Provable Alternating Minimization Methods for Non-convex Optimization

Prateek Jain Microsoft Research, India

Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish Tandon

Outline

- Alternating Minimization
 - Empirically successful
 - Very little theoretical understanding
- Three problems:
 - Low-rank Matrix Completion
 - Phase Retrieval
 - Dictionary Learning
- Open problems

Optimization over two variables

$$\min_{U,V} f(U,V)$$

- Alternating Minimization:
 - Fix U, optimize for V

$$V^t = arg \min_V f(U^t, V)$$

• Fix V, optimize for U

 $U^{t+1} = \arg\min_{U} f(U, V^t)$

- Generic technique
 - If each individual problem is "easy"
 - Forms basis for several generic algorithm techniques like EM algorithms

A few known ML-related applications

- EM algorithms
- Recommendation systems
- Dictionary Learning
- Low-rank matrix estimation
- Active Learning
- Phase Retrieval
- •

Known Theoretical Results

- Known Results:
 - *f* : convex function jointly in *U*, *V*
 - *f* : smooth function in both *U*, *V*
 - Then, Alternating minimization converges to global optima
- Known counter-examples if either of the conditions not satisfied
 - Does not converge to correct solution even if f is not smooth
- In many practical problems: *f* is non-convex !!!!
 - But surprisingly method works very well in practice

Our Contribution

- Studied three important ML-related problems
 - Low-rank Matrix Completion (Recommendation systems)
 - Phase Retrieval (X-ray Crystallography)
 - Dictionary Learning (Image Processing)
- For all the problems
 - The underlying function f is non-convex
 - Alternating Minimization was known to be very successful
 - But there were some situations where the algorithm will not succeed
- We provide certain enhancements to the basic algorithm
- Provide first theoretical analysis under certain standard assumptions

Low-rank Matrix Completion

- Task: Complete ratings matrix
- Applications: recommendation systems, PCA with missing entries

- M: characterized by U, V DoF: mk + nk
- No. of variables:
 - U: $m \times k = mk$
 - V: $n \times k = nk$

Low-rank Matrix Completion

$$\min_{X} \ Error_{\Omega}(X) = \sum_{\substack{(i,j) \in \Omega \\ k}} \left(X_{ij} - M_{ij} \right)^{2}$$

s.t
$$\operatorname{rank}(X) \le k$$

- Ω : set of known entries
- Problem is NP-hard in general
 - Two approaches:
 - Relax rank function to its convex surrogate (Trace-norm based method)
 - Use alternating minimization

Existing method: Trace-norm minimization

$$\min_{X} \sum_{(i,j)\in\Omega} (X_{ij} - M_{ij})^{2}$$

s.t.
$$\|X\|_{*} \le \lambda(k)$$

- ||X||_{*}: sum of singular values
- Candes and Recht prove that above problem solves matrix completion (under assumptions on Ω and M)
- However, convex optimization methods for this problem don't scale well

Alternating Minimization

$$\min_{X} Error_{\Omega}(X) = \sum_{(i,j)\in\Omega} (X_{ij} - M_{ij})^{2}$$

s.t rank(X) $\leq k$

 \bullet

$$U^{t+1} = \min_{U}^{V} Error_{\Omega}(U, V^{t+1})$$

Initialization [JNS'13]

- Initialization:
 - $-SVD(P_{\Omega}(M), k)$

0	3	0
2	5	0
0	0	2

 $P_{\Omega}(M)$

Results [JNS'13]

- Assumptions: Ω : set of known entries
 - $-\Omega$ is sampled uniformly s.t. $|\Omega| = O(k^7 n \log n \beta^6)$
 - $\beta = \sigma_1 / \sigma_k$
 - M: rank-k "incoherent" matrix
 - Most of the entries are similar in magnitude
- Then, $||M UV^T||_F \le \epsilon$ after only $O(\log(\frac{1}{\epsilon}))$ steps

Proof Sketch

- Assume Rank-1 case, i.e., $M = u^* v^{*^T}$
- Fixing *u*, update for *v* is given by:

$$v = \arg\min_{v} \sum_{(i,j)\in\Omega} (u_i v_j - u_i^* v_j^*)^2$$

$$v_j = \frac{\sum_{(i,j)\in\Omega} u_i u_i^*}{\sum_{(i,j)\in\Omega} u_i^2} \cdot v_j^*$$

• If $\Omega = [m]x[n]$,

$$v_j = \langle u, u^* \rangle v_j^*$$

• Power method update!

