXXXXXXXXXXz

2a Prepared

�������9
2b Prep

ared
�������9

�����������)
Com

mit

Figure 3: The mes-
sage flow for Paxos
Commit in the normal
failure-free case, where
RM1 is the first RM
to enter the prepared
state, and 2a Prepared
and 2b Prepared are
the phase 2a and 2b
messages of the Paxos
consensus algorithm.

4.3 The Cost of Paxos Commit

We now consider the cost of Paxos Commit in the normal case, when the
transaction is committed. The sequence of message exchanges is shown in
Figure 3.

We again assume that there are N RMs. We consider a system that can
tolerate F faults, so there are 2F + 1 acceptors. However, we assume the
optimization in which the leader sends phase 2a messages to F +1 acceptors,
and only if one or more of them fail are other acceptors used. In the normal
case, the Paxos Commit algorithm uses the following potentially inter-node
messages:

• The first RM to prepare sends a BeginCommit message to the leader.
(1 message)

• The leader sends a Prepare message to every other RM. (N − 1 mes-
sages)

• Each RM sends a ballot 0 phase 2a Prepared message for its instance
of Paxos to the F + 1 acceptors. (N (F + 1) messages)

• For each RM’s instance of Paxos, an acceptor responds to a phase 2a
message by sending a phase 2b Prepared message to the leader. How-
ever, an acceptor can bundle the messages for all those instances into
a single message. (F + 1 messages)

• The leader sends a single Commit message to each RM containing a
phase 3 Prepared message for every instance of Paxos. (N messages)

13

The RMs therefore learn after five message delays that the transaction has
been committed. A total of (N + 1)(F + 3)−2 messages are sent. If the ini-
tial leader is on the same node as one of the acceptors, then that acceptor’s
phase 2b Prepared message is intra-node and can be discounted. More-
over, the first RM’s BeginCommit message can combined with its phase 2a
Prepared message to that acceptor, reducing the total number of messages
to (N + 1)(F + 3)− 4. If N ≥ F and each acceptor is on the same node as
an RM, with the first RM being on the same node as the leader, then the
messages between the first RM and the leader and an additional F of the
phase 2a messages are intra-node, leaving N (F +3)−3 inter-node messages.

As observed above, we can eliminate phase 3 of Paxos by having each
acceptor send its phase 2b messages directly to all the RMs. This allows
the RMs to learn the outcome in only four message delays, but a total of
N (2F + 3) messages are required. Letting the leader be on the same node
as an acceptor eliminates one of those messages. If each acceptor is on the
same node as an RM, and the leader is on the same node as the first RM,
then the initial BeginCommit message, F + 1 of the phase 2a messages, and
F + 1 of the phase 2b messages can be discounted, leaving (N − 1)(2F + 3)
messages.

We have seen so far that Paxos Commit requires five message delays,
which can be reduced to four by eliminating phase 3 and having acceptors
send extra phase 2b messages. Two of those message delays result from the
sending of Prepare messages to the RMs. As observed in Section 3.1, these
delays can be eliminated by allowing the RMs to prepare spontaneously,
leaving just two message delays. This is optimal because implementing
transaction commit requires reaching consensus on an RM’s decision, and it
can be shown that any fault-tolerant consensus algorithm requires at least
two message delays to choose a value [?]. The only previous algorithm
that achieves the optimal message delay of the optimized version of Paxos
Commit is by Guerraoui, Larrea, and Schiper [?], discussed briefly in the
conclusion.

The RMs perform the same writes to stable storage in Paxos Commit as
in Two-Phase Commit—namely, when entering the Prepared state. In the
Paxos consensus algorithm, an acceptor must record in stable storage its de-
cision to send a phase 2b message before actually sending it. Paxos Commit
does this with a single write for all instances of the consensus algorithm.
This write corresponds to the TM’s write to stable storage before sending a
Commit message in Two-Phase Commit. Paxos Commit therefore has the
same delay caused by writing to stable storage as Two-Phase Commit, and
it performs a total of N + F + 1 writes.

14

Two-Phase
Commit

Paxos
Commit

Faster Paxos
Commit

Message Delays 4 5 4

Messages

no co-location 3N − 1 (N + 1)(F + 3)− 4 N (2F + 3)− 1

with co-location 3N − 3 N (F + 3)− 3 (N − 1)(2F + 3)

Stable Storage

write delays 2 2 2

writes N + 1 N + F + 1 N + F + 1

Figure 4: Corresponding Complexity

5 Paxos versus Two-Phase Commit

In the Two-Phase Commit protocol, the TM both makes the abort/commit
decision and stores that decision in stable storage. Two-Phase Commit
can block indefinitely if the TM fails. Had we used Paxos simply to ob-
tain consensus on a single decision value, this would have been equivalent
to replacing the TM’s stable storage by the acceptors’ stable storage, and
replacing the single TM by a set of possible leaders. Our Paxos Commit al-
gorithm goes further in essentially eliminating the TM’s role in making the
decision. In Two-Phase Commit, the TM can unilaterally decide to abort.
In Paxos Commit, a leader can make an abort decision only for an RM that
does not decide for itself. The leader does this by initiating a ballot with
number greater than 0 for that RM’s instance of Paxos. (The leader must
be able to do this to prevent blocking by a failed RM.)

