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It’s Time to End Monolithic Apps for  
Connected Devices
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A M A N  K A N S A L ,  A N D  R A T U L  M A H A J A N

The proliferation of connected sensing devices (or Internet of Things) 
can in theory enable a range of “smart” applications that make 
rich inferences about users and their environment. But in practice, 

developing such applications today is arduous because they are constructed 
as monolithic silos, tightly coupled to sensing devices, and must implement 
all data sensing and inference logic, even as devices move or are temporarily 
disconnected. We present Beam, a framework and runtime for distributed 
inference-driven applications that breaks down application silos by decou-
pling their inference logic from other functionality. It simplifies applications 
by letting them specify “what should be sensed or inferred,” without worry-
ing about “how it is sensed or inferred.” We discuss the challenges and oppor-
tunities in building such an inference framework.

Connected sensing devices such as cameras, thermostats, and in-home motion, door-win-
dow, energy, and water sensors, collectively dubbed the Internet of Things (IoT), are rapidly 
permeating our living environments, with an estimated 50 billion such devices projected 
for use by 2020 [2]. They enable a wide variety of applications spanning security, efficiency, 
healthcare, and others. Typically, these applications collect data using sensing devices to 
draw inferences about the environment or the user, and use these inferences to perform cer-
tain actions. For example, Nest uses motion sensor data to infer and predict home occupancy 
and adjusts the thermostat accordingly.

Most IoT applications today are being built in a monolithic way. That is, applications are 
tightly coupled to the hardware. For instance, Nest’s occupancy prediction can only be used 
with the Nest device. Applications need to implement all the data collection, inferencing, and 
user functionality-related logic. For application developers, this increases the complexity of 
development, and hinders broad distribution of their applications because the cost of deploy-
ing their specific hardware limits user adoption. For end users, each sensing device they 
install is limited to a small set of applications, even though the hardware capabilities may be 
useful for a broader set of applications. How do we break free from this monolithic and restric-
tive setting? Can we enable applications to be programmed to work seamlessly in heteroge-
neous environments with different types of connected sensors and devices, while leveraging 
devices that may only be available opportunistically, such as smartphones and tablets?

To address this problem, we start from the insight that many inferences required by applica-
tions can be drawn using multiple types of connected devices. For instance, home occupancy 
can be inferred using motion sensors (e.g., those in security systems or in Nest), cameras 
(e.g., Dropcam), microphone, smartphone GPS, or using a combination of these, since each 
may have different sources of errors. Therefore, we posit that inference logic, traditionally 
left up to applications, ought to be abstracted out as a system service. Such a service will 
relieve application developers of the burden of implementing and training commonly used 
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 inferences. More importantly, it will enable applications to work using any of the sensing 
devices that the shared inference logic supports.

We surveyed and analyzed two popular application classes in detail, one that infers environ-
mental attributes and another that senses an individual user.

◆◆ Rules: A large class of applications is based on the If This Then That (IFTTT) pattern [1, 8]. 
IFTTT enables users to create their own rules that map sensed attributes to desired actions. 
We consider a particular rules application that alerts a user if a high-power appliance, e.g., 
electric oven, is left on when the home is unoccupied. This application uses the appliance-
state and home occupancy inferences.

◆◆ Quantified Self (QS) captures a popular class of applications that disaggregate a user’s daily 
routine by tracking her physical activity (walking, running, etc.), social interactions (loneli-
ness), mood (bored, focused), computer use, and more.

In analyzing these two popular classes of applications, we identify the following three key 
challenges for the proposed inference service:

1. Decouple applications, inference algorithms, and devices: Data-driven inferences 
can often be derived using data from multiple devices. Combining inputs from multiple 
devices, when available, generally leads to improved inference accuracy (often overlooked by 
developers). Figure 1 illustrates the improvement in inference accuracy for the occupancy 
and physical activity inferences, used in the Rules and Quantified Self applications, respec-
tively; 100% accuracy maps to manually logged ground truth over 28 hours.

Hence, applications should not be restricted to using a single sensor or a single inference 
algorithm. At the same time, applications should not be required to incorporate device 
discovery, handle the challenges of potentially using devices over the wide area (e.g., remote 
I/O and tolerating disconnections), use disparate device APIs, and instantiate and combine 
multiple inferences depending on available devices. Therefore, an inference framework must 
decouple (1) “what is sensed” from “how it is sensed” and (2) “what is inferred” from “how it is 
inferred.” It should require an application to only specify the desired inference, e.g., occu-
pancy (in addition to inference parameters like sampling rate and coverage), while handling 
the complexity of configuring the right devices and inference algorithms.

