
Vertical Paxos and Primary-Backup

Replication

Leslie Lamport, Dahlia Malkhi, Lidong Zhou
Microsoft Research

9 February 2009

corrected 26 August 2009

Abstract

We introduce a class of Paxos algorithms called Vertical Paxos, in
which reconfiguration can occur in the middle of reaching agreement
on an individual state-machine command. Vertical Paxos algorithms
use an auxiliary configuration master that facilitates agreement on
reconfiguration. A special case of these algorithms leads to traditional
primary-backup protocols. We show how primary-backup systems in
current use can be viewed, and shown to be correct, as instances of
Vertical Paxos algorithms.

Contents

1 Introduction 1

2 Overview of Vertical Paxos 2

3 The Primary Backup Case 4

4 Vertical Paxos 5
4.1 Paxos Preliminaries . 6
4.2 Vertical Paxos I . 8
4.3 Vertical Paxos II . 10

5 Vertical Paxos and Other Primary-Backup Protocols 14

References 15

1

1 Introduction

Large-scale distributed storage systems built over failure-prone commodity
components are increasingly popular. Failures are the norm in those sys-
tems, and replication is often the solution to data reliability. We might
expect these systems to adopt well-studied consensus algorithms and the
replicated state-machine approach that they enable. While some consen-
sus algorithms, such as Paxos [5], have started to find their way into those
systems, their uses are limited mostly to the maintenance of the global con-
figuration information in the system, not for the actual data replication.
A clear gap remains between the well-known consensus algorithms and the
practical replication protocols in real systems.

The gap is not accidental; the abstract models for defining the classic
consensus algorithms do not fully capture the requirements from those dis-
tributed systems. The classic consensus problem is defined on a single fixed
set of n processes as a replica group with each process as a replica, where
at most f of the n processes can fail. In practice, a distributed system
consists of a large number of overlapping replica groups, each responsible
for maintaining a subset of the system’s data. When replicas fail, the sys-
tem must replace the failed replicas with new ones through reconfiguration,
before more replica failures lead to permanent data loss. For practical repli-
cation protocols, the global resilience, the system throughput, and the cost
of reconfiguration tend to be more important than the fault-tolerance of a
single replica group or the number of message rounds.

The gap between consensus algorithms and practical replication pro-
tocols is not fundamental. Here, we bridge it by viewing Paxos not as a
particular algorithm, but as a family of algorithms based on a particular
way of achieving consensus. We focus on primary-backup replication, a class
of replication protocols that has been widely used in practical distributed
systems. We develop two new algorithms, in a family of Paxos algorithms
called Vertical Paxos, that capture the essence of primary-backup replica-
tion. (The only previous algorithm in this family that we know of is an
unpublished version of Cheap Paxos [6].) A primary-backup replication
protocol becomes a simple instance of our second algorithm, which we call
Vertical Paxos II.

Vertical Paxos not only provides a solid theoretical foundation for exist-
ing primary-backup replication protocols, but also offers a new way to look
at primary-backup replication, leading to further improvements that address
issues arising in practical systems. For example, when new processes are to
replace failed replicas to restore the desirable level of fault tolerance, state

1

transfer to the new processes is necessary before the reconfiguration can take
place. In a distributed storage system, state transfer usually involves copy-
ing data across machines—an often costly operation. The system therefore
faces the difficult decision of either allowing the replica group to continue
with a reduced level of resilience or disrupting the service during state trans-
fer. Our first algorithm, Vertical Paxos I addresses this issue by allowing
a replica group to operate with the restored resilience, while enabling state
transfer concurrently.

Vertical Paxos is also significant from a theoretical perspective. Its value
goes beyond the special case of primary-backup replication, offering a differ-
ent way of reconfiguring state machines from the one described in the original
Paxos paper. In Vertical Paxos, reconfiguration relies on an external mas-
ter, itself implemented as a replicated state machine. This corresponds to
an attractive system architecture in which the external master manages the
global system state, participates in the reconfiguration of any replica group
in the system, and helps achieve the global optimal resilience.

