
A Unified Approach to Transliteration-based Text Input

with Online Spelling Correction

Hisami Suzuki Jianfeng Gao
Microsoft Research

One Microsoft Way, Redmond WA 98052 USA

{hisamis,jfgao}@microsoft.com

Abstract

This paper presents an integrated, end-to-end

approach to online spelling correction for text

input. Online spelling correction refers to the

spelling correction as you type, as opposed to

post-editing. The online scenario is

particularly important for languages that

routinely use transliteration-based text input

methods, such as Chinese and Japanese,

because the desired target characters cannot

be input at all unless they are in the list of

candidates provided by an input method, and

spelling errors prevent them from appearing

in the list. For example, a user might type

suesheng by mistake to mean xuesheng 学生

'student' in Chinese; existing input methods

fail to convert this misspelled input to the

desired target Chinese characters. In this

paper, we propose a unified approach to the

problem of spelling correction and

transliteration-based character conversion

using an approach inspired by the phrase-

based statistical machine translation

framework. At the phrase (substring) level, k

most probable pinyin (Romanized Chinese)

corrections are generated using a monotone

decoder; at the sentence level, input pinyin

strings are directly transliterated into target

Chinese characters by a decoder using a log-

linear model that refer to the features of both

levels. A new method of automatically

deriving parallel training data from user

keystroke logs is also presented. Experiments

on Chinese pinyin conversion show that our

integrated method reduces the character error

rate by 20% (from 8.9% to 7.12%) over the

previous state-of-the art based on a noisy

channel model.

1 Introduction

This paper addresses the problem of online

spelling correction, which tries to correct users'

misspellings as they type, rather than post-editing

them after they have already been input. This

online scenario is particularly important for

languages that routinely use transliteration-based

text input methods, including Chinese and

Japanese: in these languages, characters (called

hanzi in Chinese and kanji/kana in Japanese) are

typically input by typing how they are pronounced

in Roman alphabet (called pinyin in Chinese,

romaji in Japanese), and selecting a conversion

candidate among those that are offered by an input

method system, often referred to as IMEs or input

method editors. One big challenge posed by

spelling mistakes is that they prevent the desired

candidates from appearing as conversion

candidates, as in Figure 1: suesheng is likely to be

a spelling error of xuesheng学生 'student', but it is

not included as one of the candidates.

Figure 1: Spelling mistake prevents the desired output

(学生) from appearing in the list of candidates

This severely limits the utility of an IME, as

spelling errors are extremely common. Speakers of

a non-standard dialect and non-native speakers

have a particularly hard time, because they may

not know the standard pronunciation of the word to

begin with, preventing them from inputting the

word altogether. Error-tolerant word completion

and next word prediction are also highly desirable

features for text input on software (onscreen)

keyboards for any language, making the current

work relevant beyond Chinese and Japanese.

In this paper, we propose a novel, unified

system of text input with spelling correction, using

Chinese pinyin-to-hanzi conversion as an example.

We first formulate the task of pinyin spelling

correction as a substring-based monotone

translation problem, inspired by phrase-based

statistical machine translation (SMT) systems

(Koehn et al., 2003; Och and Ney, 2004): we

consider the pinyin input (potentially with errors)

as the source language and the error-corrected

pinyin as the target, and build a log-linear model

for spelling correction. In doing so, we also

propose a novel, unsupervised method of

collecting parallel training data from user input

logs. We then build an integrated end-to-end text

input system that directly converts a potentially

erroneous input pinyin sequence into a desired

hanzi sequence, also formulated as a monotone

phrase-based SMT problem, in which the feature

functions of the substring-based error correction

component are integrated and jointly optimized

with the sentence-level feature functions for

character conversion

Our method generalizes and improves over the

previous state-of-the-art methods for the task of

error correction and text input in several crucial

respects. First, our error correction model is

designed and implemented as a substring-based,

fully trainable system based on a log-linear model,

which has been shown effective for related tasks

such as transliteration and letter-to-phone

conversion, but has not been attempted for the task

of spelling correction. Second, we build an end-to-

end pinyin-to-hanzi conversion system by

combining all the feature functions used in the

error correction and character conversion

components in an SMT-style log-linear model,

where the feature weights are trained

discriminatively for the end-to-end task. This

integration method generalizes the previous

approach based on a noisy channel model (Chen

and Lee, 2000; Zheng et al. 2011b), in which only

the error model and the conversion model

probabilities are used and combined with equal

weights. Finally, like other statistical systems, the

amount and quality of training data control the

quality of the outcome; we thus propose a new,

language-independent method of deriving parallel

data for spelling correction from user keystroke

logs.

