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Outline

• Alternating Minimization
• Empirically successful

• Very little theoretical understanding

• Three problems:
• Low-rank Matrix Completion

• Phase Retrieval

• Dictionary Learning

• Open problems



Optimization over two variables

min
𝑈,𝑉

𝑓(𝑈, 𝑉)

• Alternating Minimization: 
• Fix U, optimize for V 

𝑉𝑡 = 𝑎𝑟𝑔min
𝑉

𝑓(𝑈𝑡 , 𝑉)

• Fix V, optimize for U
𝑈𝑡+1 = 𝑎𝑟𝑔min

𝑈
𝑓(𝑈, 𝑉𝑡)

• Generic technique
• If each individual problem is “easy”

• Forms basis for several generic algorithm techniques like EM algorithms



A few known ML-related applications

• EM algorithms

• Recommendation systems

• Dictionary Learning

• Low-rank matrix estimation

• Active Learning

• Phase Retrieval 

• …..



Known Theoretical Results

• Known Results:
• 𝑓: convex function jointly in 𝑈, 𝑉

• 𝑓: smooth function in both 𝑈, 𝑉

• Then, Alternating minimization converges to global optima

• Known counter-examples if either of the conditions not satisfied
• Does not converge to correct solution even if 𝑓 is not smooth

• In many practical problems: 𝑓 is non-convex !!!!
• But surprisingly method works very well in practice



Our Contribution

• Studied three important ML-related problems 
• Low-rank Matrix Completion (Recommendation systems)
• Phase Retrieval (X-ray Crystallography)
• Dictionary Learning (Image Processing)

• For all the problems
• The underlying function 𝑓 is non-convex
• Alternating Minimization was known to be very successful
• But there were some situations where the algorithm will not succeed

• We provide certain enhancements to the basic algorithm

• Provide first theoretical analysis under certain standard assumptions



Low-rank Matrix Completion

• Task: Complete ratings matrix
• Applications: recommendation systems, PCA with missing entries



Low-rank

≅ ×

𝑀 𝑈 𝑉𝑇≅ ×

• M: characterized by U, V
• No. of variables: 

• U: 𝑚 × 𝑘 = 𝑚𝑘
• V: 𝑛 × 𝑘 = 𝑛𝑘

• DoF: 𝑚𝑘 + 𝑛𝑘



Low-rank Matrix Completion

min
𝑋

𝐸𝑟𝑟𝑜𝑟Ω 𝑋 =  

𝑖,𝑗 ∈Ω

𝑋𝑖𝑗 − 𝑀𝑖𝑗
2

𝑠. 𝑡 𝐫𝐚𝐧𝐤 𝑋 ≤ 𝑘

• Ω: set of known entries

• Problem is NP-hard in general
• Two approaches:

• Relax rank function to its convex surrogate (Trace-norm based method)

• Use alternating minimization



Existing method: Trace-norm minimization

• ||𝑋||∗: sum of singular values

• Candes and Recht prove that above problem solves matrix 
completion (under assumptions on Ω and 𝑀)

• However, convex optimization methods for this problem 
don’t scale well

min
𝑋

 

𝑖,𝑗 ∈Ω

𝑋𝑖𝑗 − 𝑀𝑖𝑗
2

𝑠. 𝑡. ||𝑋||∗ ≤ 𝜆(𝑘)



Alternating Minimization

• If X has rank-k: 

= ×m

n k

k

min
𝑋

𝐸𝑟𝑟𝑜𝑟Ω 𝑋 =  

𝑖,𝑗 ∈Ω

𝑋𝑖𝑗 − 𝑀𝑖𝑗
2

𝑠. 𝑡 𝐫𝐚𝐧𝐤 𝑋 ≤ 𝑘

𝑉𝑡+1 = min
𝑉

𝐸𝑟𝑟𝑜𝑟Ω(𝑈𝑡 , 𝑉)

𝑈𝑡+1 = min
𝑈

𝐸𝑟𝑟𝑜𝑟Ω(𝑈, 𝑉𝑡+1)

U

𝐕𝑻

X



Initialization [JNS’13]

• Initialization: 

– SVD(𝑃Ω 𝑀 , 𝑘)

0 0

0

0

0

𝑃Ω 𝑀

3

2 5

2



Results [JNS’13]

