
Doi:10.1145/1866739.1866760

january 2011 | vol. 54 | no. 1 | communications of the acm 99

Sora: High-Performance Software
Radio Using General-Purpose
Multi-Core Processors
By Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M. Voelker

abstract
This paper presents Sora, a fully programmable software radio
platform on commodity PC architectures. Sora combines the
performance and fidelity of hardware software-defined radio
(SDR) platforms with the programmability and flexibility of
general-purpose processor (GPP) SDR platforms. Sora uses
both hardware and software techniques to address the chal-
lenges of using PC architectures for high-speed SDR. The Sora
hardware components consist of a radio front-end for recep-
tion and transmission, and a radio control board for high-
throughput, low-latency data transfer between radio and host
memories. Sora makes extensive use of features of contem-
porary processor architectures to accelerate wireless protocol
processing and satisfy protocol timing requirements, includ-
ing using dedicated CPU cores, large low-latency caches
to store lookup tables, and SIMD processor extensions for
highly efficient physical layer processing on GPPs. Using the
Sora platform, we have developed a few demonstration wire-
less systems, including SoftWiFi, an 802.11a/b/g implemen-
tation that seamlessly interoperates with commercial 802.11
NICs at all modulation rates, and SoftLTE, a 3GPP LTE uplink
PHY implementation that supports up to 43.8Mbps data rate.

1. intRoDuction
Software-defined radio (SDR) holds the promise of fully pro-
grammable wireless communication systems, effectively
supplanting current technologies which have the lowest
communication layers implemented primarily in fixed, cus-
tom hardware circuits. Realizing the promise of SDR in prac-
tice, however, has presented developers with a dilemma.

Many current SDR platforms are based on either pro-
grammable hardware such as field programmable gate
arrays (FPGAs)8, 10 or embedded digital signal processors
(DSPs).6, 12 Such hardware platforms can meet the process-
ing and timing requirements of modern high-speed wireless
protocols, but programming FPGAs and specialized DSPs
are difficult tasks. Developers have to learn how to program
to each particular embedded architecture, often without
the support of a rich development environment of program-
ming and debugging tools. Such hardware platforms can
also be expensive.

In contrast, SDR platforms based on general-purpose
processor (GPP) architectures, such as commodity PCs,
have the opposite set of trade-offs. Developers program to a
familiar architecture and environment using sophisticated
tools, and radio front-end boards for interfacing with a PC

are relatively inexpensive. However, since PC hardware and
software have not been designed for wireless signal process-
ing, existing GPP-based SDR platforms can achieve only lim-
ited performance.1, 7 For example, the popular USRP/GNU
Radio platform is reported to achieve only 100kbps through-
put on an 8-MHz channel,18 whereas modern high-speed
wireless protocols like 802.11 support multiple Mbps data
rates on a much wider 20-MHz channel. These constraints
prevent developers from using such platforms to achieve
the full fidelity of state-of-the-art wireless protocols while
using standard operating systems and applications in a real
environment.

In this paper we present Sora, a fully programmable soft-
ware radio platform that provides the benefits of both SDR
approaches, thereby resolving the SDR platform dilemma
for developers. With Sora, developers can implement and
experiment with high-speed wireless protocol stacks, e.g.,
IEEE 802.11a/b/g and 3GPP LTE, using commodity general-
purpose PCs. Developers program in familiar programming
environments with powerful tools on standard operating
systems. Software radios implemented on Sora appear like
any other network device, and users can run unmodified
applications on their software radios with the same perfor-
mance as commodity hardware wireless devices.

An implementation of high-speed wireless protocols on
general-purpose PC architectures must overcome a number
of challenges that stem from existing hardware interfaces
and software architectures. First, transferring high-fidelity
digital waveform samples into PC memory for processing
requires very high bus throughput. For example, existing
802.11a/b/g requires 1.2Gbps system throughput to transfer
digital signals for a single 20-MHz channel, while the latest
802.11n standard needs near 10Gbps as it uses even wider
band and multiple-input–multiple-output (MIMO) technol-
ogy. Second, physical layer (PHY) signal processing requires
high computation for generating information bits from the
large amount of digital samples, and vice versa, particularly
at high modulation rates; indeed, back-of-the-envelope cal-
culations for processing requirements on GPPs have instead

The original version of this paper was published in
Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’09). This work
was performed when Ji Fang and He Liu were visiting
students and Geoffrey M. Voelker was a visiting researcher
at Microsoft Research Asia.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1866739.1866760&domain=pdf&date_stamp=2011-01-01

100 communications of the acm | january 2011 | vol. 54 | no. 1

research highlights

different wireless technologies may have subtle differences
among one another, they generally follow similar designs
and share many common algorithms. In this section, we use
the IEEE 802.11a/b/g standards to exemplify characteristics
of wireless PHY and MAC components as well as the chal-
lenges of implementing them in software.

2.1. Wireless PhY
The role of the PHY layer is to convert information bits into
a radio waveform, or vice versa. At the transmitter side, the
wireless PHY component first modulates the message (i.e., a
MAC frame) into a time sequence of digital baseband signals.
Digital baseband signals are then passed to the radio front-
end, where they are converted to analog waveform, multiplied
by a high frequency carrier and transmitted into the wireless
channel. At the receiver side, the radio front-end receives
radio signals in the channel and extracts the baseband wave-
form by removing the high-frequency carrier. The extracted
baseband waveform is digitalized and converted back into
digital signals. Then, the digital baseband signals are fed into
the receiver’s PHY layer to be demodulated into the original
message.