2 Overview of Vertical Paxos

Paxos implements a state machine by executing a sequence of logically sep-
arate instances of the Paxos consensus algorithm, instance i choosing the
i th state machine command. The consensus algorithm is executed by four
conceptually separate but not necessarily disjoint sets of processes: clients,
leaders, acceptors, and learners. Leaders propose commands that have been
requested by clients, acceptors choose a single proposed command, and
learners learn what command has been chosen.

Vertical Paxos is very much like traditional Paxos, except for two key
differences that stem from experiences with real systems that implement
state-machine replication.

Read/Write quorums: Practical protocols use primary-backup structure for
better system-wide resilience. Vertical Paxos achieves this structure by
distinguishing between read and write quorums. It has been observed
before that Paxos can be generalized by utilizing these two kinds of
quorums [7], but this offered little practical benefit in earlier versions
of Paxos.

Auxiliary configuration master: Although it is possible to let the state ma-
chine reconfigure itself, in practical settings, a separate configuration
master often makes reconfigurations decisions. Vertical Paxos makes

2

use of an auxiliary master to allow the set of acceptors to change within
each individual consensus instance. The master determines the set of
acceptors and the leader for every configuration. The use of a configu-
ration master allows a more efficient implementation of the individual
state machines. In particular, a master allows a state-machine imple-
mentation to tolerate k failures using only k + 1 processors instead of
the 2k + 1 processors required without it [2].

The configuration master need be called upon by the processors exe-
cuting an individual state machine only for reconfiguration—that is,
for changing the set of processors that are executing the state machine.
Since reconfiguration is infrequent—usually in response to a proces-
sor failure—executing the master requires little processing power. It
is therefore practical to implement a very reliable master by using a
sufficient number of different processors that spend most of their time
doing other things.

Vertical Paxos integrates these two key ingredients by changing the configu-
ration of acceptors within individual consensus instances. A Paxos consen-
sus algorithm performs a sequence of numbered ballots, each with a unique
leader. (In normal operation, only a single ballot is performed in each con-
sensus instance until that ballot’s leader fails and a new leader is chosen.)
Think of the ballots as arranged in a two-dimensional array, each vertical
column consisting of all the ballots within a single instance arranged accord-
ing to their number. In standard “horizontal” Paxos algorithms, configura-
tions can change only as we move horizontally; they are unchanged when we
move vertically (within a single instance). In Vertical Paxos, configurations
change when we move vertically, but remain the same as we move horizon-
tally from a ballot in one instance to the ballot with the same number in
any other instance.

When a new ballot and its leader is chosen in Paxos, the leader must
communicate with acceptors from lower-numbered ballots. Since different
ballot numbers have different configurations, a leader in Vertical Paxos must
communicate with acceptors from past configurations. The two variants of
Vertical Paxos address this differently.

• Algorithm Vertical Paxos I uses the following procedure to eliminate
the dependence on acceptors from lower-numbered ballots. When a
configuration changes in Vertical Paxos, the new configuration be-
comes active right away. The previous configuration remains active

3

only for storing old information, the new one also accepts new com-
mands. When the state of the previous configuration has been trans-
ferred to the new configuration, the new leader informs the master
that this has happened. The master will then tell all future leaders
that they need not access that old configuration.

• Suppose a new ballot b + 1 is begun, but its leader fails before the
state transfer from the ballot b configuration is complete. A new ballot
b +2 then begins, but its leader could also fail before any state transfer
occurs. This could continue happening until ballot b + 42 begins, and
its leader must communicate with acceptors from ballots b through
b + 42. Algorithm Vertical Paxos II avoids the dependence on so
many configurations by having a new configuration initially inactive.
The new leader notifies the master when the state transfer from the
previous configuration is complete, and the master then activates the
new configuration. The leader communicates only with acceptors from
the new configuration and the previous active configuration. However,
a number of new ballots could be started, but remain forever inactive
because their leaders failed, before a new configuration becomes active
and starts accepting new commands. Vertical Paxos II is especially
useful for primary-backup replication.