We performed experiments on various methods

of integrating the error correction and character

conversion sub-components. Our best system, a

fully integrated SMT-based approach, reduces the

character error rate by 35% on test data that is

completely independent of the creation of error

correction and character conversion models.

In what follows, we first give the background of

this research in Section 2. We then describe our

approach to the spelling correction task (Section 3)

and the end-to-end conversion task (Section 4). We

summarize our contribution and conclude with

remarks for future directions in Section 5.

2 Related Work

The current work builds on many previous works

on the task of monotone substring-based

transduction, including spelling correction, letter-

to-phone conversion and transliteration between

different scripts. In particular, our substring-based

approach to spelling correction is motivated by the

success on transliteration (e.g., Sherif and Kondrak,

2007; Cherry and Suzuki, 2009) and letter-to-

phoneme conversion (e.g., Jiampojamarn et al.,

2007; Rama et al., 2009). One big challenge of the

spelling correction research is the general lack of

naturally occurring paired data of contextual

spelling errors and their correction. Previous work

has therefore either focused on the task of

correcting out-of-vocabulary words out of context

(e.g., Brill and Moore, 2000; Toutanova and

Moore, 2002), or has resorted to innovative

methods of data collection. For example, Banko

and Brill (2001) generate data artificially by

substituting words from a confusion word set in

text for building a contextual speller; Whitelaw et

al. (2009) use word frequency and edit distance

information to harvest error pairs from a web

corpus in an unsupervised manner; Bertoldi et al.

(2010) intentionally corrupt clean text by adding

noise to the data. Another approach to spelling

error data collection uses web search query logs,

available in large quantity (albeit to limited

institutions), and limit its focus on the task of

correcting misspelled queries (e.g., Cucerzan and

Brill, 2004; Gao et al., 2010; Sun et al., 2010;

Duan and Hsu, 2011). The problem of data

collection is particularly difficult for pinyin error

correction, as pinyin is not a final form of text in

Chinese, so it is not recorded in final text. Zheng et

al. (2011a) study a log of pinyin input method and

use the backspace key to learn the user mistyping

behavior, but they do so only for the purpose of

data analysis, and do not build a statistical model

from this data.

Text input methods have been commercially

available for decades for inputting Chinese and

Japanese, but have also recently become available

for other non-Roman script languages including

Arabic and the languages of India.
1
 Early research

work on text input methods includes e.g., Mori et

al. (1998), Chen and Lee (2000) and Gao et al.

(2002), all of which approach the problem using a

noisy channel model. Discriminative approaches

have also been proposed, e.g., Suzuki and Gao

(2005); Tokunaga et al. (2011). There is only a

very limited amount of work that deals with

spelling correction in the context of text input:

Zheng et al. (2011b) represents a recent work

based on a noisy channel model, which defines our

baseline. Their work is strictly word-based and

only handles the correction of out-of-vocabulary

pinyin words into in-vocabulary pinyin words,

while our substring-based model is not limited by

these constraints.

The current work also has an affinity to the task

of speech translation in that the parallel data

between the input (speech signal) and the output

(text in foreign language) is not directly available,

but is mediated by a corrected (transcribed) form

of input. Zhang et al. (2011) is thus relevant to our

study, though their approach differs from ours in

that we build an integrated system that include the

feature functions of both error correction and

character conversion sub-systems.

3 Substring-based Spelling Correction

using a Log-linear Model

In this section, we describe our approach to pinyin

error correction within a log-linear framework.

Though our current target is pinyin error correction,

the method described in this section is applicable

to any language of interest.

The spelling correction problem has been

standardly formulated within the framework of

noisy channel model (e.g., Kernighan et al., 1990).

Let A be the input phonetic string in pinyin. The

task of spelling correction is to search for the best

1 A few examples include Google Transliterate

(http://www.google.com/transliterate/) and Microsoft Maren

(http://www.microsoft.com/middleeast/egypt/cmic/maren/) /

ILIT (http://specials.msn.co.in/ilit/Hindi.aspx). Quillpad

(http://quillpad.in/) is also popularly used in India.

correction candidate in pinyin C* among all

possible corrections for each potentially misspelled

pinyin A:

 |

Applying Bayes' Rule and dropping the constant

denominator, we have

 |

where the error model | models the

translation probability from C to A, and the

language model models how likely the

output C is a correctly spelled pinyin sequence.

Many variations on the error model have been

proposed, including substring-based (Brill and

Moore, 2000) and pronunciation-based (Toutanova

and Moore, 2002) models.