2. Handle environmental dynamics: Applications are often interested in tracking user 
and device mobility, and adapting their processing accordingly. For instance, the QS applica-
tion needs to track which locations a user frequents (e.g., home, office, car, gym, meeting 
room, etc.), handle intermittent connectivity, and more. Application development stands 
to be greatly simplified if the framework were to seamlessly handle such environmental 
dynamics, e.g., automatically update the selection of devices used for drawing inferences 
based on user location. Hence the QS application, potentially running on a cloud server, could 
simply subscribe to the activity inference, which would be dynamically composed of sub-
inferences from various devices tracking a user. 

3. Optimize resource usage: Applications often involve continuous sensing and inferring, 
and hence consume varying amounts of system resources across multiple devices over time. 
Such an application must structure its sensing and inference processing across multiple 
devices, in keeping with the devices’ resource constraints. This adds undue burden on devel-
opers. For instance, in the QS application, wide area bandwidth constraints may prevent 
backhauling of high rate sensor data. Moreover, whenever possible, inferences should be 
shared across multiple applications to prevent redundant resource consumption. Therefore, 
an inference framework must not only facilitate sharing of inferences, but in doing so must 
optimize for efficient resource use (e.g., network, battery, CPU, memory, etc.) while meeting 
resource constraints.
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Beam Inference Framework
To explore the above challenges concretely, we propose Beam, an 
application framework and associated runtime for data-driven 
inference-based applications. Beam provides applications with 
inference-based programming abstractions. Applications sub-
scribe to high-level inferences, and Beam dynamically identifies 
the required sensors in the given deployment and constructs an 
appropriate inference graph. The inference graph is made up of 
modules, which are processing units that encapsulate infer-
ence algorithms; modules can use the output of other modules 
for their processing logic. The Beam runtime instantiates the 
inference graph to initiate data processing on suitable devices. 
Beam’s user-tracking service and optimizer mutate this graph 
at runtime for handling environment dynamics and for efficient 
resource usage, respectively.

Beam introduces three simple abstractions that are key to 
constructing and maintaining the inference graph. First, 
typed inference data units (IDUs) guide module composability. 

Modules can be linked to accept IDUs from other modules and 
generate IDUs. Second, channels abstract all inter-module inter-
action, allowing Beam to seamlessly migrate modules and mask 
transient disconnections when interacting modules are not col-
located. Third, coverage tags provide a flexible and low-overhead 
way to connect sensors with the right coverage characteristics 
(e.g., location, users) to applications. We describe these key 
abstractions in detail next.

Inference Graphs: Inference graphs are directed acyclic 
graphs that connect sensors to applications. The nodes in this 
graph correspond to inference modules and edges correspond 
to channels that facilitate the transmission of IDUs between 
modules. Figure 2 shows an example inference graph for the 
Quantified Self application that uses eight different devices 
spread across the user’s home and office and includes mobile and 
wearable devices.

Composing an inference as a directed graph enables sharing of 
data-processing modules across applications and across modules 
that require the same input. In Beam, each compute device asso-
ciated with a user, such as a tablet, phone, PC, or home hub, has 
a part of the runtime, called the engine. Engines host inference 
graphs and interface with other engines. Figure 3 shows two 
engines, one on the user’s home hub and another on his phone; 
the inference graph for QS shown earlier is split across these 
engines, with the QS application itself running on a cloud server. 
For simplicity, we do not show other engines such as one running 
on the user’s work PC.

IDU: An inference data unit (IDU) is a typed inference, and in its 
general form is a tuple <t,s,e>, which denotes any inference with 
state information s, generated by an inference algorithm at time 
t and error e. The types of the inference state s and error e, are 
specific to the inference at hand. An example IDU is (09/23/2015 

Figure 1: Improvement in occupancy and activity inference accuracy 
by combining multiple devices. For occupancy, sensor set 1 = {camera, 
microphone} in one room and set 2 = {PC interactivity detection} in a 
second room. For physical activity, set 1 = {phone accelerometer} and set 
2 = {wrist worn FitBit}.

Figure 2: Inference graph for Quantified Self app
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10:10:00, occupied, 90%). Inference state s may be of a numeri-
cal type such as a double (e.g., inferred energy consumption); an 
enumerated type such as high, medium, low; or numerical types. 
Similarly, error e may specify a confidence measure (e.g., stan-
dard deviation), probability distribution, or error margin (e.g., 
radius). IDUs abstract away “what is inferred” from “how it is 
inferred.” The latter is handled by inference modules, described 
next.