3 The Primary Backup Case

In a Vertical Paxos consensus algorithm, a ballot leader must access a write
quorum of its own ballot and read quorums of one or more lower-numbered
ballots. Because a reconfiguration is usually performed in response to a
failure, processes participating in lower-numbered ballots are more likely to
have failed. We therefore want to keep read quorums small. Read and write
quorums must intersect, so there is a tradeoff: making read quorums smaller
requires making write quorums larger.

We obtain what is probably the most interesting case of Vertical Paxos
by letting read quorums be as small as possible—namely, making any single
acceptor a read quorum, so the only write quorum is the set of all acceptors.
These are the quorums that allow k -fault tolerance with only k +1 acceptors.
Suppose that in Vertical Paxos II we also always make the leader one of the
acceptors and, upon reconfiguration, always choose the new leader from
among the current acceptors. The new leader by itself is a read quorum for
the previous ballot. Hence, it can perform the state transfer all by itself,
with no messages. (It will still have to interact with the master and may

4

have to exchange messages with acceptors in the new configuration.) If we
call the leader the primary and all other acceptors backups, then we have a
traditional primary-backup system.

The optimizations that are possible with traditional primary-backup sys-
tems all seem to have corresponding optimizations in Vertical Paxos. One
example is the way efficient local reads can be done from the primary while
maintaining linearizability. The primary obtains a lease that gives it per-
mission to reply directly to reads from its local state. A new primary cannot
be chosen until the lease expires. In a similar way, a Vertical Paxos leader
can use a lease to reply immediately to commands that do not change the
state. A new leader cannot be chosen until the previous leader’s lease has
expired.

Boxwood employs this local reading protocol for Replicated Logical De-
vices [8]. Boxwood also uses another optimization that applies as well to
Vertical Paxos. A Boxwood configuration consists of a primary and a single
backup. When either of them fails, the other takes over and continues in a
solo configuration. It may start processing new client requests immediately
upon the reconfiguration decree by the configuration master. This applies
to Vertical Paxos because the solo process is both the leader and a write
quorum of the new configuration, as well as a read quorum of the previous
(two-acceptor) configuration.

Most primary-backup protocols maintain a single active configuration,
as captured by Vertical Paxos II. While having a single active configuration
might seem like a simple and natural choice, the master activates a new
configuration only after the state transfer from the previous configuration is
complete. In practical systems, the state transfer tends to involve copying
a large amount of data and is therefore costly. By allowing multiple active
configurations, Vertical Paxos I decouples state transfer from reconfigura-
tion: a new configuration can be activated to accept new requests, while the
state is transferred from the old configuration. This simple variation of the
existing primary-backup protocols is practically significant.

4 Vertical Paxos

Paxos is an instance of the state-machine approach, in which a sequence of
commands is chosen by executing a separate instance of a consensus algo-
rithm to choose the i th command, for each i . What makes Paxos efficient is
that part of the consensus algorithm is performed simultaneously for all the
different instances. However, correctness depends only on correctness of the

5

consensus algorithm. We therefore concentrate on the consensus algorithm.

4.1 Paxos Preliminaries

A consensus algorithm must solve the following problem. There is a set of
client processes, each of which can propose a value from some set PValues
of proposable values. The algorithm must choose a unique value that was
proposed by some client.

A Paxos consensus algorithm uses a sequence of ballots, with numbers
belonging to an infinite set Ballots sequentially ordered by < and having
minimal element 0. In Vertical Paxos I, Ballots is the set Nat of natural
numbers. In Vertical Paxos II, the numbers of ballots that are started but
never activated are not considered to be in Ballots, so Ballots is a subset of
Nat . For any non-zero b in Ballots, let Prev(b) be the next lower element of
Ballots, and let Prev(0) be a value less than 0 that is not a ballot number.

For each ballot number b, there are two sets of processes: the sets
RQuorums(b) and WQuorums(b) of read and write b-quorums. They satisfy
the property that every write b-quorum has a non-empty intersection with
every read b-quorum and every write b-quorum. An acceptor is a process
that is in a read or write b-quorum, for some ballot number b.

