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Abstract—Many factors are believed to increase the 
vulnerability of software system; for example, the more widely 
deployed or popular is a software system the more likely it is to 
be attacked. Early identification of defects has been a widely 
investigated topic in software engineering research. Early 
identification of software vulnerabilities can help mitigate 
these attacks to a large degree by focusing better security 
verification efforts in these components. Predicting 
vulnerabilities is complicated by the fact that vulnerabilities 
are, most often, few in number and introduce significant bias 
by creating a sparse dataset in the population. As a result, 
vulnerability prediction can be thought of us preverbally 
“searching for a needle in a haystack.” In this paper, we 
present a large-scale empirical study on Windows Vista, where 
we empirically evaluate the efficacy of classical metrics like 
complexity, churn, coverage, dependency measures, and 
organizational structure of the company to predict 
vulnerabilities and assess how well these software measures 
correlate with vulnerabilities. We observed in our experiments 
that classical software measures predict vulnerabilities with a 
high precision but low recall values. The actual dependencies, 
however, predict vulnerabilities with a lower precision but 
substantially higher recall. 

Keywords—Vulnerabilities, Prediction, Metrics, Complexity, 
Churn, Coverage, Dependencies, Organizational Structure 

I. INTRODUCTION 

Software security is a critical part of the software 
development process. While there is a significant body of 
work on predicting defects, unfortunately little is known 
about the field of vulnerability prediction. Some recent work 
focused on this topic in the open source domain [9][15][22]. 
In this paper, we focus on vulnerability prediction for a 
proprietary commercial product (Windows Vista). We define 
a component to be vulnerable if it has been changed as part 
of a security update after it was released publically.  

Software security and reliability are two crucial aspects 
of software engineering research. Software security research 
spans several domains ranging from better programming 
language design suited for security to the use of processes 
like penetration testing, design and use of robust access 
control policies [10]. For example, a software systems can be 

reliable (i.e., works as expected) but not secure or a software 
system can be secure (e.g., adopting threat modeling 
effectively, eliminating buffer overflows programmatically, 
etc.) but not reliable (does not work as expected). To better 
address both security and reliability, it is essential to 
understand differences and similarities between these two 
fields.  

Towards that end, we leverage existing metrics that have 
been used in prior research for defect prediction 
[17][18][19][20] to understand and investigate the efficacy 
of these metrics for vulnerability prediction. More formally, 
our research hypothesis is to investigate and report on the 
ability of classical defect prediction metrics to be used as 
predictors for vulnerability prediction. For this purpose, 
we study Windows Vista, which is a large and widely-used 
commercial operating system from Microsoft Corporation. A 
statistical challenge in our study is motivated by the fact that 
vulnerabilities are few and widely distributed in the dataset 
akin to searching for a needle in a haystack. In our study for 
example, only 66 advisories have been recorded for Vista 
(40 Million plus lines of code) in the National Vulnerability 
Database (NVD) [21], and only few of the Windows binaries 
are affected by security updates.  

This statistical challenge involves identifying which of 
the classical metrics related to code quality can predict 
vulnerabilities. We extract complexity, churn, coverage, 
dependency metrics for Vista and used them to predict the 
vulnerabilities that are found and fixed in Vista as dependent 
variable. Our results are as follows: 
 Metrics correlate with vulnerabilities; however the 

effect is only small (Section IV). 
 Most metrics can predict vulnerabilities with an 

average to good precision; however the recall is very 
low (Section V.B). 

 Alternative techniques such as using the actual 
dependencies of a binary to predict vulnerabilities have 
better recall values (Section V.C). 

The paper is organized as follows. Section II describes 
the metrics that we collected and used in our experiment. 
Section III characterizes our vulnerabilities based on public 
data available in the NVD database. Section IV discusses the 
correlation results between the collected metrics and 
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vulnerabilities in Windows Vista. Section V presents the 
results of our experiment on predicting vulnerabilities in 
Windows Vista. Section VI presents threats to validity of our 
study. Section VII discusses related work in the context of 
our experiment and Section VIII concludes with future work. 