The PHY layer directly operates on the digital base-
band signals after modulation on the transmitter side and
before demodulation on the receiver side. Therefore, high-
throughput interfaces are needed to connect the PHY layer
and the radio front-end. The required throughput linearly
scales with the bandwidth of the baseband signal as well as
the number of antennas in a MIMO system. For example, the
channel width is 20MHz in 802.11a. It requires a data rate of
at least 20M complex samples per second to represent the
waveform. These complex samples normally require 16-bit
quantization for both in-phase and quadrature (I/Q) compo-
nents to provide sufficient fidelity, translating into 32 bits
per sample, or 640Mbps for the full 20 MHz channel. Over-
sampling, a technique widely used for better performance,11
doubles the requirement to 1.28Gbps. With a 4 × 4 MIMO
and 40-MHz channel, as specified in 802.11n, it will again
quadruple the requirement to 10Gbps to move data between
the RF frond-end and PHY for one channel.

Advanced communication systems (e.g., IEEE 802.11a/b/g,
as shown in Figure 1) contain multiple functional blocks in
their PHY components. These functional blocks are pipe-
lined with one another. Data are streamed through these
blocks sequentially, but with different data types and sizes.
As illustrated in Figure 1, different blocks may consume or
produce different types of data in different rates arranged
in small data blocks. For example, in 802.11b, the scram-
bler may consume and produce one bit, while DQPSK
modulation maps each two-bit data block onto a complex
symbol, whose real and image components represent I and
Q, respectively.

Each PHY block performs a fixed amount of computation
on every transmitted or received bit. When the data rate is
high, e.g., 11Mbps for 802.11b and 54Mbps for 802.11a/g,
PHY processing blocks consume a significant amount of
computational power. Based on the model in Neel et al.,16
we estimate that a direct implementation of 802.11b may
require 10GOPS while 802.11a/g needs at least 40GOPs.

motivated specialized hardware approaches in the past.14, 16
Lastly, wireless PHY and media access control (MAC) proto-
cols have low-latency real-time deadlines that must be met
for correct operation. For example, the 802.11 MAC protocol
requires precise timing control and ACK response latency on
the order of tens of microseconds. Existing software archi-
tectures on the PC cannot consistently meet this timing
requirement.

Sora addresses these challenges with novel hardware
and software designs. First, we have developed a new, inex-
pensive radio control board (RCB) with a radio front-end
for transmission and reception. The RCB bridges an RF
front-end with PC memory over the high-speed and low-
latency PCIe bus. With this bus standard, the RCB can sup-
port 16.7Gbps (×8 mode) throughput with sub-microsecond
latency, which together satisfies the throughput and timing
requirements of modern wireless protocols while perform-
ing all digital signal processing on host CPU and memory.

Second, to meet PHY processing requirements, Sora
makes full use of various features of widely adopted multi-
core architectures in existing GPPs. The Sora software
architecture explicitly supports streamlined processing
that enables components of the signal processing pipeline
to efficiently span multiple cores. Further, we change the
conventional implementation of PHY components to exten-
sively take advantage of lookup tables (LUTs), trading off
computation for memory. These LUTs substantially reduce
the computational requirements of PHY processing, while
at the same time taking advantage of the large, low-latency
caches on modern GPPs. Finally, Sora uses the Single
Instruction Multiple Data (SIMD) extensions in existing pro-
cessors to further accelerate PHY processing.

Lastly, to meet the real-time requirements of high-speed
wireless protocols, Sora provides a new kernel service, core
dedication, which allocates processor cores exclusively for
real-time SDR tasks. We demonstrate that it is a simple
yet crucial abstraction that guarantees the computational
resources and precise timing control necessary for SDR on
a multi-core GPP.

We have developed a few demonstration wireless sys-
tems based on the Sora platform, including: (1) SoftWiFi,
an 802.11a/b/g implementation that supports a full suite
of modulation rates (up to 54Mbps) and seamlessly inter-
operates with commercial 802.11 NICs, and (2) SoftLTE,
a 3GPP LTE uplink PHY implementation that supports up to
43.8Mbps data rate.

The rest of the paper is organized as follows. Section 2
provides background on wireless communication systems.
We then present the Sora architecture in Section 3, and we
discuss our approach for addressing the challenges of building
an SDR platform on a GPP system in Section 4. We then
describe the implementation of the Sora platform in Section 5.
Section 6 provides a quantitative evaluation of the radio
systems based on Sora. Finally, Section 7 describes related
work and Section 8 concludes.

2. BackGRounD anD ReQuiRements
In this section, we briefly review the PHY and MAC compo-
nents of typical wireless communication systems. Although

january 2011 | vol. 54 | no. 1 | communications of the acm 101

require substantial computational power for their PHY
 processing. Such computational requirements also increase
proportionally with communication speed. Unfortunately,
tech niques used in conventional PHY hardware or embed-
ded DSPs do not directly carry over to GPP architectures.
Thus, we require new software techniques to accelerate
high-speed signal processing on GPPs. With the advent of
many-core GPP architectures, it is now reasonable to aggre-
gate computational power of multiple CPU cores for signal
processing. But, it is still challenging to build a software
architecture to efficiently exploit the full capability of mul-
tiple cores.
Real-time enforcement. Wireless protocols have multiple
real-time deadlines that need to be met. Consequently, not
only is processing throughput a critical requirement, but
the processing latency needs to meet response deadlines.
Some MAC protocols also require precise timing control at
the granularity of microseconds to ensure certain actions
occur at exactly pre-scheduled time points. Meeting such
real-time deadlines on a general PC architecture is a non-
trivial challenge: time sharing operating systems may not
respond to an event in a timely manner, and bus interfaces,
such as Gigabit Ethernet, could introduce indefinite delays
far more than a few microseconds. Therefore, meeting
these real-time requirements requires new mechanisms
on GPPs.

3. aRchitectuRe
We have developed a high-performance software radio
platform called Sora that addresses these challenges. It is
based on a commodity general-purpose PC architecture. For
flexibility and programmability, we push as much commu-
nication functionality as possible into software, while keep-
ing hardware additions as simple and generic as possible.
Figure 2 illustrates the overall system architecture.

These requirements are very demanding for software
 processing in GPPs.