Sections 3.2 and 4.3 describe the normal-case cost in messages and writes
to stable storage of Two-Phase Commit and Paxos Commit, respectively.
Both algorithms have the same three stable storage write delays (two if all
RMs prepare concurrently). The other costs are summarized in Figure 4.
The entries for Paxos Commit assume that the initial leader is on the same
node as an acceptor. Faster Paxos Commit is the algorithm optimized to
remove phase 3 of the Paxos consensus algorithm. For Two-Phase Commit,
co-location means that the initiating RM and the TC are on the same node.
For Paxos Commit, it means that each acceptor is on the same node as an
RM, and that the initiating RM is the on the same node as the initial leader.
In Paxos Commit without co-location, we assume that the initial leader is
an acceptor.

15

For the near future, system designers are likely to be satisfied with a
commit algorithm that is non-blocking despite at most one failure—the F =
1 case. In this case, for a transaction with 5 RMs, the Two-Phase Commit
uses 12 messages, regular Paxos Commit uses 17, and Faster Paxos Commit
uses 20 (with co-location). For larger values of N , the three algorithms use
about 3N , 4N , and 5N messages, respectively (with or without co-location).

Consider now the trivial case of Paxos Commit with F = 0, so there is
just a single acceptor and a single possible leader, and the algorithm does not
tolerate any acceptor faults. (The algorithm can still tolerate RM faults.)
Let the single acceptor and the leader be on the same node. The single
phase 2b message of the Paxos consensus algorithm then serves as a phase 3
message, making phase 3 unnecessary. Paxos Commit therefore becomes the
same as Faster Paxos Commit. Figure 4 shows that, when F = 0, Two-Phase
Commit and Paxos Commit use the same number of messages, 3N − 1 or
3N − 3, depending on whether or not co-location is assumed. In fact, Two-
Phase Commit and Paxos Commit are essentially the same when F = 0.
The two algorithms are isomorphic under the following correspondence:

Two-Phase Commit Paxos Commit
TM ↔ acceptor/leader
Prepare message ↔ Prepare message
Prepared message ↔ phase 2a Prepared message
Commit message ↔ Commit message
Aborted message ↔ phase 2a Aborted message
Abort message ↔ Abort message

The phase 2b/phase 3 Aborted message that corresponds to a TM abort
message is one generated by any instance of the Paxos algorithm, indicating
that the transaction is aborted because not all instances chose Prepared .
The phase 1 and 2 messages that precede it are all sent between the leader
and the acceptor, which are on the same node.

The Two-Phase Commit protocol is thus the degenerate case of the Paxos
Commit algorithm with a single acceptor.

6 Transaction Creation and Registration

So far, we have been considering a single transaction with a fixed set of par-
ticipating resource managers. In a real system, a transaction is first created
and then RMs join it. Only the RMs that have joined the transaction par-
ticipate in the commit/abort decision. We now describe how the transaction
commit protocols are modified to handle a dynamically varying set of RMs.

16

Section 5 showed that Two-Phase Commit is the F = 0 case of Paxos
Commit, in which the transaction manager performs the functions of the
one acceptor and the one possible leader. We therefore consider only Paxos
Commit.

To accommodate a dynamic set of RMs, we introduce a registrar process
that keeps track of what RMs have joined the transaction. The registrar acts
much like an additional RM, except that its input to the commit protocol is
the set of RMs that have joined, rather than the value Prepared or Aborted .
As with an RM, Paxos Commit runs a separate instance of the Paxos con-
sensus algorithm to decide upon the registrar’s input, using the same set of
acceptors. The transaction is committed iff the consensus algorithm for the
registrar chooses a set of RMs and the instance of the consensus algorithm
for each of those RMs chooses Prepared .

The registrar is generally on the same node as the initial leader, which
is typically on the same node as the RM that creates the transaction. In
Two-Phase Commit, the registrar’s function is usually performed by the TM
rather than by a separate process. (Recall that for the case of Two-Phase
Commit, the Paxos consensus algorithm is the trivial one in which the TM
simply chooses the value and writes it to stable storage.)

We now describe how the dynamic Paxos algorithm works.

