
 How are Developers Using
Refactoring Tools?

Emerson Murphy-Hill
North Carolina State University

Refactoring Tools are Great!

They do what you’d do anyway, but:

– Faster

– Guaranteed Safety

But…

Do refactoring tools really support the kinds of
refactorings that people want to do?

Is the way that refactoring tools work really the way
developers refactor?

Do programmers use the features of refactoring tools?

If an answer is no, how can we make tools fit?

A Study of Refactoring

4

class Foo{

}

class Bar{

 int a;

 public Bar(int anA){

 this.a = anA;

 }

}

class Bar{

}

class Bar{

 int a;

 private Bar(int anA){

 this.a = anA;

 }

 public static Bar create(int anA){

 return new Bar(anA);

 }

}

A Study of Refactoring

5

class Foo{

}

class Bar{

 int a;

 public Bar(int anA){

 this.a = anA;

 }

}

class Bar{

}

class Bar{

 int a;

 private Bar(int anA){

 this.a = anA;

 }

 public static Bar create(int anA){

 return new Bar(anA);

 }

}

A Study of Refactoring

6

R R

class Foo{

}

class Bar{

 int a;

 public Bar(int anA){

 this.a = anA;

 }

}

class Bar{

}

class Bar{

 int a;

 private Bar(int anA){

 this.a = anA;

 }

 public static Bar create(int anA){

 return new Bar(anA);

 }

}

Time

…

A Study of Refactoring

Study Technique

– Compared refactorings in
code to refactoring tool
history

– When tools are used,
looked at how they were
used

Study Participants

– 2 small development
teams

– Around 3 years of
development history each

– Eclipse users

– Looked through 40 CVS
commits per team

Do refactoring tools really support the kinds of
refactorings that people want to do?

Found 287 refactorings

70 have no tool support in
Eclipse (24%)

Unsupported refactorings:
– Mostly remove dead code

(remove exception, unused
method, cast…)

– Significant modifer changing
(e.g., public->private)

– Swap statements

– Use List instead of Array

– Replace literal with constant

Conclusion: Refactoring tools
largely support that types of

refactorings people do.

Is the way that refactoring tools work
really the way developers refactor?

Tactic 1: Floss refactoring
Refactoring interspersed with other
changes

Tactic 2: Root-canal refactoring
Intense and protracted periods of
refactoring

R R R R R R R R R R R R

Floss
(Mixed)
Refactoring

Root Canal
(Pure)

Refactoring 0 0 1 1 6 11

65% of Commits were Floss Refactoring

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R

R

R R

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

91% of refactorings occurred
during floss refactoring

Conclusion: Many refactoring
tools don’t support the

dominant refactoring tactic.

Do programmers use the features of
refactoring tools?

Conclusion: Refactoring tools’
configuration options are

often unchanged.

Findings
Do refactoring tools really support the kinds of
refactorings that people want to do? Yes.

Is the way that refactoring tools work really the way
developers refactor? No.

Do programmers use the features of refactoring tools?
No.

How can we make tools fit?

Some Solutions

http://people.engr.ncsu.edu/ermurph3/pubs.html

http://people.engr.ncsu.edu/ermurph3/pubs.html

Supporting Manual Refactoring
“My hands start doing
copy-paste. . .without my
active control. After a few
seconds, I realize that this
would have been easier
to do with a refactoring
[tool]. But since I already
started… I just finish it
and continue.”

Tool prototype written by Xi Ge, http://www4.ncsu.edu/~xge/

http://www4.ncsu.edu/~xge/
http://www4.ncsu.edu/~xge/

Conclusion

Emerging data helps us to reflect on how people
really refactor

Reflecting allows us to make better tools