2.2. Wireless mac
The wireless channel is a resource shared by all transceiv-
ers operating on the same spectrum. As simultaneously
transmitting neighbors may interfere with each other, vari-
ous MAC protocols have been developed to coordinate their
transmissions in wireless networks to avoid collisions.

Most modern MAC protocols, such as 802.11, require
timely responses to critical events. For example, 802.11
adopts a carrier sense multiple access (CSMA) MAC proto-
col to coordinate transmissions. Transmitters are required
to sense the channel before starting their transmission,
and channel access is only allowed when no energy is
sensed, i.e., the channel is free. The latency between sense
and access should be as small as possible. Otherwise, the
sensing result could be outdated and inaccurate. Another
example is the link-layer retransmission mechanisms
in wireless protocols, which may require an immediate
acknowledgement (ACK) to be returned in a limited time
window.

Commercial standards like IEEE 802.11 mandate a re sponse
latency within 16 ms, which is challenging to achieve in software
on a general-purpose PC with a general-purpose OS.

2.3. software radio requirements
Given the above discussion, we summarize the requirements
for implementing a software radio system on a general PC
platform:
high-system throughput. The interfaces between the radio
front-end and PHY as well as between some PHY processing
blocks must possess sufficiently high throughput to transfer
high-fidelity digital waveforms.
Intensive computation. High-speed wireless protocols

figure 1. PhY operations of ieee 802.11a/b/g transceiver.

InterleavingConvolutional
encoder

QAM Mod IFFT GI Addition Symbol Wave
Shaping

Scramble
To RF

Direct Sequence
Spread Spectrum

DQPSK Mod Symbol Wave
Shaping

Scramble

(a) IEEE 802.11b 2Mbps

To RF

(b) IEEE 802.11a/g 24Mbps

Demod +
Interleaving

FFT Viterbi
decoding

Remove GI
From RF

Descramble

DQPSK DemodDespreading Descramble

Transmitter:

Receiver:

Transmitter:

Receiver:

Samples
@32Mbps

Samples
@352Mbps

Samples
@1.4Gbps

From RF

Samples
@1.4Gbps

Decimation

Samples
@352Mbps

Samples
@32Mbps

Bits
@2Mbps

Bits
@48Mbps

Bits
@48Mbps

Samples
@512Mbps

Samples
@1.28Gbps

Samples
@640Mbps

Decimation

Samples
@384Mbps

Bits
@24Mbps

Bits
@2Mbps

Samples
@1.28Gbps

Samples
@640Mbps

Samples
@512Mbps

Samples
@384Mbps

Bits
@48Mbps

Bits
@24Mbps

Bits
@24Mbps

To MAC

From MAC

To MAC

Bits
@2Mbps

Bits
@2Mbps

Bits
@24Mbps

From MAC

102 communications of the acm | january 2011 | vol. 54 | no. 1

research highlights

3.1. hardware components
The hardware components in the Sora architecture are a
new RCB with an interchangeable radio front-end (RF front-
end). The radio front-end is a hardware module that receives
and/or transmits radio signals through an antenna. In the
Sora architecture, the RF front-end represents the well-
defined interface between the digital and analog domains. It
contains analog-to-digital (A/D) and digital-to-analog (D/A)
converters, and necessary circuitry for radio transmission.
Since all signal processing is done in software, the RF front-
end design can be rather generic. It can be implemented in a
self-contained module with a standard interface to the RCB.
Multiple wireless technologies defined on the same fre-
quency band can use the same RF front-end hardware, and
the RCB can connect to different RF front-ends designed for
different frequency bands.

The RCB is a new PC interface board for establish-
ing a high-throughput, low-latency path for transferring
high-fidelity digital signals between the RF front-end and
PC memory. To achieve the required system throughput
discussed in Section 2.1, the RCB uses a high-speed, low-
latency bus such as PCIe. With a maximum throughput
of 64Gbps (PCIe × 32) and sub-microsecond latency, it is
well suited for supporting multiple gigabit data rates for
wireless signals over a very wide band or over many MIMO
channels. Further, the PCIe interface is now common in
contemporary commodity PCs.

Another important role of the RCB is to bridge the syn-
chronous data transmission at the RF front-end and the
asynchronous processing on the host CPU. The RCB uses
various buffers and queues, together with a large onboard
memory, to convert between synchronous and asynchro-
nous streams and to smooth out bursty transfers between
the RCB and host memory. The large onboard memory fur-
ther allows caching precomputed waveforms, adding addi-
tional flexibility for software radio processing.

Finally, the RCB provides a low-latency control path for
software to control the RF front-end hardware and to ensure
it is properly synchronized with the host CPU. Section 5.1
describes our implementation of the RCB in more detail.

3.2. sora software
Figure 3 illustrates Sora’s software architecture. The soft-
ware components in Sora provide necessary system services
and programming support for implementing various wire-
less PHY and MAC protocols in a general-purpose operating

system. In addition to facilitating the interaction with the
RCB, Sora provides a set of techniques to greatly improve
the performance of PHY and MAC processing on GPPs. To
meet the processing and real-time requirements, these tech-
niques make full use of various common features in existing
multi-core CPU architectures, including the extensive use of
LUTs, substantial data-parallelism with CPU SIMD exten-
sions, the efficient partitioning of streamlined processing
over multiple cores, and exclusive dedication of cores for
software radio tasks. We describe these software techniques
in details in the next section.

4. hiGh-PeRfoRmance sDR softWaRe

4.1. efficient PhY processing
In a memory-for-computation trade-off, Sora relies upon the
large-capacity, high-speed cache memory in GPPs to acceler-
ate PHY processing with precalculated LUTs. Contemporary
modern CPU architectures usually have megabytes of L2
cache with a low (10–20 cycles) access latency. If we precal-
culate LUTs for a large portion of PHY algorithms, we can
greatly reduce the computational requirement for online
processing.