6.1 Transaction Creation

Each node has a local transaction service that an RM can call to create
and manage transactions. To create a transaction, the service constructs a
descriptor for the transaction, consisting of a unique identifier (uid) and the
names of the transaction’s coordinator processes. The coordinator processes
are all processes other than the RMs that take part in the commit protocol—
namely, the registrar, the initial leader, the other possible leaders, and the
acceptors.

Any message sent during the execution of a transaction contains the
transaction descriptor, so a recipient knows which transaction the message
is for. A process might first learn about the existence of transaction by
receiving such a message. The descriptor tells the process the names of the
coordinators that it must know to perform its role in the protocol.

6.2 Joining a Transaction

An RM joins a transaction by sending a join message to the registrar. As
observed above, the join message must contain the transaction descriptor if

17

it might be the first message received by the registrar for this transaction.
The RM that creates the transaction sends the descriptor to any other RM
that might want to join the transaction.

Upon receipt of a join message, the registrar adds the RM to the set
of participating RMs and sends it an acknowledgement. Receipt of the
acknowledgement tells the RM that it is a participant of the transaction.

6.3 Committing a Transaction

When an RM wants to commit the transaction, it sends a BeginCommit
message to the registrar rather than to the initial leader. (In Two-Phase
Commit, the BeginCommit message is the Prepared message of the first RM
to enter the prepared state.) The registrar then sends the Prepare messages
to the other RMs that have joined the transaction. From that point on, the
registrar no longer allows RMs to join the transaction, responding to any
subsequent join message with a negative acknowledgement.

Receipt of the BeginCommit message also causes the registrar to begin
an instance of the Paxos consensus algorithm to choose the set J of RMs
that have joined the transaction. It does this by sending a ballot 0 phase 2a
message containing J to the acceptors. (The transaction descriptor lists
the acceptors.) This instance of the consensus algorithm is executed in the
same way as the instances for the RMs. Failure of the registrar could cause
a leader to begin a higher-numbered ballot and get Aborted chosen as the
registrar’s value.

The registrar must never send a ballot 0 phase 2a message with an in-
correct value of J , even if it fails and restarts. The registrar can record in
stable storage when it begins executing the transaction and simply not send
the phase 2a message if it subsequently fails and restarts. It is possible to
eliminate even this one write per transaction by having the registrar write
once to stable storage whenever it restarts from a failure.

Meanwhile, as described in Section 4.2, each RM initiates its instance of
the consensus algorithm by sending a ballot 0 phase 2a message with the
value Prepared or Aborted to the acceptors. The transaction is defined to be
committed if the registrar’s instance of the consensus algorithm chooses a
set J and the instance for each RM in J chooses Prepared . The transaction
is defined to be aborted if the instance for any RM in J chooses Aborted ,
or if the registrar’s instance chooses Aborted instead of a set J .

Having a dynamically chosen set of RMs requires one change to the
execution of the multiple instances of the Paxos consensus algorithm. Recall
that an acceptor combines into a single message its phase 2b messages for all

18

instances. The acceptor waits until it knows what phase 2b message to send
for all instances before sending this one message. However, “all instances”
includes an instance for each participating RM, and the set of participating
RMs is chosen by the registrar’s instance. To break this circularity, we
observe that, if the registrar’s instance chooses the value Aborted , then it
doesn’t matter what values are chosen by the RMs’ instances. Therefore,
the acceptor waits until it is ready to send a phase 2b message for the
registrar’s instance. If that message contains a set J of RMs as a value,
then the acceptor waits until it can send the phase 2b message for each RM
in J . If the phase 2b message for the registrar’s instance contains the value
Aborted , then the acceptor sends only that phase 2b message.

As explained in Section 4.2, the protocol can be short-circuited and
abort messages sent to all processes if any participating RM chooses the
value Aborted . Instead of sending a phase 2a message, the RM can simply
send an abort message to the coordinator processes. The registrar can relay
the abort message to all other RMs that have joined the transaction.

Failure of the registrar before it sends its ballot 0 phase 2a message
causes the transaction to abort. However, failure of a single RM can also
cause the transaction to abort. Fault-tolerance means only that failure of
an individual process does not prevent a commit/abort decision from being
made.

6.4 Learning the Outcome

The description above shows that, when there is no failure, the dynamic
commit protocol works essentially as described in Figure 3 of Section 4.3.
We now consider what happens in the event of failure.

The case of acceptor failure is straightforward. If the transaction is
created to have 2F + 1 acceptors, then failure of up to F of them causes no
problem. If more acceptors fail, the protocol simply blocks until there are
F+1 working acceptors, whereupon it continues as if nothing had happened.

Before considering other process failures, let us examine how a process
P , knowing only the transaction descriptor, can discover the outcome of the
protocol—that is, whether the transaction was committed or aborted. For
example, P might be a restarted RM that had failed after sending a phase 2a
Prepared message but before recording the outcome in its stable storage.