Proof Sketch

$$v = \underbrace{M^{T}u}_{\text{Power}} - \underbrace{B^{-1}(B < u, u^{*} > -C)v^{*}}_{\text{Error Term}}$$

Method Term

Problems:

- 1. Show error term decreases with iterations
- 2. Also, need to show "incoherence" of each v

Tools:

- 1. Spectral gap of random graphs
- 2. Bernstein-type concentration bounds

Alternating Minimization	Trace-Norm Minimization	
$ M - UV^{T} _{F} \le \epsilon M _{F}$ after $O(\log\left(\frac{1}{\epsilon}\right))$ steps	Requires $O(\log\left(\frac{1}{\epsilon}\right))$ steps	
Each step require solving 2 least squares problems	Require Singular value decomposition	
Intermediate iterate always have rank-k	Intermediate iterates can have rank larger than k	
Assumptions: random sampling and incoherence	Similar assumption	
$ \mathbf{\Omega} = O(k^7 \beta^6 d \log^2(d))$ $d = m + n$	$ \mathbf{\Omega} = O(k d \log^2(d))$ $d = m + n$	

Empirical Performance

- Generated 100 low-rank matrix completion problems:
 - Vary fraction of total entries observed
 - Success: $||M X|| \le .1 ||M||$

• Variants of alternating minimization form important component of the winning entry for Netflix Challenge

Comparison to Keshavan'12

- Independent of our work
- Show results for Matrix Completion
 - Alternating minimization method
 - Similar linear convergence

 $|\Omega| = O(k\beta^8(m+n)\log(m+n))$

- Ours:

$$|\Omega| = O(k^7 \beta^6 (m+n) \log(m+n))$$

- Recent work of Hardt & Wooters improve bounds to: $|\Omega| = O(poly(k) \log \beta \ (m+n) \log(m+n))$
 - But use a modified and more complicated version of AltMin

Recap

- Study Alternating Minimization method for:
 - Low-rank Matrix Completion
 - Low-rank Matrix Sensing
- The objective function in these problems is non-convex
- Provide convergence to the global optima guarantees
 - Use similar assumptions as existing methods
 - But slightly worse no. of measurements (or entries)

Measurements

Motivation (X-ray Crystallography)

Problem: Detectors record intensities only

Magnitude measurements only; Phase Missing

Importance of Phase

Slide from Candes' ISIT2013

Phase Retrieval

$$y_i = |\langle a_i, x_* \rangle|, \qquad 1 \le i \le m,$$
$$x_* \in C^n$$

• Only magnitudes of measurements available

• Goal: Recovery x^* i.e., given A, yFind x s.t. $y_i = |\langle a_i, x \rangle| \forall i$

Find x s.t.
$$y_i^2 = \langle a_i a_i^T, x x^T \rangle \forall i$$

PhaseLift

$$\min ||X||_*$$

s.t. $y_i^2 = \langle X, a_i a_i^T \rangle$
 $X \ge 0$

- Exact recovery if $m = O(n \log n)$ [CTV11]
- Later improved to m = O(n) [CL12]
- Optimization procedure is computationally expensive

Alternating Minimization

Find x s.t. $y_i = |\langle a_i, x \rangle| \quad \forall 1 \le i \le m$

• Let say phase of measurements is known

 $-P_{ii}^* = Phase(\langle a_i, x^* \rangle)$

- Then the problem is: *Find* x s.t. P*y = Ax
 Simple system of linear equation
- Make *P* also as a variable

Find x, P s.t.
$$P_{ii} \cdot y_i = \langle a_i, x \rangle \quad \forall 1 \le i \le m$$

Alternating Minimization

- A variant was proposed by Gerchberg and Saxton in 1972
 - Random initialization
- Heavily used in practice
- However, no analysis for last 41 years
- Our contributions:
 - Better initialization
 - Provide first theoretical analysis for the algorithm
 - Results hold in "certain settings"

Our Modification

- Input: *A*, *y*
- Initialize: $x_0 = Largest \ Eigenvector (\sum_i y_i^2 a_i a_i^T)$
- For t=1 to T

$$-P_t = Phase(A x_t)$$
$$-x_{t+1} = \arg \min_{x} ||P_t y - Ax||^2$$

Measurements $y_i = |\langle a_i, x \rangle|$

Measurement vector

- EndFor
- Output: x_T

Our Results [JNS'13]