 

II. DATA COLLECTION 

In this section, we discuss the various metrics that we 
used in our experiment to predict vulnerabilities. The 
discussed measures have been used for predicting defects in 
prior research both within and outside of Microsoft. The 
measures can be broadly classified into five categories. 
Throughout the paper, we will refer to the metrics in 
subsections (i)-(v) as “classical metrics”.  

 
(i)  Code Churn Measures [17]:  
a. Total Churn: The total added, modified, and deleted 

lines of code of a binary during the development of 
Vista. For our experiments on Windows Vista the churn 
is measured relative to Windows Server 2003, the 
release before Vista. 

b. Frequency: The number of times that a binary was 
edited during its development cycle. The implication is 
the greater the number of edits, the greater the risk of 
vulnerabilities.  

c. Repeat Frequency: The number of consecutive edits that 
are performed on a binary. A consecutive edit is when a 
binary is edited between builds N and N+1 and then 
again between builds N+1 and N+2. This is a measure of 
the instability of the binary during its development. The 
greater the repeat frequency, the greater the instability of 
the binary during its development.  

 
(ii) Code Complexity Measures [19]:  
a. (Max)(Total) Cyclomatic complexity [13] measures the 

number of linearly-independent paths through a program 
module.   

b. (Max)(Total) Fan-In: number of functions calling a 
function. 

c. (Max)(Total) Fan-Out: number of functions called by a 
function. 

d. (Max)(Total) Lines of Code (LOC). 
e. (Max)(Total) Weighted methods per class (if any). 
f. (Max)(Total) Depth of Inheritance (if any). 
g. (Max)(Total) Coupling between objects (if any). 
h. (Max)(Total) Number of sub classes (if any). 
i. Total Global variables. 

 
For each of the code complexity metrics, we collect two 
measures (Max) and (Total) across the entire system (metrics 
are computed on binary level). Max is the maximum value of 
the metric across all components (or files) in the system, and 
Total is the total value of the metric across the entire system. 
 
(iii) Dependency Measures [18]:  
For dependencies we compute both data dependencies and 
call dependencies at the function level, including caller-

callee dependencies, imports, exports, RPC, COM, Registry 
access. The dependencies are rolled up to the binary level. 
For each binary, we compute the following dependency 
metrics. 
 
a. Incoming direct: The number of incoming direct 

dependencies to a binary. 
b. Incoming closure: The number of incoming indirect 

dependencies to a binary. 
c. Outgoing direct: The number of outgoing direct 

dependencies from a binary. 
d. Outgoing closure: The number of outgoing indirect 

dependencies from a binary. 
e. Layer information: The distance of a binary from the 

system hardware (CPU), i.e., the Kernel, in the 
architectural layering of Windows. 

 
(iv) Code coverage Measure:  
For each binary within Windows Vista, we compute the total 
block and arc coverage measures.  
a. Block coverage: A (basic) block is a set of contiguous 

instructions (code) in the physical layout of a binary that 
has exactly one entry point and one exit point. Calls, 
jumps, and branches mark the end of a block. A block 
typically consists of multiple machine-code instructions. 
The number of blocks covered during testing constitutes 
the block coverage measure. 

b. Arc coverage: Arcs between blocks represent the 
transfer of control between basic blocks due to 
conditional and unconditional jumps, as well as due to 
control falling through from one block to another. 
Similar to block coverage the proportion of arcs covered 
in a binary constitute the arc coverage. Arc coverage can 
also be called branch coverage. 

  
(v) Organizational Measures [20]: 
a. Number of Engineers (NOE): This is the absolute 

number of unique engineers who have touched a binary 
and are still employed by the company. 

b. Number of Ex-Engineers (NOEE): This is the total 
number of unique engineers who have touched a binary 
and have left the company as of the release date of the 
software system. 

c. Edit Frequency (EF): This is the total number of times 
the source code that makes up the binary was edited. An 
edit is when an engineer checks out code from the 
version control system, alters it, and checks it in again. 
This is independent of the number of lines of code 
altered during the edit.  

d. Depth of Master Ownership (DMO): This metric 
determines the level of ownership of the binary 
depending on the number of edits done. The 
organization level of the person whose reporting 
engineers perform more than 75% of the rolled up edits 
is considered as the DMO. This metric determines the 
binary owner based on activity on that binary. Our 
choice of 75% is based on prior historical information 
on Windows to quantify ownership.  