Having the descriptor, P knows the set of all possible leader processes.
It sends them a message containing the descriptor and asking what the
outcome was. If all the leader processes have failed, then P must wait until
one or more of them are restarted. (Each node that has an acceptor process

19

usually has a leader process as well, so there are 2F + 1 leader processes.)
If some nonfaulty leader process knows the outcome, it tells P . However,
even if the protocol has completed, it is possible that no nonfaulty leader
process knows the outcome. For example, the initial leader might have failed
and this could be the first time the other leader processes hear about the
transaction.

Suppose none of the nonfaulty leader processes know the outcome. These
leader processes choose a current leader L that begins a new ballot for the
registrar’s instance of the Paxos consensus algorithm. If there are F + 1
nonfaulty acceptors, then L will learn the registrar’s chosen value, which is
either the set J of participants or Abort . In the latter case, the transaction
has aborted. In the former case, L begins a new ballot for the consensus
algorithm instance of each RM in J . When L learns the value chosen by
each of those instances (either Prepared or Aborted), it knows the outcome
of the transaction. Once L learns the outcome, it informs P and any other
interested processes that may not already know the outcome—for example,
other leader processes and RMs that had joined the transaction.

This learning scenario can fail for any number of reasons. For example,
two processes concurrently trying to learn the outcome might, because of a
network partition, contact disjoint sets of leader processes. These two sets of
leaders could choose two different processes to be the current leader. Those
two leader processes could keep sending conflicting messages to the accep-
tors, preventing the instances of the consensus algorithm from succeeding.
However, the correctness of the Paxos consensus algorithm ensures that the
commit protocol’s consistency property is never violated. It also ensures
that process P will learn the outcome if there is a unique current leader
that can communicate with P and with at least F + 1 nonfaulty acceptors.

For the case of Two-Phase Commit, learning the outcome is easy. The
single TM process plays the roles of the one leader, the one acceptor, and
the registrar. Process P learns the outcome by simply asking the TM. If
the TM has failed, P just waits until it is restarted.

We now return to the question of what happens when an RM, the regis-
trar, or the initial leader fails. Such a failure causes the protocol temporarily
to hang. Progress is resumed when some process attempts to learn the out-
come of the transaction, using the procedure described above. For example,
the process could be an RM that sent a phase 2a Prepared message and
timed out without learning the outcome. Learning the transaction’s out-
come forces the transaction to commit or abort if it had not already done
so.

20

7 Conclusion

Two-Phase Commit is the classical transaction commit protocol. Indeed,
it is sometimes thought to be synonymous with transaction commit [?].
Two-Phase Commit is not fault tolerant because it uses a single coordinator
whose failure can cause the protocol to block. We have introduced Paxos
Commit, a new transaction commit protocol that uses multiple coordinators
and makes progress if a majority of them are working. Hence, 2F + 1
coordinators can make progress even if F of them are faulty. Two-Phase
Commit is isomorphic to Paxos Commit with a single coordinator.

In the normal, failure-free case, Paxos Commit requires one more mes-
sage delay than Two-Phase Commit. This extra message delay is eliminated
by Faster Paxos Commit, which has the theoretically minimal message delay
for a non-blocking protocol.

Non-blocking transaction commit protocols were first proposed in the
early 1980s [?, ?, ?]. The initial algorithms had two message delays more
than Two-Phase Commit in the failure-free case; later algorithms reduced
this to one extra message delay [?]. All of these algorithms used a coor-
dinator process and assumed that two different processes could never both
believe they were the coordinator—an assumption that cannot be imple-
mented in a purely asynchronous system. Transient network failures could
cause them to violate the consistency requirement of transaction commit.
It is easy to implement non-blocking commit using a consensus algorithm—
an observation also made in the 1980s [?]. However, the obvious way of
doing this leads to one message delay more than that of Paxos Commit.
The only algorithm that achieved the low message delay of Faster Paxos
Commit is that of Guerraoui, Larrea, and Schiper [?]. It is essentially the
same as Faster Paxos Commit in the absence of failures. (It can be mod-
ified with an optimization analogous to the sending of phase 2a messages
only to a majority of acceptors to give it the same message complexity as
Faster Paxos Commit.) This similarity to Paxos Commit is not surpris-
ing, since most asynchronous consensus algorithms (and most incomplete
attempts at algorithms) are the same as Paxos in the failure-free case. How-
ever, their algorithm is more complicated than Paxos Commit. It uses a
special procedure for the failure-free case and calls upon a modified version
of an ordinary consensus algorithm, which adds an extra message delay in
the event of failure.

With 2F + 1 coordinators and N resource managers, Paxos Commit
requires about 2FN more messages than Two-Phase Commit in the normal
case. Both algorithms incur the same delay for writing to stable storage. In

21

modern local area networks, messages are cheap, and the cost of writing to
stable storage can be much larger than the cost of sending messages. So in
many systems, the benefit of a non-blocking protocol should outweigh the
additional cost of Paxos Commit.