For example, the soft demapper algorithm used in demod-
ulation needs to calculate the confidence level of each bit
contained in an incoming symbol. This task involves rather
complex computation proportional to the modulation den-
sity. More precisely, it conducts an extensive search for all
modulation points in a constellation graph and calculates
a ratio between the minimum of Euclidean distances to all
points representing one and the minimum of distances to
all points representing zero. In this case, we can precalcu-
late the confidence levels for all possible incoming symbols
based on their I and Q values, and build LUTs to directly
map the input symbol to confidence level. Such LUTs are
not large. For example, in 802.11a/g with a 54Mbps modula-
tion rate (64-QAM), the size of the LUT for the soft demap-
per is only 1.5KB.

figure 2. sora system architecture. all PhY and mac execute in
software on a commodity multi-core cPu.

Mem
RF

RF
RF

Sora

APP

Multi-core CPU

Sora Soft-Radio Stack

High throughput
low-latency PCIe bus

Digital Samples
@Multiple Gbps

RCB
A/D
D/A RFSora

APP

APP

APP

APP

APP

figure 3. software architecture of sora soft-radio stack.

RCB

DMA Memory

Sora PHY Lib

Real-time Support (Core
dedication)

Streamline Processing
Support

Wireless PHY

Wireless MAC

Network Layer (TCP/IP)

Sora supporting lib

RCB Manager

S
or

a
so

ft
ra

di
o

st
ac

k

PC Bus

Kernel mode

Applications
User mode

january 2011 | vol. 54 | no. 1 | communications of the acm 103

As we detail later in Section 5.2.1, more than half of the
common PHY algorithms can indeed be rewritten with
LUTs, each with a speedup from 1.5× to 50×. Since the size of
each LUT is sufficiently small, the sum of all LUTs in a pro-
cessing path can easily fit in the L2 caches of contemporary
GPP cores. With core dedication (Section 4.3), the possibility
of cache collisions is very small. As a result, these LUTs are
almost always in caches during PHY processing.

To accelerate PHY processing with data-level parallel-
ism, Sora heavily uses the SIMD extensions in modern GPPs,
such as SSE, 3DNow! and AltiVec. Although these extensions
were designed for multimedia and graphics applications,
they also match the needs of wireless signal processing very
well because many PHY algorithms have fixed computation
structures that can easily map to large vector operations.

4.2. multi-core streamline processing
Even with the above optimizations, a single CPU core may
not have sufficient capacity to meet the processing require-
ments of high-speed wireless communication technologies.
As a result, Sora must be able to use more than one core in
a multi-core CPU for PHY processing. This multi-core tech-
nique should also be scalable because the signal processing
algorithms may become increasingly more complex as wire-
less technologies progress.

As discussed in Section 2, PHY processing typically con-
tains several functional blocks in a pipeline. These blocks
differ in processing speed and in input/output data rates
and units. A block is only ready to execute when it has suf-
ficient input data from the previous block. Therefore, a key
issue is how to schedule a functional block on multiple cores
when it is ready.

Sora chooses a static scheduling scheme. This decision
is based on the observation that the schedule of each block
in a PHY processing pipeline is actually static: the process-
ing pattern of previous blocks can determine whether a sub-
sequent block is ready or not. Sora can thus partition the
whole PHY processing pipeline into several sub-pipelines
and statically assign them to different cores. Within one
sub-pipeline, when a block has accumulated enough data
for the next block to be ready, it explicitly schedules the next
block. Adjacent sub-pipelines are still connected with a syn-
chronized FIFO (SFIFO), but the number of SFIFOs and their
overhead are greatly reduced.

4.3. Real-time support
SDR processing is a time-critical task that requires strict
guarantees of computational resources and hard real-time
deadlines. As an alternative to relying upon the full general-
ity of real-time operating systems, we can achieve real-time
guarantees by simply dedicating cores to SDR process-
ing in a multi-core system. Thus, sufficient computational
resources can be guaranteed without being affected by other
concurrent tasks in the system.

This approach is particularly plausible for SDR. First,
wireless communication often requires its PHY to con-
stantly monitor the channel for incoming signals. Therefore,
the PHY processing may need to be active all the time. It is
much better to always schedule this task on the same core

to minimize overhead like cache misses or TLB flushes.
Second, previous work on multi-core OSes also suggests
that isolating applications into different cores may have bet-
ter performance compared to symmetric scheduling, since
an effective use of cache resources and a reduction in locks
can outweigh dedicating cores.9 Moreover, a core dedication
mechanism is much easier to implement than a real-time
scheduler, sometimes even without modifying an OS kernel.
For example, we can simply raise the priority of a kernel
thread so that it is pinned on a core and it exclusively runs
until termination (Section 5.2.3).

5. imPLementation

5.1. hardware
We have designed and implemented the Sora RCB as shown
in Figure 4. It contains a Virtex-5 FPGA, a PCIe-×8 interface,
and 256MB of DDR2 SDRAM. The RCB can connect to vari-
ous RF front-ends. In our experimental prototype, we use a
third-party RF front-end that is capable of transmitting and
receiving a 20 MHz channel at 2.4 or 5 GHz.

Figure 5 illustrates the logical components of the Sora
hardware platform. The DMA and PCIe controllers inter-
face with the host and transfer digital samples between the
RCB and PC memory. Sora software sends commands and
reads RCB states through RCB registers. The RCB uses its
onboard SDRAM as well as small FIFOs on the FPGA chip
to bridge data streams between the CPU and RF front-end.
When receiving, digital signal samples are buffered in
 on-chip FIFOs and delivered into PC memory when they fit

figure 5. hardware architecture of RcB and Rf.

figure 4. sora radio control board.