• Assumptions: Ω: set of known entries

– Ω is sampled uniformly  s.t. Ω = 𝑂(𝑘7𝑛 log 𝑛 𝛽6)

• 𝛽 = 𝜎1/𝜎𝑘

– 𝑀: rank-k “incoherent” matrix

• Most of the entries are similar in magnitude

• Then, ||𝑀 − 𝑈𝑉𝑇||𝐹 ≤ 𝜖 after only 𝑂(log
1

𝜖
) steps



Proof Sketch

• Assume Rank-1 case, i.e., 𝑀 = 𝑢∗𝑣∗𝑇

• Fixing 𝑢, update for 𝑣 is given by:

𝑣 = argmin
𝑣

 

𝑖,𝑗 ∈Ω

𝑢𝑖𝑣𝑗 − 𝑢𝑖
∗𝑣𝑗

∗ 2

𝑣𝑗 =
 𝑖,𝑗 ∈Ω𝑢𝑖𝑢𝑖

∗

 𝑖,𝑗 ∈Ω𝑢𝑖
2 ⋅ 𝑣𝑗

∗

• If Ω = m x n ,
𝑣𝑗 = 𝑢, 𝑢∗ 𝑣𝑗

∗

• Power method update!



Proof Sketch

𝑣 = 𝑀𝑇𝑢 − 𝐵−1 𝐵 < 𝑢, 𝑢∗ > −𝐶 𝑣∗

Power 
Method Term

Error Term

Problems:
1. Show error term decreases with iterations
2. Also, need to show “incoherence” of each 𝑣

Tools:
1. Spectral gap of random graphs
2. Bernstein-type concentration bounds



||𝑀 − 𝑈𝑉𝑇||𝐹 ≤ 𝜖 ||𝑀||𝐹

after 𝑂(log
1

𝜖
) steps

Requires O(log
1

𝜖
) steps 

Each step require solving 2 
least squares problems

Require Singular value 
decomposition

Intermediate iterate always 
have rank-k

Intermediate iterates can 
have rank larger than k

Assumptions: random 
sampling and incoherence

Similar assumption

|𝛀| = 𝑂 𝑘7𝛽6𝑑 log𝟐(𝑑)

𝑑 = 𝑚 + 𝑛

|𝛀| = 𝑂 𝑘 𝑑 log𝟐(𝑑)

𝑑 = 𝑚 + 𝑛

Alternating Minimization Trace-Norm Minimization



Empirical Performance

• Variants of alternating minimization form important 
component of the winning entry for Netflix Challenge

• Generated 100 low-rank matrix completion problems:
• Vary fraction of total entries observed
• Success: ||𝑀 − 𝑋|| ≤ .1 ||𝑀||



Comparison to Keshavan’12

• Independent of our work

• Show results for Matrix Completion
– Alternating minimization method

– Similar linear convergence

– Ours:

• Recent work of Hardt & Wooters improve bounds to: 

– But use a modified and more complicated version of AltMin

|Ω| = 𝑂(𝑘𝛽8(𝑚 + 𝑛) log(𝑚 + 𝑛))

|Ω| = 𝑂(𝑘7𝛽6(𝑚 + 𝑛) log(𝑚 + 𝑛))

|Ω| = 𝑂(𝑝𝑜𝑙𝑦 𝑘 log 𝛽 (𝑚 + 𝑛) log(𝑚 + 𝑛))



Recap

• Study Alternating Minimization method for:

– Low-rank Matrix Completion 

– Low-rank Matrix Sensing 

• The objective function in these problems is non-convex

• Provide convergence to the global optima guarantees 

– Use similar assumptions as existing methods

– But slightly worse no. of measurements (or entries)



Phase Retrieval-Problem Definition

∗

𝑛-dim
vector

𝑚 × 𝑛
Sensing Matrix

≅

𝑚
Magnitude 

Measurements

×

A



Motivation (X-ray Crystallography)

Problem: Detectors record intensities only
• Magnitude measurements only; Phase Missing