Paxos Commit implements transaction commit with the Paxos consensus
algorithm. Some readers may find this paradoxical, since there are results in
the distributed systems theory literature showing that transaction commit
is a strictly harder problem than consensus [?]. However, those results are
based on a stronger definition of transaction commit in which the transaction
is required to commit if all RMs are nonfaulty and choose to prepare—
even in the face of unpredictable communication delays. In contrast, our
Non-Triviality condition requires the transaction to commit only under the
additional assumption that the entire network is nonfaulty—meaning that
all messages sent between the nodes are delivered within some known time
limit. (Guerraoui, Larrea, and Schiper stated this condition more abstractly
in terms of failure detectors.) The stronger definition of transaction commit
is not implementable in typical transaction systems, where occasional long
communication delays must be tolerated.

22

A The TLA+ Specifications

A.1 The Specification of a Transaction Commit Protocol

module TCommit
constant RM The set of participating resource managers

variable rmState rmState[rm] is the state of resource manager rm.

TCTypeOK
∆
=

The type-correctness invariant

rmState ∈ [RM → {“working”, “prepared”, “committed”, “aborted”}]

TCInit
∆
= rmState = [rm ∈ RM 7→ “working”]

The initial predicate.

canCommit
∆
= ∀ rm ∈ RM : rmState[rm] ∈ {“prepared”, “committed”}

True iff all RMs are in the “prepared” or “committed” state.

notCommitted
∆
= ∀ rm ∈ RM : rmState[rm] 6= “committed”

True iff no resource manager has decided to commit.

We now define the actions that may be performed by the RMs, and then define the
complete next-state action of the specification to be the disjunction of the possible RM
actions.

Prepare(rm)
∆
= ∧ rmState[rm] = “working”
∧ rmState ′ = [rmState except ![rm] = “prepared”]

Decide(rm)
∆
= ∨ ∧ rmState[rm] = “prepared”

∧ canCommit
∧ rmState ′ = [rmState except ![rm] = “committed”]

∨ ∧ rmState[rm] ∈ {“working”, “prepared”}
∧ notCommitted
∧ rmState ′ = [rmState except ![rm] = “aborted”]

TCNext
∆
= ∃ rm ∈ RM : Prepare(rm) ∨Decide(rm)

The next-state action.

TCSpec
∆
= TCInit ∧2[TCNext]rmState

The complete specification of the protocol.

We now assert invariance properties of the specification.

23

TCConsistent
∆
=

A state predicate asserting that two RMs have not arrived at conflicting decisions.

∀ rm1, rm2 ∈ RM : ¬ ∧ rmState[rm1] = “aborted”
∧ rmState[rm2] = “committed”

theorem TCSpec ⇒ 2(TCTypeOK ∧ TCConsistent)

Asserts that TCTypeOK and TCInvariant are invariants of the protocol.

A.2 The Specification of the Two-Phase Commit Protocol

module TwoPhase
This specification describes the Two-Phase Commit protocol, in which a transaction man-
ager (TM) coordinates the resource managers (RMs) to implement the Transaction Com-
mit specification of module TCommit . In this specification, RMs spontaneously issue
Prepared messages. We ignore the Prepare messages that the TM can send to the RMs.

For simplicity, we also eliminate Abort messages sent by an RM when it decides to abort.
Such a message would cause the TM to abort the transaction, an event represented here
by the TM spontaneously deciding to abort.

This specification describes only the safety properties of the protocol–that is, what is
allowed to happen. What must happen would be described by liveness properties, which
we do not specify.

constant RM The set of resource managers

variables
rmState, rmState[rm] is the state of resource manager RM.

tmState, The state of the transaction manager.

tmPrepared , The set of RMs from which the TM has received ”Prepared”

messages.

msgs
In the protocol, processes communicate with one another by sending messages. Since
we are specifying only safety, a process is not required to receive a message, so there
is no need to model message loss. (There’s no difference between a process not being
able to receive a message because the message was lost and a process simply ignoring
the message.) We therefore represent message passing with a variable msgs whose
value is the set of all messages that have been sent. Messages are never removed from
msgs. An action that, in an implementation, would be enabled by the receipt of a
certain message is here enabled by the existence of that message in msgs. (Receipt of
the same message twice is therefore allowed; but in this particular protocol, receiving
a message for the second time has no effect.)

24

Message
∆
=

The set of all possible messages. Messages of type “Prepared” are sent from the RM
indicated by the message’s rm field to the TM. Messages of type “Commit” and “Abort”
are broadcast by the TM, to be received by all RMs. The set msgs contains just a single
copy of such a message.