A/D

D/A
RF Circuit

RF Front-end
PCIE

Controller SDRAM
Controller

FIFO

FIFO
DMA

Controller

DDR
SDRAM

FPGA

RCB

PCIe
bus

Antenna

RF
Controller

Registers

104 communications of the acm | january 2011 | vol. 54 | no. 1

research highlights

in a DMA burst (128B). When transmitting, the large RCB
memory enables Sora software to first write the generated
samples onto the RCB, and then trigger transmission with
another command to the RCB. This functionality provides
flexibility to the Sora software for precalculating and stor-
ing several waveforms before actually transmitting them,
while allowing precise control of the timing of the waveform
transmission.

While implementing Sora, we encountered a consistency
issue in the interaction between DMA operations and the
CPU cache system. When a DMA operation modifies a mem-
ory location that has been cached in the L2 cache, it does not
invalidate the corresponding cache entry. When the CPU
reads that location, it can therefore read an incorrect value
from the cache.

We solve this problem with a smart-fetch strategy, enabling
Sora to maintain cache coherency with DMA memory with-
out drastically sacrificing throughput if disabling cached
accesses. First, Sora organizes DMA memory into small slots,
whose size is a multiple of a cache line. Each slot begins with
a descriptor that contains a flag. The RCB sets the flag after it
writes a full slot of data, and clears it after the CPU processes
all data in the slot. When the CPU moves to a new slot, it first
reads its descriptor, causing a whole cache line to be filled.
If the flag is set, the data just fetched is valid and the CPU
can continue processing the data. Otherwise, the RCB has
not updated this slot with new data. Then, the CPU explicitly
flushes the cache line and repeats reading the same location.
This next read refills the cache line, loading the most recent
data from memory.

Table 1 summarizes the RCB throughput results, which
agree with the hardware specifications. To precisely mea-
sure PCIe latency, we instruct the RCB to read a memory
address in host memory, and measure the time interval
between issuing the request and receiving the response in
hardware. Since each read involves a round trip operation,
we use half of the measured time to estimate the one-way
delay. This one-way delay is 360 ns with a worst case varia-
tion of 4 ns.

5.2. software
The Sora software is written in C, with some assembly for
performance-critical processing. The entire Sora software
is implemented on Windows XP as a network device driver
and it exposes a virtual Ethernet interface to the upper TCP/IP
stack. Since any software radio implemented on Sora can
appear as a normal network device, all existing network
applications can run unmodified on it.
PhY Processing Library: In the Sora PHY processing library,
we extensively exploit the use of look-up tables (LUTs) and
SIMD instructions to optimize the performance of PHY

algorithms. We have been able to rewrite more than half of
the PHY algorithms with LUTs. Some LUTs are straightfor-
ward precalculations, others require more sophisticated
implementations to keep the LUT size small. For the soft-
demapper example mentioned earlier, we can greatly reduce
the LUT size (e.g., 1.5KB for the 802.11a/g 54Mbps modu-
lation) by exploiting the symmetry of the algorithm. In our
SoftWiFi implementation described below, the overall size
of the LUTs is around 200KB for 802.11a/g and 310KB for
802.11b, both of which fit comfortably within the L2 caches
of commodity CPUs.

We also heavily use SIMD instructions in coding Sora
software. We currently use the SSE2 instruction set designed
for Intel CPUs. Since the SSE registers are 128-bit wide while
most PHY algorithms require only 8-bit or 16-bit fixed-point
operations, one SSE instruction can perform 8 or 16 simulta-
neous calculations. SSE also has rich instruction support for
flexible data permutations, and most PHY algorithms, e.g.,
FFT, FIR Filter and Viterbi, can fit naturally into this SIMD
model. For example, the Sora Viterbi decoder uses only 40
cycles to compute the branch metric and select the shortest
path for each input. As a result, our Viterbi implementation
can handle 802.11a/g at the 54Mbps modulation with only
one 2.66 GHz CPU core, whereas previous implementations
relied on hardware implementations. Note that other GPP
architectures, like AMD and PowerPC, have very similar
SIMD models and instruction sets, and we expect that our
optimization techniques will directly apply to these other
GPP architectures as well.

Table 2 summarizes some key PHY processing algo-
rithms we have implemented in Sora, together with the
optimization techniques we have applied. The table also
compares the performance of a conventional software
implementation (e.g., a direct translation from a hardware
implementation) and the Sora implementation with the
LUT and SIMD optimizations.
Lightweight, Synchronized fIfos: Sora allows different
PHY processing blocks to streamline across multiple cores,
and we have implemented a lightweight, synchronized FIFO
to connect these blocks with low contention overhead. The
idea is to augment each data slot in the FIFO with a header
that indicates whether the slot is empty or not. We pad each
data slot to be a multiple of a cache line. Thus, the con-
sumer is always chasing the producer in the circular buffer
for filled slots. If the speed of the producer and consumer
is the same and the two pointers are separated by a partic-
ular offset (e.g., two cache lines in the Intel architecture),
no cache miss will occur during synchronized streaming
since the local cache will prefetch the following slots before
the actual access. If the producer and the consumer have
 different processing speeds, e.g., the reader is faster than
the writer, then eventually the consumer will wait for the
producer to release a slot. In this case, each time the pro-
ducer writes to a slot, the write will cause a cache miss at
the consumer. But the producer will not suffer a miss since
the next free slot will be prefetched into its local cache.
Fortunately, such cache misses experienced by the con-
sumer will not cause significant impact on the overall per-
formance of the streamline processing since the consumer

table 1. Dma throughput performance of the RcB.

mode Rx (Gbps) tx (Gbps)

PCie-x4 6.71 6.55

PCie-x8 12.8 12.3

january 2011 | vol. 54 | no. 1 | communications of the acm 105

is not the bottleneck element.
Real-time Support: Sora uses exclusive threads (or ethreads)
to dedicate cores for real-time SDR tasks. Sora implements
ethreads without any modification to the kernel code.
An ethread is implemented as a kernel-mode thread, and it
exploits the processor affiliation that is commonly supported
in commodity OSes to control on which core it runs. Once the
OS has scheduled the ethread on a specified physical core, it
will raise its IRQL (interrupt request level) to a level as high as
the kernel scheduler, e.g., dispatch_level in Windows. Thus,
the ethread takes control of the core and prevents itself from
being preempted by other threads.