422



e. Percentage of Org contributing to development (PO): 
The ratio of the number of people directly reporting at 
the DMO level relative to the total org size at the DMO 
level. 

f. Level of Organizational Code Ownership (OCO): The 
percent of edits from the organization that contains the 
binary owner (or if there is no owner the percent of edits 
from the organization that made the majority of the edits 
to that binary).  

g. Overall Organization Ownership (OOW): This is the 
ratio of the people at the DMO level making edits to a 
binary relative to total engineers editing the binary. A 
high value is good. 

h. Organization Intersection Factor (OIF): The number of 
different organizations that contribute more than 10% of 
edits, as measured at the level of the overall org owners. 

 
(vi) Actual Dependencies [26][28]: 
We use dependency relationships among the binaries of 
Vista to predict vulnerabilities. The dependencies of a binary 
are an implicit description of its problem domain. For 
example, applications that access the Internet will share 
similar dependencies and also have a similar vulnerability 
profile.  

The use of dependencies is motivated by an earlier study 
by Schröter et al. [26] who showed that import dependencies 
can predict defects for Eclipse. We replicated the study for 
arbitrary dependencies on Windows Vista and found similar 
result for defects [28]. Neuhaus et al. showed that for Firefox 
dependencies can also predict vulnerabilities [22]. 

 

III. CHARACTERIZING VULNERABILITIES IN VISTA  

To characterize the vulnerabilities in Windows Vista we 
used data from the National Vulnerability Database (NVD) 
[21]. The NVD database contains over 35,000 publicly 
known security vulnerabilities. For Vista 66 vulnerabilities 
were reported as of April 2009. 

Each entry in the NVD database comes with values for 
Common Vulnerability Scoring System (CVSS) metrics [14] 
that capture the characteristics of the vulnerability in terms 
of access and impact. In this Section, we summarize the 
CVSS metrics for the 66 Vista vulnerabilities. 

The CVSS metrics Access Vector, Access Complexity, 
and Authentication describe how the vulnerability can be 
accessed and what conditions are required to exploit it.  
 Access Vector. This metric indicates from where an 

attacker can exploit the vulnerability. Of the Vista 
vulnerabilities, 19 can be exploited only with physical 
access to the machine, one can be exploited through an 
adjacent network (e.g., IP subnet or Bluetooth), and 46 
can be exploited remotely. 

 Access Complexity. This metric measures the 
complexity of attacks exploiting the vulnerability. A 
vulnerability with low complexity can be for example a 
buffer overflow in a web server, the vulnerability can 
be exploited at will. In contrast a vulnerability in an 
email client can be of high complexity, if the user has 

to perform several suspicious steps before the 
vulnerability is accessed. For Vista, the access 
complexity is low for 32 vulnerabilities, medium for 31 
vulnerabilities, and high for three vulnerabilities.  

 Authentication. This metric counts how often an 
attacker must authenticate before the vulnerability can 
be exploited. For 62 vulnerabilities in Vista, 
authentication was not required to exploit the 
vulnerability; only four vulnerabilities required the 
attacker to be logged onto the system. 

The CVSS impact metrics measure how much the 
vulnerability will affect a user, once it is exploited, with 
respect to confidentiality, integrity, and availability. 
 Confidentiality Impact. Of the vulnerabilities in 

Vista, 17 had no impact to the confidentiality of the 
system, 7 had partial information disclosure, and 42 
had total information disclosure, which means that an 
attacker is able to read all of the system’s files. 

 Integrity Impact. Of the vulnerabilities in Vista, 15 
had no impact on the integrity of the system, for 10 
vulnerabilities the attacker is able to modify some files, 
and for 42 the attacker is able to modify all files. 

 Availability Impact. For 10 vulnerabilities, there was 
no impact on the availability of the system, for 8 there 
was reduced performance and for 48 the attacker is 
able to shut down the system completely. 

The values for the above metrics can be combined into a 
single CVSS base score which takes values from 0 (low 
severity) to 10 (highest severity). For the 66 Vista 
vulnerabilities the CVSS base scores range from 1.9 to 10, 
with an average of 7.5 and median of 7.2. 