[type : {“Prepared”}, rm : RM] ∪ [type : {“Commit”, “Abort”}]

TPTypeOK
∆
=

The type-correctness invariant

∧ rmState ∈ [RM → {“working”, “prepared”, “committed”, “aborted”}]
∧ tmState ∈ {“init”, “committed”, “aborted”}
∧ tmPrepared ⊆ RM
∧msgs ⊆ Message

TPInit
∆
=

The initial predicate.

∧ rmState = [rm ∈ RM 7→ “working”]
∧ tmState = “init”
∧ tmPrepared = {}
∧msgs = {}

We now define the actions that may be performed by the processes, first the TM’s actions,
then the RMs’ actions.

TMRcvPrepared(rm)
∆
=

The TM receives a “Prepared” message from resource manager rm.

∧ tmState = “init”
∧ [type 7→ “Prepared”, rm 7→ rm] ∈ msgs
∧ tmPrepared ′ = tmPrepared ∪ {rm}
∧ unchanged 〈rmState, tmState, msgs〉

TMCommit
∆
=

The TM commits the transaction; enabled iff the TM is in its initial state and every
RM has sent a “Prepared” message.

∧ tmState = “init”
∧ tmPrepared = RM
∧ tmState ′ = “committed”
∧msgs ′ = msgs ∪ {[type 7→ “Commit”]}
∧ unchanged 〈rmState, tmPrepared〉

TMAbort
∆
=

The TM spontaneously aborts the transaction.

25

∧ tmState = “init”
∧ tmState ′ = “aborted”
∧msgs ′ = msgs ∪ {[type 7→ “Abort”]}
∧ unchanged 〈rmState, tmPrepared〉

RMPrepare(rm)
∆
=

Resource manager rm prepares.

∧ rmState[rm] = “working”
∧ rmState ′ = [rmState except ![rm] = “prepared”]
∧msgs ′ = msgs ∪ {[type 7→ “Prepared”, rm 7→ rm]}
∧ unchanged 〈tmState, tmPrepared〉

RMChooseToAbort(rm)
∆
=

Resource manager rm spontaneously decides to abort. As noted above, rm does not
send any message in our simplified spec.

∧ rmState[rm] = “working”
∧ rmState ′ = [rmState except ![rm] = “aborted”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

RMRcvCommitMsg(rm)
∆
=

Resource manager rm is told by the TM to commit.

∧ [type 7→ “Commit”] ∈ msgs
∧ rmState ′ = [rmState except ![rm] = “committed”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

RMRcvAbortMsg(rm)
∆
=

Resource manager rm is told by the TM to abort.

∧ [type 7→ “Abort”] ∈ msgs
∧ rmState ′ = [rmState except ![rm] = “aborted”]
∧ unchanged 〈tmState, tmPrepared , msgs〉

TPNext
∆
=

∨ TMCommit ∨ TMAbort
∨ ∃ rm ∈ RM :

TMRcvPrepared(rm) ∨ RMPrepare(rm) ∨ RMChooseToAbort(rm)
∨ RMRcvCommitMsg(rm) ∨ RMRcvAbortMsg(rm)

TPSpec
∆
= TPInit ∧2[TPNext]〈rmState, tmState, tmPrepared ,msgs〉

The complete spec of the Two-Phase Commit protocol.

26

theorem TPSpec ⇒ 2TPTypeOK
This theorem asserts that the type-correctness predicate TPTypeOK is an invariant of
the specification.

We now assert that the Two-Phase Commit protocol implements the Transaction Commit
protocol of module TCommit . The following statement defines TC !TCSpec to be formula
TSpec of module TCommit . (The TLA+ instance statement is used to rename the
operators defined in module TCommit avoids any name conflicts that might exist with
operators in the current module.)

TC
∆
= instance TCommit

theorem TPSpec ⇒ TC !TCSpec
This theorem asserts that the specification TPSpec of the Two-Phase Commit protocol
implements the specification TCSpec of the Transaction Commit protocol.

The two theorems in this module have been checked with TLC for six RMs, a configuration
with 50816 reachable states, in a little over a minute on a 1 GHz PC.

A.3 The Paxos Commit Algorithm

module PaxosCommit
This module specifies the Paxos Commit algorithm. We specify only safety properties,
not liveness properties. We simplify the specification in the following ways.

•As in the specification of module TwoPhase, and for the same reasons, we let the
variable msgs be the set of all messages that have ever been sent. If a message is
sent to a set of recipients, only one copy of the message appears in msgs.

•We do not explicitly model the receipt of messages. If an operation can be per-
formed when a process has received a certain set of messages, then the operation is
represented by an action that is enabled when those messages are in the set msgs of
sent messages. (We are specifying only safety properties, which assert what events
can occur, and the operation can occur if the messages that enable it have been
sent.)