Our model is inspired by the SMT framework,

in which the error correction probability | of

Equation (1) is directly modeled using a log-linear

model of the following form:

 |

 ∑

where Z(A) is the normalization factor, hi is a

feature function and λi is the feature weight.

Similarly to phrase-based SMT, many feature

functions are derived from the translation and

language models, where the translation model-

derived features are trained using a parallel corpus

of original pinyin and correction pairs. The argmax

of Equation (1) defines the search operation: we

use a left-to-right beam search decoder to seek for

each input pinyin the best correction according to

Equation (3).
We first describe how the paired data for

deriving the error model probabilities is generated

from user logs in Section 3.1, and then how the

models are trained and the model weights are

learned in Section 3.2. We discuss the results of

pinyin error correction as an independent task in

Section 3.3.

3.1 Generating error correction pairs from

keystroke logs

Unlike English text, which includes instances of

misspelled words explicitly, pinyin spelling errors

are not found in a corpus, because pinyin is used as

a means of inputting text, and is not part of the

http://www.microsoft.com/middleeast/egypt/cmic/maren/

final written form of the language. Therefore,

pinyin error correction pairs must be created

intentionally. We chose the method of

implementing a version of an input method which

records the keystrokes of users while they are

asked to type a particular Chinese text in hanzi; in

doing so, we captured each keystroke issued by the

user behind the scene. Such keystroke logs include

the use of the backspace key, from which we

compute the pinyin strings after the usage of the

backspace keys as well as the putative pinyin string

had the user not corrected it using the backspace

key.
2
 Table 1 shows a few examples of the entries

in the keystroke log, along with the computed

pinyin strings before and after correction. Each

entry (or phrase) in the log represents the unit that

corresponds to the sequence the user input at once,

at the end of which the user committed to a

conversion candidate, which typically consists of

one or more words. While the post-correction

string can be straightforwardly derived by deleting

the same number of characters preceding the

backspaces, the computation of the pre-correction

string is trickier and ambiguous, because the

backspace key is used for the purpose of both

deletion and substitution (delete and replace)

operations. In Table 1, a backspace usage is

indicated by _ in the original keystroke sequence

that is logged. In the second example, a deletion

interpretation will generate zhonguo as a pre-

correction string, while substitution interpretation

will generate zhonguoo. In order to recover the

desired pre-correcting string, we compared the

prefix of the backspace usage (zhonguo) with the

substrings after error correction (zhong, zhongg,

zhonggu…). We considered that the prefix was

spell-corrected into the substring which is the

longest and with the smallest edit distance: in this

case, zhonguo is considered an error for

zhongguo, therefore recovering the pre-correction

string of the whole sequence as zhonguo. Note

that this method of error data extraction is general

2 Zheng et al. (2011a) also uses the backspace key in the IME

log to generate error-correction pairs, but they focus on the

usage of a backspace after the desired hanzi characters have

been input, i.e., the backspace key is used to delete one or

more hanzi characters. In contrast, our method focuses on the

use of backspace to delete one or more pinyin characters

before conversion. This simulates the scenario of online error

correction more truthfully, and can collect paired data in large

quantity faster.

and is language-independent. Since paired error

correction data do not exist naturally and is

expensive to collect for any language, we believe

that the proposed method is useful beyond the case

of Chinese text input and applicable to the data

collection of the spelling correction task in general.

In a related work (Baba and Suzuki, 2012), we

collected such keystroke data using Amazon's

Mechanical Turk for English and Japanese, and

released the error-correction pairs for research

purposes.
3

The extracted pairs are still quite noisy, because

one error correction behavior might not completely

eliminate the errors in typing a word. For example,

in trying to type women 我们 'we', a user might

first type wmen, hit the backspaces key four times,

retype womeen, and commit to a conversion

candidate by mistake. We extract the pair (wmen,

womeen) from this log incorrectly, which is one of

the causes of the noise in the data. Despite these

remaining errors, we use the data without further

cleaning, as we expect our approach to be robust

against a certain amount of noise.

Keystroke data was collected for three text

domains (chat, blog and online forum) from 60

users, resulting in 86,783 pairs after removing

duplicates. The data includes the pairs with the

same source and target, with about 41%

representing the case of correction. We used 5,000

pairs for testing, 1,000 pairs for tuning the log-

linear model weights (see the next subsection), and

the remaining portion for training the error

correction component.