In the original (horizontal) Paxos consensus algorithm, Ballots is the
set of natural numbers, the sets of read and write b-quorums are the same,
and the sets of b-acceptors and b-quorums are independent of b. In Vertical
Paxos, the master computes the read and write b-quorums in reaction to
changes in the system; and in Vertical Paxos II it dynamically adds elements
to Ballots. The master may wait to choose if b is in Ballots and what the
b-quorums are until it needs to know, but once made its choice is fixed.
For simplicity, we assume that Ballots and the read and write quorums are
constant, fixed in advance by an oracle that predicts what the master will
do. (Formally, the oracle is a prophecy variable [1].)

Each acceptor a maintains a value vote[a][b] for each ballot number b.
Its value is initially equal to a non-proposable value None and can be set by
the acceptor to a proposable value v in an action that we call a voting for
v in ballot b. An acceptor cannot change its vote. In an implementation,
acceptor a does not need to remember the value vote[a][b] for all ballot
numbers b, but it is easiest to explain the algorithm in terms of the complete
array vote[a].

A proposable value v is chosen in ballot b iff all acceptors in a write b-
quorum have voted for v in ballot b; and v is chosen iff it is chosen in some
ballot. We now explain how Paxos ensures that at most one proposable

6

value is chosen.
Acceptor a also maintains a ballot number maxBallot [a], initially 0,

that never decreases. The acceptor will not vote in a ballot whose number
is less than maxBallot [a]. We say that a value v is choosable in ballot b
iff v is chosen in b or could become chosen in b by some acceptors (with
maxBallot [a] ≤ b) voting for v in ballot b. We define a proposable value v to
be safe at ballot number b iff no proposable value other than v is choosable
in any ballot numbered less than b. (Thus, all values are safe at 0.) The
fundamental invariant maintained by a Paxos consensus algorithm is that
an acceptor votes in any ballot b only for a proposable value safe at b. It
can be shown that this implies that two different values cannot be chosen.

To get a value v chosen, we just have to choose a ballot number b and
get a write b-quorum Q of acceptors to vote for v in ballot b. We can do this
by choosing Q so that vote[a][b] = None and b ≥ MaxBallot [a] for every
a in Q . However, we must choose v so it is safe at b. We now show how
such a v is chosen. First we observe that because read and write b-quorums
have non-empty intersection, no value is choosable in a ballot b if there is
a read b-quorum Q such that maxBallot [a] > b and vote[a][b] = None for
every acceptor a in Q . Vertical Paxos maintains the invariant that different
acceptors cannot vote for different values in the same ballot. We can then use
algorithm FindSafe of Figure 1 to compute a value safe at ballot number b.

Algorithm FindSafe is written in the PlusCal algorithm language [4],
except that the grain of atomicity is not shown. The algorithm is designed to
be as general as possible, rather than to be efficient, so it can be implemented
in situations where complete information about the values of variables may
not be known. The PlusCal statement with (x ∈ S){ body } is executed
by waiting until the set S is not empty and executing the body with x a
nondeterministically chosen element of S . The statement await P waits
until P is true. The either/or statement nondeterministically chooses to
execute one of its two clauses; however, the choice is deferred until it is
determined which of the clauses are executable, so deadlock cannot be caused
by making the wrong choice.

The result is computed in the variable safeVal , which upon termina-
tion is left equal either to a proposable value safe at b or the special (non-
proposable) value AllSafe indicating that all proposable values are safe at b.
It is not hard to show that algorithm FindSafe is correct if the entire com-
putation is performed atomically, while the variables vote and maxBallot
do not change. Because acceptors vote at most once in any ballot and
maxBallot [a] does not decrease, the algorithm remains correct even if ex-
ecuted nonatomically, with the waiting conditions evaluated repeatedly, as

7

safeVal : = AllSafe ;

c : = Prev(b) ;

while ((safeVal = AllSafe) ∧ (c ≥ 0)) {
either with (acc ∈ {a ∈ Acceptors : vote[a][c] 6= None}) {

safeVal : = vote[acc][c] }
or await ∃Q ∈ RQuorums(c) : ∀ a ∈ Q :

(maxBallot [a] > c) ∧ (vote[a][c] = None) ;

c : = Prev(c) }

Figure 1: Algorithm FindSafe for computing a value safe at ballot b.

long as: (i) the read of vote[acc][c] in the with body is atomic, and (ii) for
each individual acceptor a and ballot number c, the values of maxBallot [a]
and vote[a][c] are both read in a single atomic step when evaluating the
await condition.