Running at such an IRQL, however, does not prevent the
core from responding to hardware interrupts. Therefore, we
also constrain the interrupt affiliations of all devices attached
to the host. If an ethread is running on one core, all interrupt
handlers for installed devices are removed from the core,
thus prevent the core from being interrupted by hardware.
To ensure the correct operation of the system, Sora always
ensures core zero is able to respond to all hardware inter-
rupts. Consequently, Sora only allows ethreads to run on
cores whose ID is greater than zero.

6. exPeRience
To demonstrate the use of Sora, we have developed two wire-
less systems fully in software in a multi-core PC, namely
SoftWiFi and SoftLTE. The performance we report for
SoftWiFi is measured on an Intel Core Duo 2 (2.67 GHz), and
the performance reported for SoftLTE is measured on an
Intel Core i7-920 (2.67 GHz).

6.1. softWifi
SoftWiFi implements the basic access mode of 802.11. The
MAC state machine (SM) is implemented as an ethread. Since
802.11 is a simplex radio, the demodulation components can
run directly within a MAC SM thread. If a single core is insuf-
ficient for all PHY processing (e.g., 802.11a/g), the PHY pro-
cessing can be partitioned across two ethreads. These two
ethreads are streamed using a synchronized FIFO. Two addi-
tional auxiliary threads modulate the outgoing frames in the
 background and transfer the demodulated frames to upper
layers, respectively.

In idle state, the SM continuously measures the aver-
age energy to determine whether the channel is clean or
there is an incoming frame. If it detects a high energy,
SoftWiFi starts to demodulate a frame. After successfully
receiving a frame, the 802.11 MAC standard requires a sta-
tion to transmit an ACK frame in a timely manner (10 ms
for 802.11b and 16 ms for 802.11a). This ACK requirement
is quite difficult for an SDR implementation in software
on a PC. Both generating and transferring the waveform
across the PC bus will cause a latency of several microsec-
onds, and the sum is usually larger than mandated by the
standard.

Fortunately, an ACK frame generally has a fixed pat-
tern with only a few dynamic fields (i.e., sender address).
Thus, we can precalculate most of an ACK frame (19B), and
update only the address (10B) on the flight. We can further
do it immediately after demodulating the MAC header, and
without waiting for the end of a frame. We then prestore the
waveform in the memory of the RCB. Thus, the time for ACK

table 2. key algorithms in ieee 802.11b/a and their performance with conventional and sora implementations.

algorithm configuration

i/o size (bit)

optimization
method

computation Required (mcycles/s)

input output
conventional

implementation
sora

implementation speedup

ieee 802.11b

scramble 11Mbps 8 8 lut 96.54 10.82 8.9×

descramble 11Mbps 8 8 lut 95.23 5.91 16.1×

Mapping and
spreading

2Mbps, dQPsK 8 44 × 16 × 2 lut 128.59 73.92 1.7×

CCK modulator 5Mbps, CCK 8 8 × 16 × 2 lut 124.93 81.29 1.5×

11Mbps, CCK 8 8 × 16 × 2 lut 203.96 110.88 1.8×

Fir filter 16-bit i/Q, 37 taps, 22Msps 16 × 2 × 4 16 × 2 × 4 siMd 5,780.34 616.41 9.4×

decimation 16-bit i/Q, 4× oversample 16 × 2 × 4 × 4 16 × 2 × 4 siMd 422.45 198.72 2.1×

ieee 802.11a

FFt/iFFt 64 points 64 × 16 × 2 64 × 16 × 2 siMd 754.11 459.52 1.6×

Conv. encoder 24Mbps, 1/2 rate 8 16 lut 406.08 18.15 22.4×

48Mbps, 2/3 rate 16 24 lut 688.55 37.21 18.5×

54Mbps, 3/4 rate 24 32 lut 712.10 56.23 12.7×

viterbi 24Mbps, 1/2 rate 8 × 16 8 siMd+lut 68,553.57 1,408.93 48.7×

48Mbps, 2/3 rate 8 × 24 16 siMd+lut 117,199.6 2,422.04 48.4×

54Mbps, 3/4 rate 8 × 32 24 siMd+lut 131,017.9 2,573.85 50.9×

soft demapper 24Mbps, QaM 16 16 × 2 8 × 4 lut 115.05 46.55 2.5×

54Mbps, QaM 64 16 × 2 8 × 6 lut 255.86 98.75 2.4×

scramble and
descramble

54Mbps 8 8 lut 547.86 40.29 13.6×

106 communications of the acm | january 2011 | vol. 54 | no. 1

research highlights

generation and transferring can overlap with the demodu-
lation of the data frame. After the entire frame is demodu-
lated and validated, SoftWiFi instructs the RCB to transmit
the ACK which has already been stored in the RCB. Thus, the
latency for ACK transmission is very small.

Figure 6 shows the transmitting and receiving through-
put of a Sora SoftWiFi node when it communicates with
a commercial WiFi NIC. In the “Sora–Commercial” con-
figuration, the Sora node acts as a sender and gener-
ates 1400-byte UDP frames and unicast transmits them
to a laptop equipped with a commercial NIC. In the
“Commercial–Sora” configuration, the Sora node acts as
a receiver, and the laptop generates the same workload.
The “Commercial–Commercial” configuration shows
the throughput when both sender and receiver are com-
mercial NICs. In all configurations, the hosts were at the
same distance from each other and experienced very little
packet loss. Figure 6 shows the throughput achieved for
all configurations with the various modulation modes in
11a/b/g. We show only three selective rates in 11a/g for
 conciseness. The results are averaged over five runs (the
variance was very small).