3.2 Training the log-linear model

The translation model captures substring-based

spelling error patterns and their transformation

probabilities. The model is learned from large

amounts of pinyin-correction pairs mined from

user keystroke logs discussed above. Take the

3 Available at http://research.microsoft.com/en-

us/downloads/4eb8d4a0-9c4e-4891-8846-

7437d9dbd869/default.aspx.

keystroke pre-

correction

post-

correction

n a n s _ r e n nansen nanren

z h o n g u o _ _ g u o zhonguo

(*zhonguoo)

zhongguo

Table 1: Computation of pre- and post-correction

strings from keystroke log

http://research.microsoft.com/en-us/downloads/4eb8d4a0-9c4e-4891-8846-7437d9dbd869/default.aspx
http://research.microsoft.com/en-us/downloads/4eb8d4a0-9c4e-4891-8846-7437d9dbd869/default.aspx
http://research.microsoft.com/en-us/downloads/4eb8d4a0-9c4e-4891-8846-7437d9dbd869/default.aspx

following pinyin-correction pair as an example,

where the input pinyin and its correction are

aligned at the character level: given a pair (A,C),

we align the letters in A with those in C so as to

minimize the edit distance between A and C based

on single character insertions, deletions and

substitutions.

From this pair, we learn a set of error patterns that

are consistent with the character alignment,
4
 each

of which is a pair of substrings indicating how the

spelling is transformed from one to another. Some

examples of extracted phrases are (wanmian,

waimian) and (andshi, andeshi). In our

implementation, we extract all patterns with a

substring length of up to 9 characters. We then

learn the translation probabilities for each pair

using maximum likelihood estimation (MLE). Let

(a,c) denote a pair. For each pair, we learn the

translation probabilities P(c|a) and P(a|c),

estimated using MLE, as well as lexical weights in

two directions following Koehn et al. (2003). Our

error correction model is completely substring-

based and does not use a word-based lexicon,

which gives us the flexibility of generating unseen

correction targets as well as supporting pinyin

input consisting of multiple words at a time. For

the language model, we use a character 9-gram

model to capture the knowledge of correctly

spelled pinyin words and phrases. We trained the

language model using the target portion of the

parallel data described in Section 3.1, though it is

possible to train it with an arbitrary text in pinyin

when such data is available.

In addition to the feature functions derived from

the error and language models, we also use word

and phrase penalties as feature functions, which are

commonly used in SMT. These features also make

sense in the current context, as using fewer phrase

means encouraging longer ones with more context,

and the target character length can capture

tendencies to delete or insert words in errors.

4 Consistency here implies two things. First, there must be at

least one aligned character pair in the aligned phrase. Second,

there must not be any alignments from characters inside the

aligned phrase to characters outside the phrase. That is, we do

not extract a phrase pair if there is an alignment from within

the phrase pair to outside the phrase pair.

Overall, the log-linear model uses 7 feature

functions: 4 derived from the translation models,

word and phrase penalties, and the language model.

The model weights were trained using the

minimum error rate training algorithm (MERT,

Och, 2003). We tried MERT with two objective

functions: one that uses the 4-gram BLEU score as

straightforwardly adapted from SMT, and the other

that minimizes the character error rate (CER). CER

is based on the edit distance between the reference

and system output, which is used for evaluating the

IME accuracy (Section 4.3). It is more directly

related with the word/phrase-level accuracy, which

we used to evaluate the error correction module in

isolation, than the BLEU metric. As we will show

below, however, using different objective

functions turned out to have only a minimal impact

on the spelling correction accuracy.

3.3 Experiments and results

The performance of pinyin error correction was

evaluated on two data sets: (1) log-test: the test set

of the data in Section 3.1, which is derived in the

same way as the training data but is noisy,

consisting of 5,000 phrases of which 2,020 are

misspelled; (2) CHIME: the gold standard from the

CHIME data set made available by Zheng et al.

(2011b),
5
 which is also used in the end-to-end

evaluation in Section 4. This data set consists of

2,000 sentence pairs of pinyin input with errors

and the target hanzi characters, constructed by

collecting actual user typing logs of the Lancaster

corpus (McEnery and Xiao, 2004), which includes

text from newspaper, fiction, and essays.
6

 The

CHIME data set does not include the corrected

pinyin string; we therefore generated this by

running a text-to-pinyin utility,
7
 and created the

pairs before and after error correction for

evaluating our pinyin spelling correction module.

The set contains 11,968 words of which 908 are

misspelled.

