FacultySummit

FUTURE/WORLD

FacultySummit

Energy Innovation & the Transformation of Electricity

Rajeev Ram Program Director ARPA-E

The U.S. dependence on imported oil is an economic weakness as well as a political and environmental challenge

In 2007, with oil at \$70 per barrel, the U.S. trade deficit in petroleum products was 36% of the total of \$819 billion deficit.

FacultySummit

CREATION OF ARPA-E

American Recovery and Reinvestment Act of 2009 (Recovery Act)

2007 America COMPETES Act \$400M appropriated for ARPA-E President Obama launches ARPA-E in a speech at NAS on April 27, 2009

2006 *Rising Above the Gathering Storm* (National Academies)

ARPA-E'S Work

Reduce Energy-Related Emissions

To enhance the economic and energy security of the U.S.

Mission

To ensure U.S. technological lead in developing and deploying advanced energy technologies Reduce Energy Imports Efficiency • Find and fund high-risk, highimpact projects

•Invest in the best ideas and teams

- Will tolerate and manage high technical risk
- Accelerate translation from science to markets
- Proof of concept and prototyping

DOE ORGANIZATIONAL CHART

6

ARPA-E Currently has six focused programs plus a broad portfolio of projects from its first solicitation

FacultySummit

Historically, electrical power has been the largest source of CO₂ emissions, the main contributor to climate change. But in the upcoming decades electricity can become a key lever in evolving towards a low carbon economy.

Microsoft⁻Research

Summit

Electricity Transmission

- \$354 B electricity sales
- 166,000 miles operated by 500 companies
 98% AC, voltages > 100kV
- 3 major interconnections
- 3,170 utility companies
- Over 140 control areas
- 14,000 transmission substations
- ~44 million liquid-immersed distribution transformers in service in 1995
- ~12 million dry transformers

...open auction market (renewables have pre-arranged costs)

...contingency (N-1) analysis and unit commitment (set price)

...generator dispatch and power flows into the grid

...electrons flow along path of least resistance

...the load draws power from the grid

Microsoft Research

STATE OF THE GRID

- Congested Lines
- Aging Infrastructure
- Increasingly unreliable
- Increasingly unpredictable

Microsoft Research Facult

13

INEFFICIENT MARKETS

This image will be refreshed in 3 Minutes, 4 Seconds. Please hit crtl-F5 to manually refresh this page.

FacultySummit

14

Designing Power Flow

Controlling Power Flow

What kind of control?

- Linear vs. Non-linear
- Deterministic vs. Stochastic
- Time-invariant vs. Time-varying
- Continuous-time vs. Discrete-time

FacultySummit

Controlling Power Flow

• Central control

Distributed or local control

Control Infrastructure

Control Challenges

- Traditional control theory assumes centralized feedback control.
- Not always feasible for large-scale distributed systems:
 - Inability to communicate with all subsystems
 - Incomplete/imperfect information
 - Complexity of centralized decision-making
 - Asynchrony
 - Heterogonous decision-makers with different objective and uncertain responses

Faculty

19

Actuators

•UPFC

Power Flow Controller (AC)

Source: Navigant Consulting Inc.

Power Flow Controller (DC)

Multiterminal HVDC

- \$5.2 B (5 phases)
- Offshore multi-terminal voltage-sourced converter (VSCs)
 backbone
- 6000 MWs of offshore wind farms in federal waters off of NJ, DE, MD & VA
- PJM Total Peak Load = 144,644 MW
- Funded by Google, Good Energy & Marubeni Power
- Optimal power flow scheduling over 2000-MW transfer capability

22

FacultySummit

Benefits of Routing Power

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation

Power Routing

23

Faculty

Base Case: 3.4 MW sent; 0.34 MW recd

• BAU case requires upgrade of 3 inter-regional paths, for a total of 186,000 MW-MILES

• Power flow control to route power along underutilized paths, 36,000 MW-miles of new lines needed, only 20% of BAU

Control Architecture

- Topic Areas:
 - Grid monitoring
 - Grid communications
 - Distributed computing
 - Distributed optimization

Benefits of Routing Power

Microsoft Research

- Improved asset utilization
- Improved alignment of customer needs and supply
- More resilient network
 - greater infrastructure security & reliability
- Load owner can transact with the generator