•We do not model leader selection. We define actions that the current leader may
perform, but do not specify who performs them.

As in the specification of Two-Phase commit in module TwoPhase, we have RMs sponta-
neously issue Prepared messages and we ignore Prepare messages.

extends Integers

Maximum(S)
∆
=

If J is a set of numbers, then this define Maximum(S) to be the maximum of those
numbers, or −1 if J is empty.

if S = {} then − 1
else choose n ∈ S : ∀m ∈ S : n ≥ m

27

constant RM , The set of resource managers.

Acceptor , The set of acceptors.

Majority , The set of majorities of acceptors

Ballot The set of ballot numbers

assume We assume these properties of the declared constants.

∧ Ballot ⊆ Nat
∧ 0 ∈ Ballot
∧Majority ⊆ subset Acceptor
∧ ∀MS1, MS2 ∈ Majority : MS1 ∩MS2 6= {}

All we assume about the set Majority of majorities is that any two majorities have
non-empty intersection.

Message
∆
=

The set of all possible messages. There are messages of type “Commit” and “Abort”
to announce the decision, as well as messages for each phase of each instance of ins of
the Paxos consensus algorithm. The acc field indicates the sender of a message from an
acceptor to the leader; messages from a leader are broadcast to all acceptors.

[type : {“phase1a”}, ins : RM , bal : Ballot \ {0}]
∪

[type : {“phase1b”}, ins : RM , mbal : Ballot , bal : Ballot ∪ { − 1},
val : {“prepared”, “aborted”, “none”}, acc : Acceptor]
∪

[type : {“phase2a”}, ins : RM , bal : Ballot , val : {“prepared”, “aborted”}]
∪

[type : {“phase2b”}, acc : Acceptor , ins : RM , bal : Ballot ,
val : {“prepared”, “aborted”}]
∪

[type : {“Commit”, “Abort”}]

variables
rmState, rmState[rm] is the state of resource manager rm.

aState, aState[ins][ac] is the state of acceptor ac for instance

ins of the Paxos algorithm

msgs The set of all messages ever sent.

PCTypeOK
∆
=

The type-correctness invariant. Each acceptor maintains the values mbal , bal , and val
for each instance of the Paxos consensus algorithm.

∧ rmState ∈ [RM → {“working”, “prepared”, “committed”, “aborted”}]
∧ aState ∈ [RM → [Acceptor →

[mbal : Ballot ,

28

bal : Ballot ∪ { − 1},
val : {“prepared”, “aborted”, “none”}]]]

∧msgs ∈ subset Message

PCInit
∆
= The initial predicate.

∧ rmState = [rm ∈ RM 7→ “working”]
∧ aState = [ins ∈ RM 7→

[ac ∈ Acceptor
7→ [mbal 7→ 0, bal 7→ − 1, val 7→ “none”]]]

∧msgs = {}

The Actions

Send(m)
∆
= msgs ′ = msgs ∪ {m}

An action expression that describes the sending of message m.

RM Actions

RMPrepare(rm)
∆
=

Resource manager rm prepares by sending a phase 2a message for ballot number 0 with
value “prepared”.

∧ rmState[rm] = “working”
∧ rmState ′ = [rmState except ![rm] = “prepared”]
∧ Send([type 7→ “phase2a”, ins 7→ rm, bal 7→ 0, val 7→ “prepared”])
∧ unchanged aState

RMChooseToAbort(rm)
∆
=

Resource manager rm spontaneously decides to abort. It may (but need not) send a
phase 2a message for ballot number 0 with value “aborted”.

∧ rmState[rm] = “working”
∧ rmState ′ = [rmState except ![rm] = “aborted”]
∧ Send([type 7→ “phase2a”, ins 7→ rm, bal 7→ 0, val 7→ “aborted”])
∧ unchanged aState

RMRcvCommitMsg(rm)
∆
=

Resource manager rm is told by the leader to commit. When this action is enabled,
rmState[rm] must equal either “prepared” or “committed”. In the latter case, the action
leaves the state unchanged (it is a “stuttering step”).

∧ [type 7→ “Commit”] ∈ msgs
∧ rmState ′ = [rmState except ![rm] = “committed”]
∧ unchanged 〈aState, msgs〉

29

RMRcvAbortMsg(rm)
∆
=

Resource manager rm is told by the leader to abort. It could be in any state except
“committed”.

∧ [type 7→ “Abort”] ∈ msgs
∧ rmState ′ = [rmState except ![rm] = “aborted”]
∧ unchanged 〈aState, msgs〉

Leader Actions
The following actions are performed by any process that believes itself to be the current
leader. Since leader selection is not assumed to be reliable, multiple processes could
simultaneously consider themselves to be the leader.

Phase1a(bal , rm)
∆
=

If the leader times out without learning that a decision has been reached on resource
manager rm’s prepare/abort decision, it can perform this action to initiate a new ballot
bal . (Sending duplicate phase 1a messages is harmless.)