The results of the evaluation are given in Table

2. They are for phrase/word-level accuracy, as the

log-derived data set is for each phrase (a user-

5 Available from http://chime.ics.uci.edu/
6 Details on the Lancaster corpus are found at

http://www.lancs.ac.uk/fass/projects/corpus/LCMC/.
7 We used an in-house tool, but many tools are available

online. Unlike pinyin-to-hanzi, hanzi-to-pinyin is relatively

straightforward as most characters have a unique

pronunciation.

http://www.lancs.ac.uk/fass/projects/corpus/LCMC/

defined unit of conversion, consisting of one to a

few words), while the CHIME data set is word-

segmented. The baseline accuracy is the accuracy

of not correcting any error, which is very strong in

this task: 59.6% and 92.41% for the two data sets,

respectively. The accuracy on the log-test data is

generally much lower than the CHIME data,

presumably because the latter is cleaner, contains

less errors to begin with, and the unit of evaluation

is smaller (word) than the log-test (phrase).

Though CHIME is an out-of-domain data set, the

proposed model works very well on this set,

achieving more than 93% accuracy with the best

output, significantly (at p<0.001 using McNemar's

test) improving on the strong baseline of not

correcting any error. The proposed log-linear

approach is also compared against the noisy

channel model baseline, which is simulated by

only using one error model-derived feature

function | and the language model, weighted

equally, using the same beam search decoder.

Somewhat surprisingly, the noisy channel model

results fall below the baseline in both data sets,

while the log-linear model improves over the

baseline, especially on the 1-best accuracy: all

differences between the noisy channel model and

the log-linear model outputs are significant. Finally,

regarding the effect of using the CER as the

objective function of MERT, we only observe

minimal impact: none of the differences in

accuracy between the BLEU and CER objectives is

statistically significant on either data set. For a

monotone decoding task such as spelling

correction, using either objective function therefore

seems to suffice, even though BLEU is more

indirect and redundant in capturing the phrase-

level accuracy.

4 A Unified Model of Character

Conversion with Spelling Correction

In this section we describe our unified model of

spelling correction and transliteration-based

character conversion. Analogous to the spelling

correction task, the character conversion problem

can also be considered as a substring-based

translation problem. The novelty of our approach

lies in the fact that we take advantage of the

parallelism between these tasks, and build an

integrated model that performs spelling correction

and character conversion at the same time, within

the log-linear framework. This allows us to

optimize the feature weights directly for the end

goal, from which from we can expect a better

overall conversion accuracy.

4.1 Noisy channel model approach to

incorporating error correction in

character conversion

The task of pinyin-to-hanzi conversion consists of

converting the input phonetic strings provided by

the user into the appropriate word string using

ideographic characters. This has been formulated

within the noisy channel model (Chen and Lee,

2000), in exactly the same manner as the spelling

correction, as describe in Equations (1) and (2) in

Section 3. Given the pinyin input A, the task is to

find the best output hanzi sequence W*:

 |

 |

In traditional conversion systems which do not

consider spelling errors, P(A|W) is usually set to 1

if the word is found in a dictionary of word-

pronunciation pairs, which also defines GEN(A).

Therefore, the ranking of the candidates relies

exclusively on the language model probability

P(W).

An extension of this formulation to handle

spelling errors can be achieved by incorporating an

actual error model P(A|W). Assuming a conditional

independence of A and W given the error-corrected

pinyin sequence C, Equation (4) can be re-written

as:

 1-best 3-best 20-best

log-test: No correction 59.6

log-test: Noisy Channel 49.5 67.86 84.8

log-test: Proposed (BLEU) 62.46 74.58 86.66

log-test: Proposed (CER) 62.82 75.06 86.8

CHIME: No correction 92.41

CHIME: Noisy Channel 91.29 95.75 98.82

CHIME: Proposed (BLEU) 93.51 97.38 99.06

CHIME: Proposed (CER) 93.49 97.29 99.08

Table 2: Pinyin error correction accuracy (in %)

 |

∑ | |

∑ | |

Here, P(C|W) corresponds to the channel model of

traditional input methods, P(W) the language

model, and P(C|A) the pinyin error correction

model. There have been attempts to use this

formulation in text input: for example, Chen and

Lee (2000) trained a syllable-based model for

P(C|A) with user keystroke data,
8
 and Zheng et al.

(2011b) used a model based on a weighted

character edit distance whose weights are manually

assigned. This noisy channel integration of error

correction and character conversion is the state-of-

the-art in the task of error-correcting text input,

and will serve as our baseline.