- Assumptions:
 - $-a_i$: Gaussian distributed
 - $-m = O(n \log^3 n/\epsilon)$
 - *m*: number of measurements, *n*: dimensionality
- Alternating minimization recovers \hat{x}
 - $|| \hat{x} x^* ||_2 \le \epsilon ||x^*||$
 - Number of iteration: $\log(\frac{1}{\epsilon})$
 - First analysis for alternating minimization for Phase Retrieval
- Assumptions similar to existing methods (convex relaxation based)
 - -m = O(n) suffices
 - Typically no. of iterations: $1/\sqrt{\epsilon}$

Empirical Results

• Smaller is better

Summary

- Given:
 - Measurements:

$$y_i = |\langle a_i, x_* \rangle|, 1 \le i \le m, x_* \in C^n$$

– Measurement matrix:

$$A = \begin{bmatrix} a_1 a_2 \dots a_m \end{bmatrix}$$
$$a_i \sim N(0, I)$$

- Recover x_*
- Alternating minimization with proper initialization require:

$$m = O(n \log^3 \frac{n}{\epsilon})$$

• Open problem: use more realistic Fourier measurements

Dictionary Learning

- Overcomplete dictionaries: $r \gg d$
- Goal: Given *Y*, compute *A*, *X*
 - Using small number of samples *n*

Existing Results

- Generalization error bounds [VMB'11, MPR'12, MG'13, TRS'13]
 - But assumes that the optimal solution is reached
 - Do not cover exact recovery with finite many samples
- Identifiability of A, X [HS'11]

- Require exponentially many samples

- Exact recovery [SWW'12]
 - Restricted to square dictionary (d = r)
 - In practice, overcomplete dictionary ($d \ll r$) is more useful

Generating Model

- Generate dictionary A
 - Assume A to be incoherent, i.e., $\langle A_i, A_j \rangle \leq \mu / \sqrt{d}$

 $-r \gg d$

- Generate random samples $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$ - Each x_i is k-sparse
- Generate observations: Y = AX

Algorithm

• Typically practical algorithm: alternating minimization

$$-X_{t+1} = argmin_{X}||Y - A_{t}X||_{F}^{2}$$

$$-A_{t+1} = argmin_{A}||Y - AX_{t+1}||_{F}^{2}$$

- Initialize A_0
 - Using clustering+SVD method of [AAN'13] or [AGM'13]

Results [AAJNT'13]

- Assumptions:
 - $-A \text{ is } \mu \text{incoherent } (\langle A_i, A_j \rangle \le \mu / \sqrt{d}, ||A_i|| = 1)$ $-1 \le |X_{ij}| \le 100$ $-\text{ Sparsity: } k \le \frac{d^{\frac{1}{6}}}{\mu^{\frac{1}{3}}} \text{ (better result by AGM'13)}$ $-n \ge O(r^2 \log r)$
- After $\log(\frac{1}{\epsilon})$ -steps of AltMin: $||A_T^i - A^i||_2 \le \epsilon$

Proof Sketch

• Initialization step ensures that:

$$||A^{i} - A_{0}^{i}|| \leq \frac{1}{k^{2}}$$

- Lower bound on each element of X_{ij} + above bound:
 - $-supp(x_i)$ is recovered exactly
 - Robustness of compressive sensing!
- A_{t+1} can be expressed exactly as:
 - $-A_{t+1} = A + Error_{(A_t, X_t)}$
 - Use randomness in $supp(X_t)$

Simulations

Summary

- Studied three problems
 - Low-rank matrix estimation
 - Recommendation systems, matrix sensing
 - Phase Retrieval
 - Important problem in x-ray crystallography; several other applications
 - Dictionary Learning
- Alternating Minimization
 - Empirically successful
 - Rigorous analysis was unknown
- Our contribution
 - Good initialization
 - Rigorous theoretical guarantees
 - Setting similar to that of existing theoretical results

Future Work

- Low-rank MC:
 - Remove dependence on condition number
- Phase Sensing:
 - $-m = O(n \log^3 n) \Rightarrow m = O(n)?$
 - Better measurement scheme?

Future Work Contd...

- Dictionary Learning:
 - Efficient solution for k = O(d) (best known solution for $k = O(\sqrt{d})$)
 - Sample complexity: $n = O(r^2 \log r) \Rightarrow n = O(r \log r)$?
- Explore Alt-Min as a generalized approach for a whole class of problems
 - Tensor completion (Ongoing Project)
 - Generalized analysis of AltMin (Ongoing Project)
 - General EM-method

Thank You!!!