 

IV. CORRELATION ANALYSIS 

In a first analysis we computed the correlations between 
the metrics described in Section II.(i)-(v) and the number of 
vulnerabilities per binary. We used the Spearman rank 
correlation, which is a robust technique that can be applied 
even when the association between values is non-linear [6]. 
The closer the value of a correlation is to –1 or +1, the higher 
two measures are correlated—positively for +1 and 
negatively for –1. A value of 0 indicates that two measures 
are independent. We also computed the statistical 
significance of each correlation to ensure that our results are 
not random. All correlations were significant at p<0.0001, 
except for Layer information and Outgoing closure from the 
dependency measures and Percentage of Org, Overall 
Organization Ownership, and Organization Intersection 
Factor from the organizational measures. 

Table I shows the metrics for which we found significant 
correlations. Values greater than 0.10 can be considered a 
small effect size; values greater than 0.30 can be considered 
a medium effect size [4]. All our correlations are positive, 
which means that for an increase in the metric, the number of 
vulnerabilities increases as well. However, we note that all 
effects are small. 

We can observe the highest correlation values for metrics 
related to edits (Edit Frequency, Frequency, Repeat 
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Frequency, Editing Ex-Engineers) and size and complexity 
of binaries (Total Lines of Code, Total Complexity). This 
observation suggests that binaries with frequent changes by a 
large number of engineers are more prone to vulnerabilities. 
Meneely and Williams found a similar phenomenon in a 
study of Red Hat Linux [15]. Our study indicates an 
accentuated effect of vulnerabilities in binaries with frequent 
changes by engineers who have left the company.  A 
possible explanation for this is that when engineers leave, 
knowledge about the structure and dependencies of the 
component is lost. Similarly, binaries with many lines of 
code and high complexity are more prone to vulnerabilities. 
 

Classical metrics correlate with the number of 
vulnerabilities; however the effect is only small. 
 

V. PREDICTING SECURITY VULNERABILITIES 

In this section, we describe an analysis to provide a 
predicted classification of which binaries in Windows Vista 
will have vulnerabilities. Every binary is either predicted to 
have no vulnerabilities or to have one or more 
vulnerabilities. We first describe our general experimental 
setup which consists of 100 random splits (Section 5.1). 
Next, we discuss the results for logistic regression and 
metrics (Section 5.2) and for support vector machines on 
dependency relations (Section 5.3). 

A. Experimental Setup. 

To evaluate the predictive power of our models, we use a 
standard evaluation technique: data splitting [16]. That is, we 
randomly pick two-thirds of all binaries (training set) to 
build a prediction model and use the remaining one-third 
(testing set) to measure the efficacy of the built model. For 
every experiment, we performed 100 random splits to ensure 
the stability and repeatability of our results. Whenever 
possible, we reused the random splits to facilitate 
comparison of results.  

Because the percentage of vulnerable binaries was very 
low (needle in the haystack), we use stratified sampling for 
choosing the training and testing sets. This ensures that there 
are always a sufficient number of vulnerable binaries in the 
training set to learn from (in contrast, when choosing 
binaries entirely randomly with naïve sampling, the training 
set might have zero vulnerable binaries, leading to a trivial 
model that classifies everything the same). In addition, 
stratified sampling ensures that the ratio of vulnerable 
binaries in the training and testing sets remains constant 
across the random splits. 

To assess the quality of the prediction models, we 
computed precision and recall. To explain these two 
measures, we use the following contingency table. 
 

Observed
 
Vulnerable 

Non-
Vulnerable

Predicted Vulnerable A B
Non-
Vulnerable

C D

 
The recall A/(A+C) measures the percentage of binaries 

observed as vulnerable that were classified correctly. The 
fewer false negatives (missed binaries), the closer the recall 
is to 1. 

The precision A/(A+B) measures the percentage of 
binaries percentage of binaries predicted as vulnerable that 
were classified correctly. The fewer false positives 
(incorrectly predicted as vulnerable), the closer the precision 
is to 1. 

Both precision and recall should be as close to the value 
1 as possible (=no false negatives and no false positives). 
However, such values are difficult to realize since precision 
and recall counteract each other. 

TABLE I.  SPEARMAN CORRELATION VALUES WITH 
NUMBER OF VULNERABILITIES. 