4.2 Log-linear model for error-correcting

character conversion

 Similar to the formulation of our error correction

model in Section 3, we adopt the log-linear model

for modeling the character conversion probability

in (4):

 |

 ∑

where A = a1,…,an is a sequence of phrases in

pinyin, and W = w1,…,wn is the corresponding

sequence in hanzi. A unique challenge of the

current task is that the parallel data for A and W do

not exist directly. Therefore, we generated the

translation phrase table offline by merging the

8 No detail of this data is available in Chen and Lee (2000).

substring-based phrase table generated for the

pinyin error correction task in Section 3 with the

results of character conversion. This process is

described in detail in Figure 2: k-best candidates

for each input pinyin phrase a are generated by the

error model in Section 3, which are then submitted

offline to an IME system to obtain n-best

conversion candidates with probabilities. For the

IME system, we used an in-house conversion

system, which only uses a word trigram language

model for ranking. In the resulting translation table,

defined for each (a, w) pair, the feature functions

and their values are inherited from the pinyin error

correction translation table mediated by the

correction candidates c1…k for a, plus the function

that defines the IME conversion probability for (cj,

w). Note that in this final phrase table, the

correction candidates for a are latent, only

affecting the values of the feature functions.
9
 The

final end-to-end system uses the following 11

features:

- 7 error correction model features at the phrase

level

- IME conversion probability at the phrase level

- language model probability at the sentence level

- word/phrase penalty features at the sentence

level

The language model at the sentence level is trained

on a large monolingual corpus of Chinese in hanzi,

consisting of about 13 million sentences (176

million words). The IME conversion probability

9 The final phrase table needs to be unique for each phrase pair

(a, w), though the process described here results in multiple

entries with the same pair having different feature values,

because the generation of (a, w) is mediated by multiple

correction candidates c1…k. These entries need to be added up

to remove duplicates; we used a heuristic approximation of

taking the pair where a equals cj (i.e., no spelling correction)

when multiple entries are found.

c1 xuesheng f1 ... f7
c2 xueshereng f1 ... f7
c3 xueshusheng f1 ... f7
...

+
c1 xuesheng w1 学生 1

c2 xueshereng w1 学社仍 0.103

 w2 学舌仍 0.101

 w3 学舍仍 0.101

 ...

c3 xueshusheng w1 学术生 0.102

 w2 学术声 0.101

 w3 学术省 0.101

 ...

...

→
w11 xueshseng 学生 f1 ... f7 1

w21 xueshseng 学社仍 f1 ... f7 0.103

w22 xueshseng 学舌仍 f1 ... f7 0.101

w23 xueshseng 学舍仍 f1 ... f7 0.101

...

w31 xueshseng 学术生 f1 ... f7 0.102

w32 xueshseng 学术声 f1 ... f7 0.101

w33 xueshseng 学术省 f1 ... f7 0.101

...

k-best error correction candidates c1...k
n-best IME conversion

candidates w1...n for c1...k
combined translation table w11...kn

Figure 2: Generation of integrated translation table for the pinyin input a = xueshseng

also uses a word trigram model, but it is trained on

a different data set which we did not have access

to; we therefore used both of these models. The

values for k and n can be determined empirically;

we used 20 for both of them.
10

 This generates

maximally 400 conversion candidates for each

input pinyin.

The feature weights of the log-linear model are

tuned using MERT. As running MERT on a CER-

based target criterion on the similar, monotone

translation task of spelling correction did not lead

to a significant improvement (Section 3.3), we

simply report the results of using the 4-gram

BLEU as the training criterion in this task.

4.3 Experiments and results

For the evaluation of the end-to-end conversion

task, we used the CHIME corpus mentioned above.

In order to use the word trigram language model

that is built in-house, we re-segmented the CHIME

corpus using our word-breaker, resulting in 12,102

words in 2,000 sentences. We then divided the

sentences in the corpus randomly into two halves,

and performed a two-fold cross validation

evaluation. The development portion of the data is

used to tune the weights of the feature functions in

MERT-style training. We measured our results

using character error rate (CER), which is based on

the longest common subsequence match in

characters between the reference and the best

system output. This is a standard metric used in

evaluating IME systems (e.g., Mori et al., 1998;

Gao et al., 2002). Let NREF be the number of

characters in a reference sentence, NSYS be the

character length of a system output, and NLCS be

the length of the longest common subsequence

between them. Then the character-level recall is

defined as NLCS/NREF, and the precision as NLCS/NSYS.

The CER based on recall and on precision are then

defined as 1 – recall and 1 – precision, respectively.

We report the harmonic mean of these values,

similarly to the widely used F1-measure.