Algorithm FindSafe is used in ordinary (horizontal) Paxos. However, it
may require knowing the votes of acceptors in c-quorums for every c ≤ b.
This is unacceptable in Vertical Paxos, where acceptors that participated in
lower-numbered ballots may have been reconfigured out of the system. To
solve this problem, we first define ballot b to be complete if a value has been
chosen in b or all values are safe at b. We can modify algorithm FindSafe
so it stops at a complete ballot rather than at ballot 0. That is, if ballot
number d is complete, we can replace the condition c ≥ 0 by c ≥ d in the
while test. We call the modified algorithm VFindSafe.

4.2 Vertical Paxos I

We describe our algorithms using PlusCal. The PlusCal code describes what
actions processes are allowed to perform. It says nothing about when they
should or should not perform those actions, which affects only liveness. The
liveness property satisfied by a Vertical Paxos algorithm is similar to that
of ordinary Paxos algorithms, except with the added complication caused
by reconfiguration—a complication that arises in any algorithm employing
reconfiguration. A discussion of liveness is beyond the scope of this paper.

In Paxos, the invariant that two different acceptors do not vote for dif-
ferent values in the same ballot is maintained by letting each ballot have a
unique leader process that tells acceptors what value they can vote for in
that ballot. The same physical processor can execute the leader process for

8

infinitely many ballots.
In ordinary Paxos, the leader of a ballot decides for itself when to begin

execution. Our Vertical Paxos algorithms assume a reliable service that
does this. We represent the service as a single Master process. The master
will actually be implemented by a network of processors running a reliable
state-machine implementation, such as (horizontal) Paxos.

The ballot b leader process first waits until it receives a newBallot
message msg (one with msg .type equal to the string “newBallot”) with
msg .bal = b, which is sent by the master. (The master will send this mes-
sage in response to some request that does not concern us.) The value of
msg .completeBal is the largest ballot number that the master knows to be
complete.

As in ordinary Paxos, a ballot proceeds in two phases. In phase 1, the
leader executes algorithm VFindSafe by sending a 1a message to acceptors
and receiving 1b messages in reply. In phase 2, it directs acceptors to choose
a value by sending a 2a message; it learns that the value has been chosen
from the 2b messages with which they reply. Recall that VFindSafe either
returns a single proposable value v safe at b or else returns AllSafe indi-
cating that all values are safe at b. In the first case, the leader executes
phase 2 and waits until v has been chosen. In either case, the leader then
sends a complete message informing the master that ballot b is complete. If
VFindSafe returned AllSafe, the leader waits to receive a client proposal in
a clientReq message and then begins phase 2 to get that value chosen. In
this case, it terminates without waiting to receive the 2b messages.

The code that the leader and acceptors execute in the two phases is
derived from the following meanings of a message m of each type:

1a Request each acceptor a to set maxBallot [a] to m.bal and report the
value of vote[a][m.prevBal]. (Acceptor a ignores the message if m.bal <
maxBallot [a].)

1b Asserts that maxBallot [m.acc] ≥ m.bal and vote[m.acc][m.voteBal] =
m.val .

2a Requests each acceptor a to set vote[a][m.bal] to m.val . (Acceptor a
ignores the message if m.bal < maxBallot [a].)

2b Reports that acceptor m.acc has voted for m.val in ballot m.bal .

The code of the leader processes is in Figure 2 and that of the other processes
is in Figure 3. In PlusCal, an atomic step is an execution from one label
to the next, and the identifier self is the name of the current process. The

9

leader of ballot number b has process name b. The elements of Acceptors
are the names of the acceptors, and we assume a set Clients of client process
names.