Metric rho
Edit Frequency (EF) 0.292
Total Lines of Code 0.281
Frequency 0.279
Total Complexity 0.276
Repeat Frequency 0.273
Number of Ex-Engineers (NOEE) 0.270
TotalFanIn 0.263
TotalFanOut 0.262
Number of Engineers (NOE) 0.261
Total Global Variables 0.255
Total Churn 0.254
Max FanIn 0.224
Max Complexity 0.207
Max FanOut 0.196
Max Lines of Code 0.194
Outgoing direct 0.168
Total ClassMethods 0.167
Max ClassMethods 0.164
Total InheritanceDepth 0.161
Total BlockCoverage 0.157
Incoming direct 0.156
Tota ClassCoupling 0.154
Total ArcCoverage 0.152
Incoming closure 0.148
Total SubClasses 0.141
Max InheritanceDepth 0.137
Max ClassCoupling 0.137
Max SubClasses 0.124
Level of Org. Code Ownership (OCO) 0.123
Depth of Master Ownership (DMO): 0.101

All correlations values are significant at p<0.0001. 
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B. Predicting with Classical Metrics 

To predict vulnerabilities with the classical metrics from 
Section II.(i)-(v), we used binary logistic regression. Logistic 
regression predicts likelihoods between 0 and 1. In our case, 
the likelihoods can be interpreted as the “vulnerableness”, 
i.e., how likely a binary contains at least one vulnerability. 

For classification, we used a threshold of 0.50, i.e., all 
binaries with a vulnerableness of less than 0.50 were 
predicted as free of vulnerabilities, while binaries with a 
vulnerableness of at least 0.50 were predicted as vulnerable. 

We ran six different experiments (recall that a single 
experiment consists of 100 random splits). We did one 
experiment for each of the five groups of metrics in Section 
II: Churn, Complexity (Cplx), Coverage (Cov), Dependency 
Measures (Dep), and Organizational Structure (Org). For the 
sixth experiment, we used the metrics of all groups 
combined (All).  

The results of the experiments are summarized in Figure 
1 as box plots. Each experiment is represented by two box 
plots, one for precision and one for recall. A box plot shows 
the minimum value (lowest horizontal line), the maximum 
value (highest horizontal line), the lower quartiles (lower 
vertical line of the box), the upper quartile (upper vertical 
line of the box), and the median (thick vertical line dividing 
the box). For example, in Figure 1 the box plot for Precision 
and Churn shows that in the 100 random splits, the minimum 
precision was 0.167, and reached up to 1.000. The median 
precision was 0.667 (thick line). 

Sometimes prediction models classify everything the 
same, which would result in either a precision of 1 (and a 
recall of 0) or a recall of 1 (and a very low precision). 
However, in practice such trivial models are useless because 

they cannot support any decision making. From a modeling 
perspective, such cases indicate that there is not enough 
information available to make predictions. For the box plots 
in Figure 1, we ignored such cases, which except for the 
Coverage experiment occurred very rarely (in seven out of 
500 splits). For Coverage, all 100 random splits yielded 
trivial models, which is why we cannot show any meaningful 
box plots in Figure 1. 

The highest median precision in our experiments was 
0.667 for Churn, Dependency Measures (Dep), and 
Organizational Structure (Org). In other words, two out of 
three binaries predicted as vulnerable, are actually 
vulnerable. However, it has to be noted that in our 
experiments the precision widely varied across splits, 
especially for Churn and Depends Measures. 

The recall values are disappointing. The highest median 
recall was roughly 0.2 for the combined model (All), which 
means that on average only one out of five vulnerabilities 
can be identified. In some splits, the recall improved to 0.4 
(two out of five), which is still not a very high value. 
Organization Structure had slightly lower, but comparable 
recall values to the combined model. 

We also looked at top binaries predicted as most 
vulnerable by each model. For this, we predicted for each 
binary in the testing set the vulnerableness, and then ranked 
by the vulnerableness (high-to-low). The results of this 
experiment are in Figure 2, for Top-1 to Top-20. For this 
experiment, we ignore the models built from Coverage 
metrics (because as mentioned above they turned out to be 
trivial models).  