Inference Modules: Beam encapsulates inference algorithms 
into typed modules. Inference modules consume IDUs from 
one or more modules, perform certain computations using IDU 
data and pertinent in-memory state, and output IDUs. Special 
modules called adapters interface with underlying sensors and 
output sensor data as IDUs. Adapters decouple “what is sensed” 
from “how it is sensed.” Module developers specify the IDU 
types a module consumes, the IDU type it generates, and the 
module’s input dependency (e.g., {PIR} OR {camera AND mic}). 
Modules have complete autonomy over how and when to output 
an IDU and can maintain arbitrary internal state. For instance, 
an occupancy inference module may (1) specify input IDUs from 
microphone, camera, and motion sensor adapters, (2) allow 
multiple microphones as input, and (3) maintain internal state to 
model ambient noise.

Channels: To ease inference composition, channels link mod-
ules to each other and to applications. They encapsulate the 
complexities of connecting modules across different devices, 
including dealing with device disconnections and allowing for 
optimizations such as batching IDU transfers for efficiency. 
Every channel has a single writer and a single reader module. 
Modules can have multiple input and output channels. Channels 
connecting modules on the same engine are local. Channels con-
necting modules on two different engines, across a local or wide 

area network, are remote channels. They enable applications and 
inference modules to seamlessly use remote devices or remote 
inference modules.

Coverage tags: Coverage tags help manage sensor cover-
age. Each adapter is associated with a set of coverage tags that 
describe what the sensor is sensing. For example, a location 
string tag can indicate a coverage area such as “home,” and a 
remote monitoring application can use this tag to request an 
occupancy inference for this coverage area. Coverage tags are 
strongly typed. Beam uses tag types only to differentiate tags 
and does not dictate tag semantics. This allows applications 
complete flexibility in defining new tag types. Tags are assigned 
to adapters at setup time using inputs from the user, and are 
updated at runtime to handle dynamics.

Beam’s runtime also consists of a coordinator, which interfaces 
with all engines in a deployment and runs on a server that is 
reachable from all engines. The coordinator maintains remote 
channel buffers to support reader or writer disconnections (typi-
cal for mobile devices). It also provides a place to reliably store 
state of inference graphs at runtime while being resistant to 
engine crashes and disconnections. The coordinator is also used 
to maintain reference time across all engines. Engines interface 
with the coordinator using a persistent Web-socket connection, 
and instantiate and manage local parts of an inference graph(s).

Beam Runtime
Beam creates or updates inference graphs when applications 
request inferences, mutates the inference graphs appropriately 
to handle environmental dynamics, and optimizes resource 
usage. 

Inference graph creation: An application may run on any user 
device, and the sensors required for a requested inference may 

Figure 3: An overview of different components in an example Beam deployment with two engines
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be spread across devices. Applications request their local Beam 
engine for all inferences they require. All application requests 
are forwarded to the coordinator, which uses the requested 
inference to look up the required module. It recursively resolves 
all required inputs of that module (as per its specification) and 
reuses matching modules that are already running. The coordi-
nator maintains a set of such inference graphs as an incarnation. 
The coordinator determines where each module in the inference 
graph should run and formulates the new incarnation. The coor-
dinator initializes buffers for remote channels, and partitions 
the inference graphs into engine-specific subgraphs, which are 
sent to the engines.

Engines receive their respective subgraphs, compare each 
received subgraph to existing ones, and update them by termi-
nating deleted channels and modules, initializing new ones, and 
changing channel delivery modes and module sampling rates 
as needed. Engines ensure that exactly one inference module of 
each type with a given coverage tag is created.

Inference delivery and guarantees: For each inference 
request, Beam returns a channel to the application. The infer-
ence request consists of (1) required inference type or module, 
(2) delivery mode, (3) coverage tags, and (4) sampling require-
ments (optional).

Delivery mode is a channel property that captures data trans-
port optimizations. For instance, in the fresh push mode, an IDU 
is delivered as soon as the writer-module generates it, while 

in the lazy push mode, the reader chooses to receive IDUs in 
batches, thus amortizing network transfer costs from battery-
limited devices. Remote channels provide IDU delivery in the 
face of device disconnections by using buffers at the coordina-
tor and the writer engine. Channel readers are guaranteed (1) 
no duplicate IDU delivery and (2) FIFO delivery based on IDU 
timestamps. Currently, remote channels use the drop-tail policy 
to minimize wide-area data transfers in the event of a discon-
nected/lazy reader. This means that when a reader reconnects 
after a long disconnection, it first receives old inference values 
followed by more recent ones. A drop-head policy may be adopted 
to circumvent this, at the cost of increased data transfers.