We make a number of observations from these results.
First, the Sora SoftWiFi implementation operates seam-
lessly with commercial devices, showing that Sora SoftWiFi
is protocol compatible. Second, Sora SoftWiFi can achieve
similar performance as commercial devices. The through-
puts for both configurations are essentially equivalent, dem-
onstrating that SoftWiFi (1) has the processing capability to
demodulate all incoming frames at full modulation rates,
and (2) it can meet the 802.11 timing constraints for return-
ing ACKs within the delay window required by the standard.
We note that the maximal achievable application through-
put for 802.11 is less than 80% of the PHY data rate, and the
percentage decreases as the PHY data rate increases. This

limit is due to the overhead of headers at different layers as
well as the MAC overhead to coordinate channel access (i.e.,
carrier sense, ACKs, and backoff), and is a well-known prop-
erty of 802.11 performance.

6.2. softLte
We have also implemented the 3GPP LTE Physical Uplink
Shared Channel (PHUSC) on the Sora platform.13 LTE is
the next generation cellular standard. It is more complex
than 802.11 since it uses a higher-order FFT (1024-point)
and advanced coding/decoding algorithms (e.g., Turbo
coding). Our SoftLTE implementation on Sora provides
a peak data rate of 43.8Mbps with a 20-MHz channel,
16QAM modulation, and 3/4 Turbo coding. The most com-
putationally intensive component of an LTE PHY is the
Turbo decoder. Our current implementation can achieve
35Mbps throughput using one hardware thread of an Intel
Core i7-920 core (2.66 GHz). Since Core i7 supports hyper-
threading, though, we can execute the Turbo decoder in
parallel on two threads, achieving an aggregated through-
put of 54.8Mbps. We can achieve this performance because
Turbo decoding is relatively balanced in the number of
arithmetic instructions and memory accesses. Therefore,
the two threads can overlap these two kinds of operations
well and yield a 56% performance gain even though they
share the same execution units of a single core. Thus, the
whole SoftLTE implementation can run in real time with
two Intel Core i7 cores.

7. ReLateD WoRk
Traditionally, device drivers have been the primary software
mechanism for changing wireless functionality on general-
purpose computing systems. For example, the MadWiFi
drivers for cards with Atheros chipsets,3 HostAP drivers for
Prism chipsets,2 and the rtx200 drivers for RaLink chipsets5
are popular driver suites for experimenting with 802.11.
These drivers typically allow software to control a wide
range of 802.11 management tasks and non-time-critical
aspects of the MAC protocol, and allow software to access
some device hardware state and exercise limited control
over device operation (e.g., transmission rate or power).
However, they do not allow changes to fundamental aspects
of 802.11 like the MAC packet format or any aspects of PHY.

SoftMAC goes one step further to provide a platform
for implementing customized MAC protocols using inex-
pensive commodity 802.11 cards.17 Based on the MadWiFi
drivers and associated open-source hardware abstraction
layers, SoftMAC takes advantage of features of the Atheros
chipsets to control and disable default low-level MAC
behavior. SoftMAC enables greater flexibility in implement-
ing nonstandard MAC features, but does not provide a full
platform for SDR. With the separation of functionality
between driver software and hardware firmware on com-
modity devices, time critical tasks and PHY processing
remain unchangeable.

GNU Radio is a popular software toolkit for building
 software radios using general-purpose computing plat-
forms.1 GNU Radio consists of a software library and a
hardware platform. Developers implement software radios

figure 6. throughput of sora when communicating with a commercial
Wifi card. Sora–Commercial presents the transmission throughput
when a sora node sends data. Commercial–Sora presents the
throughput when a sora node receives data. Commercial–Commercial
presents the throughput when a commercial nic communicates with
another commercial nic.

0

5

10

15

20

25

1M 2M 5.5M 11M 6M 24M 54M

Th
ro

ug
hp

ut
 (

M
bp

s)

Modulation Mode

802.11b 802.11a/g

Sora–Commercial Commercial–Commercial

Commercial–Sora

january 2011 | vol. 54 | no. 1 | communications of the acm 107

by composing modular precompiled components into
 processing graphs using Python scripts. The default GNU
Radio platform is the Universal Software Radio Peripheral
(USRP), a configurable FPGA radio board that connects to
the host. As with Sora, GNU Radio performs much of the SDR
processing on the host itself. Current USRP supports USB2.0
and a new version USRP 2.0 upgrades to Gigabit Ethernet.
Such interfaces, though, are not sufficient for high-speed
wireless protocols in wide bandwidth channels. Existing
USRP/GNU Radio platforms can only sustain low-speed
wireless communication due to both the hardware con-
straints as well as software processing.18 As a consequence,
users must sacrifice radio performance for its flexibility.

The WARP hardware platform provides a high-
performance SDR platform.8 Based on Xilinx FPGAs and
PowerPC cores, WARP allows full control over the PHY and
MAC layers and supports customized modulations up to
36Mbps. A variety of projects have used WARP to experi-
ment with new PHY and MAC features, demonstrating the
impact a high- performance SDR platform can provide.
KUAR is another SDR development platform.15 Similar to
WARP, KUAR mainly uses Xilinx FPGAs and PowerPC cores
for signal processing. But it also contains an embedded PC
as the control processor host (CPH), enabling some commu-
nication systems to be implemented completely in software
on the CPH. Sora provides the same flexibility and perfor-
mance as hardware-based platforms, like WARP, but it also
provides a familiar and powerful programming environ-
ment with software portability at a lower cost.

The SODA architecture represents another point in the
SDR design space.14 SODA is an application domain-specific
multiprocessor for SDR. It is fully programmable and targets
a range of radio platforms—four such processors can meet
the computational requirements of 802.11a and W-CDMA.
Compared to WARP and Sora, as a single-chip implementa-
tion it is more appropriate for embedded scenarios. As with
WARP, developers must program to a custom architecture to
implement SDR functionality.