Importance of Phase

Slide from Candes’ISIT2013



Phase Retrieval

• Only magnitudes of measurements available

• Goal: Recovery 𝑥∗ i.e.,  given 𝐴, 𝑦
𝐹𝑖𝑛𝑑 𝑥 𝑠. 𝑡. 𝑦𝑖 = 𝑎𝑖 , 𝑥 ∀𝑖

𝐹𝑖𝑛𝑑 𝑥 𝑠. 𝑡. 𝑦𝑖
2 = 〈𝑎𝑖𝑎𝑖

𝑇 , 𝑥𝑥𝑇〉 ∀𝑖

𝑦𝑖 = 𝑎𝑖 , 𝑥∗ , 1 ≤ 𝑖 ≤ 𝑚,
𝑥∗∈ 𝐶𝑛



PhaseLift

• Exact recovery if 𝑚 = 𝑂(𝑛 log 𝑛) [CTV11]

• Later improved to 𝑚 = 𝑂(𝑛) [CL12]

• Optimization procedure is computationally 
expensive

min ||𝑋||∗
𝑠. 𝑡. 𝑦𝑖

2 = 𝑋, 𝑎𝑖𝑎𝑖
𝑇

𝑋 ≽ 0



Alternating Minimization

𝐹𝑖𝑛𝑑 𝑥 𝑠. 𝑡. 𝑦𝑖 = 𝑎𝑖 , 𝑥 ∀1 ≤ 𝑖 ≤ 𝑚

• Let say phase of measurements is known

– 𝑃𝑖𝑖
∗ = 𝑃ℎ𝑎𝑠𝑒( 𝑎𝑖 , 𝑥

∗ )

• Then the problem is: 𝐹𝑖𝑛𝑑 𝑥 𝑠. 𝑡. 𝑃∗𝑦 = 𝐴𝑥

– Simple system of linear equation

• Make 𝑃 also as a variable 

𝐹𝑖𝑛𝑑 𝑥 , 𝑃 𝑠. 𝑡. 𝑃𝑖𝑖 ⋅ 𝑦𝑖 = 〈𝑎𝑖 , 𝑥〉 ∀1 ≤ 𝑖 ≤ 𝑚



Alternating Minimization

• A variant was proposed by Gerchberg and Saxton in 1972

– Random initialization

• Heavily used in practice

• However, no analysis for last 41 years

• Our contributions: 

– Better initialization 

– Provide first theoretical analysis for the algorithm 

• Results hold in “certain settings”



Our Modification

• Input: 𝐴, 𝑦

• Initialize: 𝑥0 = 𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ( 𝑖 𝑦𝑖
2𝑎𝑖𝑎𝑖

𝑇)

• For t=1 to T

– 𝑃𝑡 = 𝑃ℎ𝑎𝑠𝑒(𝐴 𝑥𝑡)

– 𝑥𝑡+1 = 𝑎𝑟𝑔 min
𝑥

| 𝑃𝑡𝑦 − 𝐴𝑥 |2

• EndFor

• Output: 𝑥𝑇

Measurements
𝑦𝑖 = | 𝑎𝑖 , 𝑥 |

Measurement vector



Our Results [JNS’13]

• Assumptions:
– 𝑎𝑖: Gaussian distributed

– 𝑚 = 𝑂(𝑛 log3 𝑛/𝜖)
• 𝑚: number of measurements, 𝑛: dimensionality 

• Alternating minimization recovers  𝑥

– ||  𝑥 − 𝑥∗||2 ≤ 𝜖||𝑥∗||

– Number of iteration: log(
1

𝜖
)

– First analysis for alternating minimization for Phase Retrieval

• Assumptions similar to existing methods (convex relaxation based)
– 𝑚 = 𝑂(𝑛) suffices
– Typically no. of iterations: 1/ 𝜖



Empirical Results

• Smaller is better 

Our 
Method

Our 
Method



Summary
• Given: 

– Measurements:
𝑦𝑖 = 𝑎𝑖 , 𝑥∗ , 1 ≤ 𝑖 ≤ 𝑚, 𝑥∗∈ 𝐶𝑛

– Measurement matrix: 
𝐴 = 𝑎1𝑎2 …𝑎𝑚

𝑎𝑖 ∼ 𝑁(0, 𝐼)

• Recover 𝑥∗

• Alternating minimization with proper initialization require: 

𝑚 = 𝑂(𝑛 log3
𝑛

𝜖
)