When ranking binaries, the top-most binary is vulnerable 
between 63% (Complexity) and 84% (Org), for the Top-10 
binaries the hit rate is still between 42% and 62%. This 
observation shows that metrics can effectively rank 
vulnerable binaries to the top. Rather than inspecting binaries 

 

Figure 1. Precision and recall for predicting binaries as 
vulnerable. [* The coverage models classified all binaries 
the same, which results either in precision or recall of 1]

 

Figure 2. Hitrate for the Top-20 binaries. 
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without any order, the binaries should be inspected in order 
of decreasing predicted vulnerableness. 

 
Most metrics predict vulnerabilities with an average to good 
precision; however the recall is very low. 

 

C. Predicting with Dependencies 

We also built prediction models that use the targets of the 
dependencies of a binary as input. For example, for a binary 
that depends on Foo.exe, Bar.dll, and Qux.dll, we used 
Foo.exe, Bar.dll and Qux.dll to make a prediction. More 
formally, the input for our model is a high-dimensional bit 
vector, with one bit for every possible dependency target. In 
the example above, we would set the bits for Foo.exe, 
Bar.dll, and Qux.dll. The output is again a classification of 
whether the binary would contain vulnerability or not. Using 
just the dependency relationships is inspired by a study of 
Schröter et al. for software defects [26], which was 
replicated by Neuhaus et al. for vulnerabilities [22]. 

Because of the high dimensionality of the input data 
(every possible dependency target is considered as one 
dimension), classical regression models would be doomed to 
overfit the data. Instead we rely on Support Vector Machines 
(SVMs) [2][25]. They have been used on similar datasets 
[26], and achieved better results than linear regression, 
regression trees, and ridge regression, possibly because 
SVMs are less prone to overfitting. 

To make a prediction for a binary from the test set, we 
compute its dependencies and represent them as a bit vector. 
The bit vector then serves as the input to the SVM built from 
the training data. The SVM then classifies the test binary as 
vulnerable or not vulnerable. 

The results of SVMs for predicting vulnerable binaries 
are shown in Figure 3 in a precision recall diagram. For each 
random split we create one point with the precision value on 
the x axis and the recall value on the y axis. The median 
precision of all experiments is 0.6 which is comparable to the 
results for the metrics in the previous section. However, for 
dependency relations the recall increases substantially. In the 
experiments recall values ranged between 0.2 and 0.6. The 
median is now 0.40 (compared to 0.2 for metrics).  

 
The dependencies of a binary predict vulnerabilities with 
better recall values than classical metrics. 

 

D. Discussion 

 
A possible explanation for the increase in recall is that 

the dependencies of a binary describe its problem domain. 
Some domains are simply more likely to face vulnerabilities. 
For example binaries that connect to the Internet will share 
certain dependencies and a more likely to have 
vulnerabilities.  For an effective prediction of vulnerabilities 
the domain and functionality of a binary has to be taken into 
account, which is impossible by just using software metrics. 

Other relevant factors that should be included for 
prediction are the complexity of an attack based on a 
vulnerability. For example, for some binaries it will be very 
hard for attackers to exploit a vulnerability, maybe because 
the attacker needs local access to the machine, several 
passwords, and the user needs to perform suspicious actions. 
These binaries are less likely to have critical vulnerabilities 
that matter. The importance of vulnerabilities is hard to 
capture with existing software metrics. However, finding 
latent vulnerabilities is still useful because they might be 
exploited at a later point in time. 

In short our results show that predicting security 
vulnerabilities is possible. However the results can still be 
improved. We believe that the key for doing this is by (1) 
developing new prediction techniques that deal with the 
“needle in the haystack” problem; and (2) finding new 
metrics that deal with the unique characteristics of 
vulnerabilities and attacks. 

 

VI. THREATS TO VALIDITY 

As stated by Basili et al. [1], drawing general conclusions 
from empirical studies in software engineering is difficult 
because any process depends on a potentially large number 
of relevant context variables. For this reason, we cannot 
assume a priori that the results of our study generalize 
beyond the specific environment in which it was conducted. 

Since this study was performed on the Windows Vista 
operating system and the size of the code base and 
development organization is at a much larger scale than 
many commercial products, it is possible that the specific 
models built for Windows would not apply to other products, 
or newer versions of Windows. 