8. concLusion
This paper presented Sora, a fully programmable soft-
ware radio platform on commodity PC architectures. Sora
combines the performance and fidelity of hardware SDR
platforms with the programmability of GPP-based SDR plat-
forms. Using the Sora platform, we also present the design
and implementation of SoftWiFi, a software implementa-
tion of the 802.11a/b/g protocols, and SoftLTE, a software
implementation of the LTE uplink PHY.

The flexibility provided by Sora makes it a convenient
platform for experimenting with novel wireless proto-
cols. In our research group, we have extensively used Sora
to implement and evaluate various ideas in our wireless
research projects. For example, we have built a spatial mul-
tiplexing system with 802.11b.19 In this work, we imple-
mented not only a complex PHY algorithm with successive
interference cancellation, but also a sophisticated carrier-
counting multi-access (CCMA) MAC—implementations
would not have been possible with previous PC-based soft-
ware radio platforms.

Sora is now available for academic use as the MSR
Software Radio Kit.4 The Sora hardware can be ordered
from a vender company in Beijing and all software can be
downloaded for free from Microsoft Research website. Our
hope is that Sora can substantially contribute to the adop-
tion of SDR for wireless networking experimentation and
innovation.

acknowledgments
The authors would like to thank Xiongfei Cai, Ningyi Xu,
and Zenlin Xia in the Hardware Computing group at MSRA
for their essential assistance in the hardware design of
the RCB. We also thank Fan Yang and Chunyi Peng in the
Wireless Networking (WN) Group at MSRA; in particular
we have learned much from their early study on acceler-
ating 802.11a using GPUs. We would also like to thank
all members in the WN Group and Zheng Zhang for their
support and feedback. The authors also want to thank
Songwu Lu, Frans Kaashoek, and MSR colleagues (Victor
Bahl, Ranveer Chandra, etc.) for their comments on earlier
drafts of this paper.

Kun Tan (kuntan@microsoft.com),
Microsoft Research Asia, Beijing, China.

he Liu (h8liu@ucsd.edu), University
of California, San Diego, La Jolla, CA.

Jiansong Zhang (kuntan@microsoft.
com), Microsoft Research Asia, Beijing,
China.

Yongguang Zhang (ygz@microsoft.com),
Microsoft Research Asia, Beijing, China.

Ji Fang (v-fangji@microsoft.com),
Microsoft Research Asia and Beijing
Jiaotong University, Beijing, China.

Geoffrey M. Voelker (voelker@cs.ucsd.
edu), University of California, San Diego,
La Jolla, CA.

References
 1. GNU Radio. http://www.gnu.org/

software/gnuradio/.
 2. HostAP. http://hostap.epitest.fi/.
 3. MadWifi. http://sourceforge.net/

projects/madwifi.
 4. Microsoft Research Software Radio

Platform. http://research.microsoft.
com/enus/projects/sora/academickit.
aspx.

 5. Rt2x00. http://rt2x00.serialmonkey.
com.

 6. Small Form Factor SDR Development
Platform. http://www.xilinx.com/
products/devkits/SFF-SDR-DP.htm.

 7. Universal Software Radio Peripheral.
http://www.ettus.com/.

 8. WARP: Wireless Open Access
Research Platform. http://warp.rice.
edu/trac.

 9. Boyd-Wickizer, S., Chen, H., Chen, R.,
Mao, Y., Kaashoek, F., Morris, R.,
Pesterev, A., Stein, L., Wu, M., Dai, Y.,
Zhang, Y., Zhang Z. Corey: an operating
system for many cores. In OSDI 2008.

 10. Cummings, M., Haruyama, S. FPGA in
the Software Radio. IEEE Commun.
Mag. 1999.

 11. de Vegte, J.V. Fundamental of
Digital Signal Processing. Cambridge
University Press, 2005.

 12. Glossner, J., Hokenek, E., Moudgill, M.
 The Sandbridge Sandblaster
Communications Processor. In 3rd
Workshop on Application Specific
Processors (2004).

 13. Li, Y., Fang, J., Tan, K., Zhang, J.,
Cui, Q., Tao, X. Soft-LTE: a software
radio implementation of 3GPP
long term evolution based on Sora

platform. In ACM Moicom 2009
(Demonstration) (Beijing, 2009).

 14. Lin, Y., Lee, H., who, M., Harel, Y.,
Mahlke, S., Mudge, T. SODA: a low-
power architecture for software
radio. In ISCA ‘06: Proceedings of
the 33rd International Symposium
on Computer Architecture (2006).

 15. Minden, G.J., Evans, J.B., Searl, L.,
DePardo, D., Patty, V.R., Rajbanshi,
R., Newman, T., Chen, Q., Weidling,
F., Guffey, J., Datla, D., Barker, B.,
Peck, M., Cordill, B., Wyglinski, A.M.,
Agah, A. KUAR: a flexible software-
defined radio development platform.
In DySpan (2007).

16. Neel, J., Robert, P., Reed, J. A formal
methodology for estimating the
feasible processor solution space for a
software radio. In SDR’05: Proceedings
of the SDR Technical Conference and
Product Exposition (2005).

17. Neufeld, M., Fifield, J., Doerr, C.,
Sheth, A., Grunwald, D. SoftMAC—
flexible wireless research platform.
In HotNets’05 (2005).

18. Schmid, T., Sekkat, O., Srivastava, M.B.
An experimental study of network
performance impact of increased
latency in software defined radios.
In WiNETCH’07 (2007).

19. Tan, K., Liu, H., Fang, J., Wang, W.,
Zhang, J., Chen, M., Voelker, G.M.
SAM: enabling practical spatial
multiple access in wireless LAN.
In MobiCom’09: Proceedings of the
15th Annual International Conference
on Mobile Computing and Networking
(New York, NY, 2009), ACM, USA,
49–60.

© 2011 ACM 0001-0782/11/0100 $10.00