As our goal is to show the effectiveness of the

unified approach, we used simpler methods of

integrating pinyin error correction with character

conversion to create baselines. The simplest

10 From Table 2, we observe that the accuracy of the 20-best

output of the spelling correction component is over 99%. An

offline run with the IME system on an independent data set

also showed that the accuracy of the 20-best IME output is

over 99%.

baseline is a pre-processing approach: we use the

pinyin error correction model to convert A into a

single best candidate C, and run an IME system on

C. Another more realistic baseline is the noisy

channel integration discussed in Section 4.1. We

approximated this integration method by re-

ranking all the candidates generated by the

proposed log-linear model with only the channel

and language model probabilities, equally

weighted.

The results are shown Table 3. 5-best results as

well as the 1-best results are shown, because in an

IME application, providing the correct candidate in

the candidate list is particularly important even if it

is not the best candidate. Let us first discuss the 1-

best results. The CER of this test corpus using the

in-house IME system without correcting any errors

is 10.91. The oracle CER, which is the result of

applying the IME on the gold standard pinyin input

derived from the reference text using a hanzi-to-

pinyin converter (as mentioned in Section 3.3), is

4.08, which is the upper-bound imposed by the

IME conversion accuracy. The simple pipeline

approach of concatenating the pinyin correction

component with the character conversion

component improves the CER by 1% to 9.93.

Assuming that there are on average 20 words in a

sentence, and each word consists of 2 characters,

1% CER reduction means one improvement every

2.5 sentences. Noisy channel integration improves

over this quite substantially, achieving a CER of

7.92, demonstrating the power of the word

language model in character conversion.

Incidentally, the CER of the output by Zheng et al.

(2011b)'s model is 8.90.
11

 Their results are not as

good as our noisy channel integration, as their

system uses a manually defined error model and a

word bigram language model. With the use of

additional feature functions weighted

discriminatively for the final conversion task, the

11 Available at http://chime.ics.uci.edu/.

 CER on

1-best

CER on

5-best

Baseline: No correction 10.91 7.76

Baseline: Pre-processing 9.93 6.75

Baseline: Zheng et al. (2011b) 8.90

Baseline: Noisy channel 7.92 3.93

Proposed: SMT model 7.12 3.63

Oracle 4.08 1.51

Table 3: CER results for the conversion task (%)

proposed method outperforms all these baselines to

reduce the CER to 7.12, a 35% relative error rate

reduction compared with the no correction baseline,

a 20% reduction against Zheng et al (2011b) and a

10% reduction from our noisy channel baseline.

The 5-best results follow the same trend of steady

improvement as we use a more integrated system.

In order to understand the characteristics of the

errors and remaining issues, we ran an error

analysis on the 1-best results of the proposed

system. For each word in the test data (all 2,000

sentences) for which the system output had an

error, we classified the reasons of failure into one

of the four categories: (1) character conversion

error: correct pinyin was input to the IME but the

conversion failed; (2) over-correction of pinyin

input: the system corrected the pinyin input when

it should not have; (3) under-correction of pinyin

input: the system did not correct an error in the

input pinyin when it should have; (4) wrong

correction: input pinyin string had a spelling error

but it was corrected incorrectly.

Table 4 shows the results of the error analysis.

We find that somewhat contrary to our expectation,

over-correction of the spelling mistakes was not a

conspicuous problem, even though the pinyin

correction rate of the training data is much higher

than that of the test data. We therefore conclude

that the error correction model adapts very well to

the characteristics of the test data in our integrated

SMT-based approach, which trains the unified

feature weights to optimize the end goal.

5 Conclusion and Future Work

In this paper we have presented a unified approach

to error-tolerant text input, inspired by the phrase-

based SMT framework, and demonstrated its

effectiveness over the traditional method based on

the noisy channel model. We have also presented a

new method of automatically collecting parallel

data for spelling correction from user keystroke

logs, and showed that the log-linear model works

well on the task of spelling correction in isolation

as well.

In this study, we isolated the problem of spelling

errors and studied the effectiveness of error

correction over a basic IME system that does not

include advanced features such as abbreviated

input (e.g., typing only "py" for 朋友 pengyou

'friend' or 拼音 pinyin in Chinese) and auto-

completion (e.g., typing only "ari" for ありがとう

arigatou 'thank you' in Japanese). Integrating data-

driven error correction feature with these advanced

features for the benefit of users is the challenge we

face in the next step.

Acknowledgements

We are indebted to many colleagues at Microsoft

and MSR for their help in conducting this research,

particularly to Xi Chen, Pallavi Choudhury, Chris

Quirk, Mei-Yuh Hwang and Kristina Toutanova.

We are also grateful for the comments we received

from the reviewers of this paper.

References

Baba, Y. and H. Suzuki. 2012. How are spelling errors

generated and corrected? A study of corrected and

uncorrected spelling errors using keystroke logs. In

Proceedings of ACL.