 

 
Figure 3. Precision and recall for actual dependencies. 
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VII. RELATED WORK 

To the best of our knowledge, only few empirical studies 
exist for software vulnerabilities. There exists a large body of 
work on defect prediction for which we refer to a survey by 
Catal and Diri [3]. 

Shin and Williams [27] correlated several complexity 
measures with the number of security problems, for the 
JavaScript Engine of Mozilla, but found only a weak 
correlation. This result indicates that there are further factors 
that influence vulnerabilities, and that there is a need for new 
metrics for prediction of vulnerabilities. 

Gegick et al. used code-level metrics such as lines of 
code, code churn, and number of static tool alerts [8] as well 
as past non-security faults [7] to predict security faults. In the 
most recent work, Gegick et al. achieved a precision of 0.52 
and a recall of 0.57.  Gegick et al. created a vulnerability 
prediction model using security-related static analysis alerts, 
code churn, size and inspection faults.  The model was used 
to rank the components of a large Cisco system based upon 
the likelihood the component contained a vulnerability.  The 
model predicted that 75.6% of the vulnerabilities could be 
found in the top 18.6% of the components [9].  

Neuhaus et al. [22] investigated the Mozilla project and 
found a correlation between vulnerabilities and imports (that 
is, the include directives in source files). They used the 
imports to predict vulnerabilities with SVMs. We replicated 
their study as part of Section 5.3. Our median precision of 
0.60 and recall of 0.40 is roughly comparable to the study by 
Neuhaus et al. who reported average precision of 0.70 and 
recall of 0.45. 

Neuhaus and Zimmermann [23] analyzed RedHat 
packages and their dependencies and build a model to predict 
packages with vulnerabilities. While the goal is similar to our 
study, the level of analysis is completely different. They 
focus on application level, while our study focused on 
component level within one single application. 

Ozment at al. [24] and Li et al. [11] studied how the 
number of defects and security issues evolve over time. Di 
Penta et al. [5] tracked vulnerabilities across versions in 
order to investigate how different kinds of vulnerabilities 
evolve and decay over time. 

Meneely and Williams [15] performed an empirical case 
study by examining correlations between the known security 
vulnerabilities in the open source Red Hat Enterprise Linux 4 
kernel and developer activity metrics. Files developed by 
otherwise- independent developer groups were more likely to 
have a vulnerability. However, files with changes from nine 
or more developers were 16 times more likely to have a 
vulnerability than files changed by fewer than nine 
developers, indicating that many developers changing code 
may have a detrimental effect on the system’s security. 

 

VIII. CONCLUSION AND CONSEQUENCES 

In this paper, we present the results of an empirical case 
study on the ability of classical metrics that have been used 
for defect prediction for vulnerability prediction. To the best 
of our knowledge this is the first large scale study carried out 

on a widely-deployed commercial OS like Windows wherein 
we explore the ability of a significant variety of measures 
ranging from code churn, complexity, dependencies to 
organization structure of the company building the software 
system.  

Our results indicate that there is no one universal set of 
metrics that work efficiently for predicting vulnerabilities. 
Churn, complexity, coverage predict vulnerabilities with 
high precision but low recall values. Alternatively code 
dependencies predict vulnerabilities with low precision and 
high recall. Hence is possible to use a combination of metrics 
to obtain reasonable precision and recall while predicting 
defects.  

Our results motivate future work in three areas:  
(i) Vulnerabilities are not as simple to predict as defects. 

The “needle in the haystack” problem challenges 
standard statistical prediction methods. This to some 
degree explains that the precision and recall values for 
predicting vulnerabilities is not in the comparable range 
for predicting defects. Further, the risk of vulnerabilities 
depends also on usage and domain of the components. 

(ii) To better predict vulnerabilities we therefore need new 
measures that capture domain and usage, (for 
example attack surface measurement [12] and better 
statistical techniques to deal with sparse data. As 
pointed out earlier for example Vista has 66 advisories 
have been recorded in the NVD database, and only few 
of the Windows binaries are affected by security 
updates.  

(iii) We plan to leverage specific metrics related to software 
security like buffer overflows, integer overruns, 
arithmetic errors, spoofing attack bugs, repudiation 
bugs, denial of service attack bugs found during 
software development as a predictor of post-release 
vulnerabilities.  
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