When requesting inferences, applications use tags to specify 
coverage requirements. Furthermore, an application may specify 
sampling requirements as a latency value that it can tolerate in 
detecting the change of state for an inference (e.g., walking peri-
ods of more than one minute). This allows adapters and modules 
to temporarily halt sensing and data processing to reduce bat-
tery, network, CPU, or other resources.

Channels and modules do not persist data. Applications and 
modules may use a temporal datastore, such as Bolt [5], to make 
inferences durable.

Optimizing resource use: The Beam coordinator uses infer-
ence graphs as the basis for optimizing resource usage. The coor-
dinator reconfigures inference graphs by remapping the engine 
on which each inference module runs. Optimizations are either 

Function Application Description

APIs: 
Request(InferenceModule, List<Tag>, Mode, [SamplingRate])  
Request(InferenceType, List<Tag>, Mode, [SamplingRate])  
CancelRequest(InferenceModule) 

Returns a channel to specified module or to a module that outputs 
specified inference (and instantiates the inference graph) 
Delete channel to specified module, and terminate its inference 
graph

Channel APIs:  
DeliverCallback(Channel, List<IDU>) 
Start(), Stop()  

 
Receive a list of IDUs (invoked on channel reader) 
Start or stop a channel (invoked by channel reader)

Inference Module APIs:  
Initialize(ModuleSpec, [SamplingRate])  
PushToOutputChannels(IDU)  
AllOutputChannelsStopped()  
OutputChannelRestarted(Channel) 

 
Initialize the module with given specification and reporting rate 
Push inference data unit (IDU) to all output channels 
Stop sensing/processing because all output channels stopped 
Restart sensing/processing because an output channel is 
restarted

Optimizer APIs: 
UpdateGraphs(List<Graph>, List<Engine>, App, Req/Cancel, 
Module, [Mode])  
ReevaluateGraphs(List<Graph>, List<Engine>) 

 
Incorporates module request and returns updated list of infer-
ence graphs 
Returns updated list of inference graphs (new incarnation) after 
reevaluation

Table 1: Key Beam APIs: Beam offers APIs for application, inference module, and optimizer developers. Applications and inference modules use channels for 
communication. [] denotes an optional parameter.
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performed reactively (i.e., when an application issues/cancels an 
inference request) or proactively at periodic intervals. Beam’s 
default reactive optimization minimizes the number of remote 
channels, and proactive optimization minimizes the amount of 
data transferred over remote channels. Other potential optimi-
zations can minimize battery, CPU, and/or memory consump-
tion at engines.

When handling an inference request, the coordinator first 
incorporates the requested inference graph into the incarnation, 
reusing already running modules, and merging inference graphs 
if needed. For new modules, the coordinator decides on which 
engines they should run (by minimizing the number of remote 
channels).

Engines profile their subgraphs and report profiling data (e.g., per-
channel data rate) to the coordinator periodically. The coordinator 
annotates the incarnation using this data and periodically reeval-
uates the mapping of inference modules to engines. Beam’s default 
proactive optimization minimizes wide area data transfers.

Handling dynamics: Movement of users and devices can 
change the set of sensors that satisfy application requirements. 
For instance, consider an application that requires camera input 
from the device currently facing the user at any time, such as 
the camera on her home PC, office PC, smartphone, etc. In such 
scenarios, the inference graph needs to be updated dynami-
cally. Beam updates the coverage tags to handle such dynamics. 
Certain tags such as those of location type (e.g., “home”) can be 
assumed to be static (edited only by the user), while for certain 
other types, e.g., user, the sensed subject is mobile and hence the 
sensors that cover it may change.

The coordinator’s tracking service manages the coverage tags 
associated with adapters on various engines. The engine’s track-
ing service updates the user coverage tags as the user moves. For 
example, when the user leaves her office and arrives home, the 
tracking service removes the user tag from device adapters in 
the office, and adds them to adapters of devices deployed in the 
home. The tracking service relies on device interactions to track 
users. When a user interacts with a device, the tracking service 
appends the user’s tag to the tags of all adapters on the device.

When coverage tags change (e.g., due to user movement and 
change in sensor coverage), the coordinator recomputes the infer-
ence graphs and sends updated subgraphs to the affected engines.