Banko, M. and E. Brill. 2001. Scaling to very very large

corpora for natural language disambiguation. In

Proceedings of ACL.

Bertoldi, N., M. Cettolo, and M. Federico. 2010.

Statistical machine translation of texts with

misspelled words. In Proceedings of HLT-NAACL.

Brill, E., and R. C. Moore. 2000. An improved error

model for noisy channel spelling correction. In

Proceedings of ACL.

Chen, Z., and K. F. Lee. 2000. A new statistical

approach to Chinese Pinyin input. In Proceedings of

ACL.

Cherry, C., and H. Suzuki. 2009. Discriminative

substring decoding for transliteration. In Proceedings

of EMNLP.

Cucerzan, S., and E. Brill. 2004. Spelling correction as

an iterative process that exploits the collective

knowledge of web users. In Proceedings of EMNLP.

Duan, H., and P. Hsu. 2011. Online spelling correction

for query completion. In Proceedings of WWW.

Gao, J., J. Goodman, M. Li and K.-F. Lee. 2002.

Toward a unified approach to statistical language

modeling for Chinese. In ACM Transactions on

Overall errors (words) 1,074 / 12,102

 Conversion 646 (60.14%)

 Over-corrections 155 (14.43%)

 Under-correction 161 (14.99%)

 Wrong correction 112 (10.42%)

Table 4: Classification of errors

Asian Language Information Processing, Vol. 1, No.

1, pp 3-33.

Gao, J., X. Li, D. Micol, C. Quirk and X. Sun. 2010. A

large scale ranker-based system for search query

spelling correction. In Proceedings of COLING.

Jiampojamarn, S., G. Kondrak and T. Sherif, 2007.

Applying many-to-many alignments and hidden

markov models to letter-to-phoneme conversion. In

Proceedings of HLT/NAACL.

Kernighan, M., K. Church, and W. Gale. 1990. A

spelling correction program based on a noisy channel

model. In Proceedings of COLING.

Koehn, P., F. Och and D. Marcu. 2003. Statistical

phrase-based translation. In Proceedings of HLT-

NAACL.

McEnery, A. and Xiao, Z. 2004. The Lancaster Corpus

of Mandarin Chinese: A Corpus for Monolingual and

Contrastive Language Study. In Proceedings of

LREC.

Mori, S., M. Tsuchiya, O. Yamaji and M. Nagao. 1998.

Kana-kanji conversion by a stochastic model. In

Proceedings of Information Processing Society of

Japan, SIG-NL-125-10 (in Japanese).

Och, F. J. 2003. Minimum error rate training in

statistical machine translation. In Proceedings of

ACL.

Och, F., and Ney, H. 2004. The alignment template

approach to statistical machine translation.

Computational Linguistics, 30(4): 417-449.

Rama, T., A. K. Singh and S. Kolachina. 2009.

Modeling letter-to-phoneme conversion as a phrase

based statistical machine translation problem with

minimum error rate training. In Proceedings of the

NAACL HLT Student Research Workshop and

Doctoral Consortium.

Sherif, T. and G. Kondrak. 2007. Substring-based

transliteration. In Proceedings of ACL.

Sun, X., J. Gao, D. Micol and C. Quirk. 2010. Learning

phrase-based spelling error models from clickthrough

data. In Proceedings of ACL.

Suzuki, H. and J. Gao. 2005. A comparative study on

language model adaptation using new evaluation

metrics. In Proceedings of EMNLP.

Toutanova, K., and R. C. Moore. 2002. Pronunciation

modeling for improved spelling correction. In

Proceedings of ACL.

Tokunaga, H., D. Okanohara and S. Mori. 2011.

Discriminative method for Japanese kana-kanji input

method. In Proceedings of the Workshop on

Advances in Text Input Methods (WTIM 2011).

Whitelaw, C., B. Hutchinson, G. Y. Chung, and G.

Ellis. 2009. Using the web for language independent

spellchecking and autocorrection. In Proceedings of

ACL.

Zhang, Y., L. Deng, X. He and A. Acero. 2011. A novel

decision function and the associated decision-

feedback learning for speech translation. In

Proceedings of ICASSP.

Zheng, Y., L. Xie, Z. Liu, M. Sun. Y. Zhang and L. Ru.

2011a. Why press backspace? Understanding user

input behaviors in Chinese pinyin input method. In

Proceedings of ACL.

Zheng, Y., C. Li and M. Sun. 2011b. CHIME: An

efficient error-tolerant Chinese pinyin input method.

In Proceedings of IJCAI.