• Open problem: use more realistic Fourier measurements



Dictionary Learning

𝑟-dim, k-sparse
vector

𝑑 × 𝑟
Dictionary 

≅

𝑚
Data Point

×

A



Dictionary Learning

A

≅ ×

Y X

𝑛

𝑟
𝑑

• Overcomplete dictionaries: 𝑟 ≫ 𝑑
• Goal: Given 𝑌, compute 𝐴, 𝑋

• Using small number of samples 𝑛

𝑟



Existing Results

• Generalization error bounds [VMB’11, MPR’12, MG’13, TRS’13]

– But assumes that the optimal solution is reached

– Do not cover exact recovery with finite many samples

• Identifiability of 𝐴, 𝑋 [HS’11]

– Require exponentially many samples

• Exact recovery [SWW’12]

– Restricted to square dictionary (𝑑 = 𝑟)

– In practice, overcomplete dictionary (𝑑 ≪ 𝑟) is more useful



Generating Model

• Generate dictionary 𝐴

– Assume 𝐴 to be incoherent, i.e., 𝐴𝑖 , 𝐴𝑗 ≤ 𝜇/ 𝑑

– 𝑟 ≫ 𝑑

• Generate random samples 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑅𝑑×𝑛

– Each 𝑥𝑖 is 𝑘-sparse

• Generate observations: 𝑌 = 𝐴𝑋



Algorithm

• Typically practical algorithm: alternating minimization

– 𝑋𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋||𝑌 − 𝐴𝑡𝑋||𝐹
2

– 𝐴𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴||𝑌 − 𝐴𝑋𝑡+1||𝐹
2

• Initialize 𝐴0

– Using clustering+SVD method of [AAN’13] or [AGM’13]



Results [AAJNT’13]

• Assumptions: 

– 𝐴 is 𝜇 − incoherent ( 𝐴𝑖 , 𝐴𝑗 ≤ 𝜇/ 𝑑, ||𝐴𝑖|| = 1)

– 1 ≤ 𝑋𝑖𝑗 ≤ 100

– Sparsity: 𝑘 ≤
𝑑

1
6

𝜇
1
3

(better result by AGM’13)

– 𝑛 ≥ 𝑂(𝑟2 log 𝑟)

• After log(
1

𝜖
)-steps of AltMin: 

||𝐴𝑇
𝑖 − 𝐴𝑖||2 ≤ 𝜖



Proof Sketch

• Initialization step ensures that: 

||𝐴𝑖 − 𝐴0
𝑖 || ≤

1

𝑘2

• Lower bound on each element of 𝑋𝑖𝑗 + above bound: 

– 𝑠𝑢𝑝𝑝(𝑥𝑖) is recovered exactly

– Robustness of compressive sensing!

• 𝐴𝑡+1 can be expressed exactly as: 

– 𝐴𝑡+1 = 𝐴 + 𝐸𝑟𝑟𝑜𝑟(𝐴𝑡, 𝑋𝑡)

– Use randomness in 𝑠𝑢𝑝𝑝(𝑋𝑡)



Simulations

Emirically: 𝑛 = 𝑂(𝑟)
Known result: 𝑛 = 𝑂 𝑟2 log 𝑟



Summary

• Studied three problems
– Low-rank matrix estimation

• Recommendation systems, matrix sensing

– Phase Retrieval
• Important problem in x-ray crystallography; several other applications

– Dictionary Learning

• Alternating Minimization
– Empirically successful
– Rigorous analysis was unknown

• Our contribution
– Good initialization
– Rigorous theoretical guarantees

• Setting similar to that of existing theoretical results



Future Work

• Low-rank MC: 

– Remove dependence on condition number

• Phase Sensing: 

– 𝑚 = 𝑂 𝑛 log3 𝑛 ⇒ 𝑚 = 𝑂(𝑛)?

– Better measurement scheme?



Future Work Contd…

• Dictionary Learning: 

– Efficient solution for 𝑘 = 𝑂(𝑑) (best known solution for 𝑘 = 𝑂( 𝑑))

– Sample complexity: 𝑛 = 𝑂 𝑟2 log 𝑟 ⇒ 𝑛 = 𝑂(𝑟 log 𝑟)?

• Explore Alt-Min as a generalized approach for a whole class of 
problems

– Tensor completion (Ongoing Project)

– Generalized analysis of AltMin (Ongoing Project)

– General EM-method



Thank You!!!