Current Prototype
Our Beam prototype is implemented as a cross-platform por-
table service that supports .NET v4.5, Windows Store 8.1, and 
Windows Phone 8.1 applications. Module binaries are currently 
wrapped within the service, but may also be downloaded from 
the coordinator on demand.

APIs: Table 1 shows the APIs that Beam exposes to application, 
inference module, and optimizer developers. Applications use 
the inference API to issue and cancel requests. Both inference 
modules and applications use the channel APIs to receive IDUs, 
and may Stop a channel to cease receiving IDUs. Each inference 
module is first initialized and provided with its specification and 
a sampling rate. It then begins its processing and pushes IDUs 
to all its output channels. If every output channel of a module is 
stopped, Beam informs the module (via AllOutputChannelsS-
topped), allowing it to stop its sensing/processing, thus saving 
resources until an output channel is restarted. Moreover, Beam 
abstracts optimization logic out of the coordinator, which allows 
modular replacement of proactive and reactive optimizers. Table 
1 shows the inference graph management APIs that optimizers 
should implement to interface with Beam.

Inferences: We have implemented eight inference modules 
(mic-occupancy, camera-occupancy, appliance-use [3], occu-
pancy, PC activity [6], fitness activity [7], semantic location, and 
social-interaction) and nine adapters (tablet and PC mic, power-
meter, FitBit, GPS, accelerometer, PC interaction, PC event, and 
a HomeOS [4] adapter) to access all its device drivers.

Sample Applications: We have implemented the two sample 
applications, Rules and QS, discussed earlier. Applications run 
on a cloud VM; Beam hosts the respective inference modules 
across the user’s home PC, work PC, and phone.

Figure 4 compares the source lines of application code (SLoC) 
used in building these applications when using Beam and other 
development approaches. A monolithic approach where all sen-
sor data is backhauled to a cloud-hosted application is denoted 
by M-AC. M-CD denotes an approach where a developer divides 
inference processing into fixed components that run on a cloud 
VM and end devices. M-Lib is similar to M-CD, except that an 
inference algorithm library is used. M-Hub denotes application 
development using device abstractions provided by the OS, e.g., 
HomeOS [4]. Moreover, we categorize the measured SLoC into 

Figure 4: SLoC for different application components in the various devel-
opment approaches
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the following different categories: (1) sensor drivers (one per 
sensor type); (2) inference algorithms, feature extraction, and 
learning models; (3) any required cloud-hosted services (as per 
the development approach) such as a storage, authentication, or 
access-control service; (4) mechanisms to handle device discon-
nections; and (5) user interface components, e.g., for display-
ing results or configuring devices. Using Beam results in up to 
12x lower SLoC. Moreover, Beam’s handling of environmental 
dynamics results in up to 3x higher inference accuracy, and 
its dynamic optimizations match hand-optimized versions for 
network resource usage.

Future Directions
Our experience in building the current Beam prototype has 
raised interesting questions and helped us identify various 
directions for future work.

Beam’s current tracking service only supports tracking of users 
(through device interactions) and mobile devices. We aim to 
extend tracking support to generic objects using passive tags 
such as RFID or QR codes.

Similarly, we aim to enrich Beam’s optimizers to include optimi-
zations for battery, CPU, and memory. The key challenge in doing 
so lies in dynamically identifying the appropriate optimization 
objective (e.g., network, battery), issuing reconfigurations of 
inference graphs, while preventing hysteresis in the system.

Many in-home devices possess actuation capabilities, such as 
locks, switches, cameras, and thermostats. Applications and 
inference modules in Beam may want to use such devices. If the 
inference graph for these applications is geo-distributed, timely 
propagation and delivery of such actuation commands to the 
devices becomes important and raises interesting questions of 
what is the safe thing to do if an actuation arrives “late.”

Lastly, by virtue of its inference-driven interface, Beam enables 
better information control. A user can, in theory, directly control 
the inferences a given application can access. In contrast, exist-
ing device abstractions only allow the user to control the flow 
of device data to applications, with little understanding of what 
information is being handed over to applications. We hope to 
investigate the implications of this new capability in future work.

Conclusion
Applications today are developed as monolithic silos, tightly 
coupled to sensing devices, and need to implement extensive 
data sensing and inference logic, even as devices move or have 
intermittent connectivity. Beam presents applications with 
inference-based abstractions and (1) decouples applications, 
inference algorithms, and devices; (2) handles environmental 
dynamics; and (3) optimizes resource use for data processing 
across devices. This approach simplifies application develop-
ment, and also maximizes the utility of user-owned devices, thus 
surpassing current monolithic siloed approaches to building 
apps that use connected devices.
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