∧ Send([type 7→ “phase1a”, ins 7→ rm, bal 7→ bal])
∧ unchanged 〈rmState, aState〉

Phase2a(bal , rm)
∆
=

The action in which a leader sends a phase 2a message with ballot bal > 0 in instance rm,
if it has received phase 1b messages for ballot number bal from a majority of acceptors.
If the leader received a phase 1b message from some acceptor that had sent a phase 2b
message for this instance, then mu ≥ 0 and the value v the leader sends is determined
by the phase 1b messages. (If v = “prepared”, then rm must have prepared.) Otherwise,
mu = −1 and the leader sends the value “aborted”.

The first conjunct asserts that the action is disabled if any leader has already sent a
phase 2a message with ballot number bal . In practice, this is implemented by having
ballot numbers partitioned among potential leaders, and having a leader record in stable
storage the largest ballot number for which it sent a phase 2a message.

∧ ¬∃m ∈ msgs : ∧m.type = “phase2a”
∧m.bal = bal
∧m.ins = rm

∧ ∃MS ∈ Majority :
let mset

∆
= {m ∈ msgs : ∧m.type = “phase1b”

∧m.ins = rm
∧m.mbal = bal
∧m.acc ∈ MS}

mu
∆
= Maximum({m.bal : m ∈ mset})

v
∆
= if mu = − 1

then “aborted”
else (choose m ∈ mset : m.bal = mu).val

in ∧ ∀ ac ∈ MS : ∃m ∈ mset : m.acc = ac

30

∧ Send([type 7→ “phase2a”, ins 7→ rm, bal 7→ bal , val 7→ v])
∧ unchanged 〈rmState, aState〉

Decide
∆
=

A leader can decide that Paxos Commit has reached a result and send a message an-
nouncing the result if it has received the necessary phase 2b messages.

∧ let Decided(rm, v)
∆
=

True iff instance rm of the Paxos consensus algorithm has chosen the value
v .

∃ b ∈ Ballot , MS ∈ Majority :
∀ ac ∈ MS : [type 7→ “phase2b”, ins 7→ rm,

bal 7→ b, val 7→ v , acc 7→ ac] ∈ msgs
in ∨ ∧ ∀ rm ∈ RM : Decided(rm, “prepared”)

∧ Send([type 7→ “Commit”])
∨ ∧ ∃ rm ∈ RM : Decided(rm, “aborted”)
∧ Send([type 7→ “Abort”])

∧ unchanged 〈rmState, aState〉

Acceptor Actions

Phase1b(acc)
∆
=

∃m ∈ msgs :
∧m.type = “phase1a”
∧ aState[m.ins][acc].mbal < m.bal
∧ aState ′ = [aState except ![m.ins][acc].mbal = m.bal]
∧ Send([type 7→ “phase1b”,

ins 7→ m.ins,
mbal 7→ m.bal ,
bal 7→ aState[m.ins][acc].bal ,
val 7→ aState[m.ins][acc].val ,
acc 7→ acc])

∧ unchanged rmState

Phase2b(acc)
∆
=

∧ ∃m ∈ msgs :
∧m.type = “phase2a”
∧ aState[m.ins][acc].mbal ≤ m.bal
∧ aState ′ = [aState except ![m.ins][acc].mbal = m.bal ,

![m.ins][acc].bal = m.bal ,
![m.ins][acc].val = m.val]

31

∧ Send([type 7→ “phase2b”, ins 7→ m.ins, bal 7→ m.bal ,
val 7→ m.val , acc 7→ acc])

∧ unchanged rmState

PCNext
∆
= The next-state action

∨ ∃ rm ∈ RM : ∨ RMPrepare(rm)
∨ RMChooseToAbort(rm)
∨ RMRcvCommitMsg(rm)
∨ RMRcvAbortMsg(rm)

∨ ∃ bal ∈ Ballot \ {0}, rm ∈ RM : Phase1a(bal , rm) ∨ Phase2a(bal , rm)
∨Decide
∨ ∃ acc ∈ Acceptor : Phase1b(acc) ∨ Phase2b(acc)

PCSpec
∆
= PCInit ∧2[PCNext]〈rmState, aState,msgs〉

The complete spec of the Paxos Commit protocol.

theorem PCSpec ⇒ 2PCTypeOK

We now assert that the two-phase commit protocol implements the transaction commit
protocol of module TCommit. The following statement defines TC !TCSpec to be the
formula TCSpec of module TCommit . (The TLA+ instance statement must is used to
rename the operators defined in module TCommit to avoid possible name conflicts with
operators in the current module having the same name.)

TC
∆
= instance TCommit

theorem PCSpec ⇒ TC !TCSpec

32