In PlusCal, [f 1 7→ v1, . . . , f n 7→ vn] is a record r whose f i field r .f i

equals v i . We represent message passing by a Send operation that simply
broadcasts a message, which can be received by any process interested in
receiving it. For any record r , we let MsgsRcvdWith(r) be the set of mes-
sages received by a process that have their corresponding fields equal to the
fields of the record r .

4.3 Vertical Paxos II

By having the master keep track of the largest complete ballot number,
Vertical Paxos I limits the number of different ballots whose acceptors a
leader must query to choose a safe value. In Vertical Paxos II, a leader
has to query only acceptors from a single previous ballot. It does this by
letting Ballots be a subset of the set of natural numbers. The master adds
a number b to the set of ballot numbers, a procedure we call activating
ballot b, when doing so makes b a complete ballot. (Remember that we are
assuming that the oracle predicted that the master would add b to the set
of ballot numbers, so b is already an element of the constant set Ballots.)
Ballot numbers are activated in increasing order.

In this algorithm, the master’s newBallot message m for ballot b has
m.prevBal equal to the largest currently activated ballot number (which is
less than b). As in Vertical Paxos I, the ballot b leader performs phase 1
and, if VFindSafe returns a single value, it performs phase 2; and it then
sends its complete message. It does all this assuming that b is the next ballot
to be activated. If the master has not activated any ballot since sending its
newBallot message to b, then it activates b and sends an activated message
to the leader. Upon receipt of this message, the leader performs phase 2
if it has not already done so. If ballot b is not activated, then the actions
performed have no effect because b is not a ballot number (so it doesn’t
matter what the value vote[a][b] is for a process a). The leaders’ code is
in Figure 4 and the master’s code is in Figure 5. For coding convenience,
ballot 0 is not performed. Note that the leader’s while loop in Vertical
Paxos I has been eliminated, since the leader assumes that prevBal is the
next lower ballot number.

10

process (BallotLeader ∈ Nat)

variables completeBal , prevBal , safeVal = AllSafe ; {

b1: with (msg ∈ MsgsRcvdWith([type 7→ “newBallot”, bal 7→ self])) {
completeBal : = msg .completeBal ; }

prevBal : = self − 1;

b2: while ((safeVal = AllSafe) ∧ (prevBal ≥ completeBal)) {
b3: Send([type 7→ “1a”, bal 7→ self , prevBal 7→ prevBal]) ;

either with (msg ∈ {m ∈ MsgsRcvdWith([type 7→ “1b”,
voteBal 7→ prevBal]) :

m.val 6= None}){
safeVal : = msg .val }

or await ∃Q ∈ RQuorums(prevBal) : ∀ a ∈ Q :
MsgsRcvdWith([type 7→ “1b”,

bal 7→ self ,
voteBal 7→ prevBal ,
val 7→ None,
acc 7→ a]) 6= {};

prevBal : = prevBal − 1; };

b4: if (safeVal 6= AllSafe) {
Send([type 7→ “2a”, bal 7→ self , val 7→ safeVal]) ;

b5: await ∃Q ∈WQuorums(self) :
∀ a ∈ Q :

MsgsRcvdWith([type 7→ “2b”, acc 7→ a, bal 7→ self])
6= {} ; };

b6: Send([type 7→ “complete”, bal 7→ self]) ;
b7: if (safeVal = AllSafe) {

with (msg ∈ MsgsRcvdWith([type 7→ “clientReq”])) {
Send([type 7→ “2a”, bal 7→ self , val 7→ msg .val]) ; } } }

Figure 2: The leader processes of Vertical Paxos I.

11

process (MasterProc = Master)

variable completeBallot = 0, nextBallot = 0 ; {

m1: while (true) {
either {Send([type 7→ “newBallot”, bal 7→ nextBallot ,

completeBal 7→ completeBallot]) } ;
nextBallot : = nextBallot + 1; }

or with (msg ∈ MsgsRcvdWith([type 7→ “complete”])) {
if (msg .bal > completeBallot) {

completeBallot : = msg .bal ; } } } }

process (Acceptor ∈ Acceptors)

variables vote = [b ∈ Ballots 7→ None] ; maxBallot = 0 ; {

a1: while (true) {

either with (msg ∈ MsgsRcvdWith([type 7→ “1a”])) {
if (msg .bal ≥ maxBallot) {

maxBallot : = msg .bal ;
Send([type 7→ “1b”, acc 7→ self ,

bal 7→ msg .bal , val 7→ vote[msg .prevBal],
voteBal 7→ msg .prevBal]) } }

or with (msg ∈ MsgsRcvdWith([type 7→ “2a”])) {
if (msg .bal ≥ maxBallot) {

maxBallot : = msg .bal ;
vote[msg .bal] : = msg .val ;
Send([type 7→ “2b”, acc 7→ self ,

bal 7→ maxBallot , val 7→ msg .val]) } } } }

process (Client ∈ Clients) {

c1: with (v ∈ PValues) {
Send([type 7→ “clientReq”, val 7→ v]) } } }

Figure 3: The master process and the acceptor and client processes of Ver-
tical Paxos I.

12

process (BallotLeader ∈ Nat \{0})

variables prevBal , safeVal ; {

b1: with (msg ∈ MsgsRcvdWith([type 7→ “newBallot”, bal 7→ self])) {
prevBal : = msg .prevBal ;
Send([type 7→ “1a”, bal 7→ self , prevBal 7→ prevBal]) ; }

b2: either with (msg ∈ {m ∈ MsgsRcvdWith([type 7→ “1b”,
voteBal 7→ prevBal]) :

m.val 6= None}){
safeVal : = msg .val }

or await ∃Q ∈ RQuorums(prevBal) : ∀ a ∈ Q :
MsgsRcvdWith([type 7→ “1b”,

bal 7→ self ,
voteBal 7→ prevBal ,
val 7→ None,
acc 7→ a]) 6= {};

b3: if (safeVal 6= AllSafe) {
Send([type 7→ “2a”, bal 7→ self , val 7→ safeVal]) ;

b4: await ∃Q ∈WQuorums(self) :
∀ a ∈ Q :

MsgsRcvdWith([type 7→ “2b”, acc 7→ a, bal 7→ self])
6= {} ; };

b5: Send([type 7→ “complete”, bal 7→ self , prevBal 7→ prevBal]) ;

b6: await HasRcvd([type 7→ “activated”, bal 7→ self]) ;

b7: if (safeVal = AllSafe) {
with (msg ∈ MsgsRcvdWith([type 7→ “clientReq”])) {

Send([type 7→ “2a”, bal 7→ self , val 7→ msg .val]) ; } } }

Figure 4: The leader processes of Vertical Paxos II.

13

process (MasterProc = Master)

variable curBallot = 0, nextBallot = 1 ; {

m1: while (true) {
either {Send([type 7→ “newBallot”, bal 7→ nextBallot ,

prevBal 7→ curBallot]) ;
nextBallot : = nextBallot + 1; }

or with (msg ∈ MsgsRcvdWith([type 7→ “complete”])) {
if (msg .prevBal = curBallot) {

Send([type 7→ “activated”, bal 7→ msg .bal]);
curBallot : = msg .bal ; } } } }

Figure 5: The master process of Vertical Paxos II.

5 Vertical Paxos and Other Primary-Backup Pro-
tocols

Primary-backup replication protocols are common in practical distributed
systems. Niobe [9], Chain Replication [10], and the Google File System [3]
are three examples of such protocols that have been deployed in systems with
hundreds or thousands of machines. While these protocols are seemingly
unrelated, the first two can be viewed as Vertical Paxos algorithms. The
Google File System does not provide consistency, so it is not an instance of
Vertical Paxos; but it could be made consistent by using Vertical Paxos.

Niobe follows the Vertical Paxos II protocol closely. Each replica forms
a read quorum, while the entire replica set constitutes a write quorum. Re-
configuration uses a global-state manager, with the configuration numbers
corresponding to the ballot numbers in Vertical Paxos II. Niobe incorpo-
rates certain simple optimizations of Vertical Paxos. For example, when
the primary removes a faulty backup from the configuration, no change of
configuration number or state transfer is needed. This is because in Vertical
Paxos with a single write b-quorum, the master can at any time remove ac-
ceptors from that b-quorum. Niobe also allows the primary to handle query
operations locally, as described in Section 3.

Chain Replication imposes an additional chain structure on a replica
group. An update arrives at the head of the chain and propagates down the
chain to the tail. An update message carries both the phase 2a message and

14

phase 2b messages along the chain. When it arrives at the tail, it contains
the phase 2b messages telling the tail that its vote makes the update chosen.
This allows Chain Replication to use the tail, instead of just the head, to
process queries locally. The chain structure also makes it easy to perform
reconfigurations that add a replica to the tail or remove the head or tail. Like
Niobe, Chain Replication uses an external master for reconfiguration and
follows the Vertical Paxos II protocol, maintaining one active configuration.

The Google File System (GFS) implements the abstraction of reliable
distributed files and is optimized for append operations. A file consists of a
sequence of chunks, each replicated on a (possibly different) set of servers.
A master tracks the composition of each file and the locations of its chunks.
GFS superficially resembles Vertical Paxos I in having multiple configura-
tions active concurrently, each operating on a different chunk. However, GFS
does not guarantee state-machine consistency—even for operations that in-
volve only a single chunk. GFS can be made consistent, mainly by changing
how operations to an individual chunk are implemented. This can be done
by making each chunk a separate state machine implemented with Vertical
Paxos. While we do not know the precise algorithm used by GFS, we expect
that this change would not seriously degrade its performance.

There are quite a few different primary-backup protocols. We believe
that each one that guarantees state-machine consistency can be described,
and its correctness demonstrated, by viewing it as an instance of Vertical
Paxos. Vertical Paxos may also lead to interesting new algorithms, including
ones that do not use a single write quorum for each ballot and are thus not
traditional primary-backup protocols.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Bernadette Charron-Bost and André Schiper. Uniform consensus
is harder than consensus (extended abstract). Technical Report
DSC/2000/028, École Polytechnique Fédérale de Lausanne, Switzer-
land, May 2000.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system. In Michael L. Scott and Larry L. Peterson, editors, SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating Sys-
tems Principles, pages 29–43, New York, NY, USA, 2003. ACM.

15

[4] Leslie Lamport. The PlusCal algorithm language. URL http:
//research.microsoft.com/users/lamport/tla/pluscal.html.
The page can also be found by searching the Web for the 25-letter string
obtained by removing the “-” from uid-lamportpluscalhomepage.

[5] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, May 1998.

[6] Leslie B. Lamport and Michael T. Massa. Cheap Paxos. United States
Patent 7249280, filed June 18, 2004, issued July 24, 2007.

[7] Butler W. Lampson. The ABCDs of Paxos. http://research.
microsoft.com/lampson/65-ABCDPaxos/Abstract.html.

[8] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A.
Thekkath, and Lidong Zhou. Boxwood: abstractions as the foundation
for storage infrastructure. In OSDI’04: Proceedings of the 6th Confer-
ence on Symposium on Opearting Systems Design and Implementation,
pages 105–120, Berkeley, CA, USA, 2004. USENIX Association.

[9] John MacCormick, Chandramohan A. Thekkath, Marcus Jager, Kristof
Roomp, Lidong Zhou, and Ryan Peterson. Niobe: A practical replica-
tion protocol. ACM Transactions on Storage (TOS), 3(4), 2008.

[10] Robbert van Renesse and Fred B. Schneider. Chain replication for
supporting high throughput and availability. In Proceedings of the 6th
Symposium on Operating System Design and Implementation (OSDI
2004), pages 91–104, Berkeley, CA, USA, 2004. USENIX Association.

16

