FacultySummit

Probase: A Knowledge Base for Text Understanding

Haixun Wang Microsoft Corporation

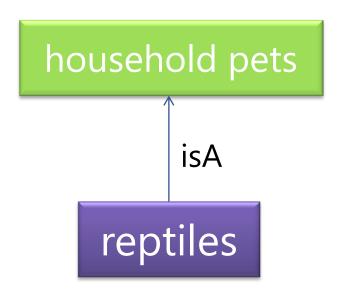
Pablo Picasso 25 Oct 1881

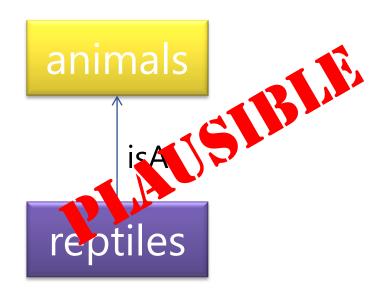
Spanish

... animals other than cats such as dogs ...



... household pets other than animals such as reptiles, aquarium fish ...





ProBase

More than 2.7 million concepts automatically harnessed from 1.68 billion documents

Capture concepts in human mind

Computation/Reasoning enabled by scoring:

Consensus:

e.g., is there a company called Apple?

Represent them in a computable

form

Typicality:

e.g. how likely you think of Apple when you think about companies?

Ambiguity:

e.g., does the word *Apple*, sans any context, represent Apple the company?

Similarity:

e.g., how likely is an actor also a celebrity?

Freshness:

e.g., Pluto as a dwarf planet is a claim more fresh than Pluto as a planet.

A little knowledge goes a long way after machines Machines ` acquire a have better human understanding touch of human

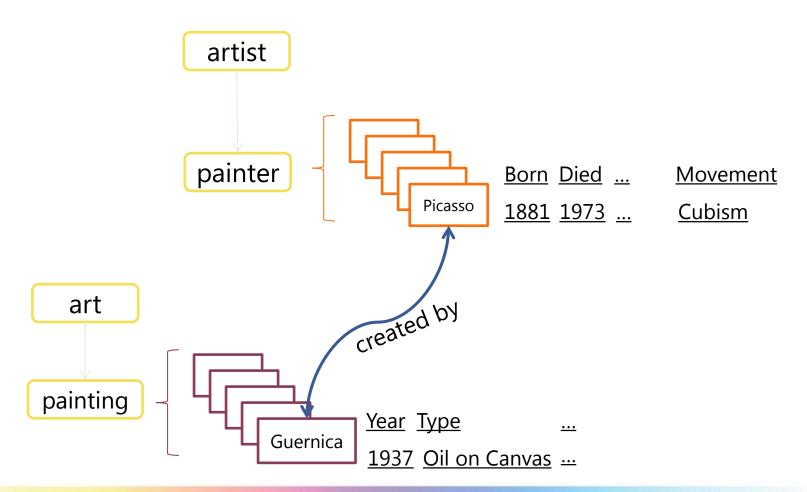
> **Transform** them to machines

Give machines a new CPU (Commonsense Processing Unit)

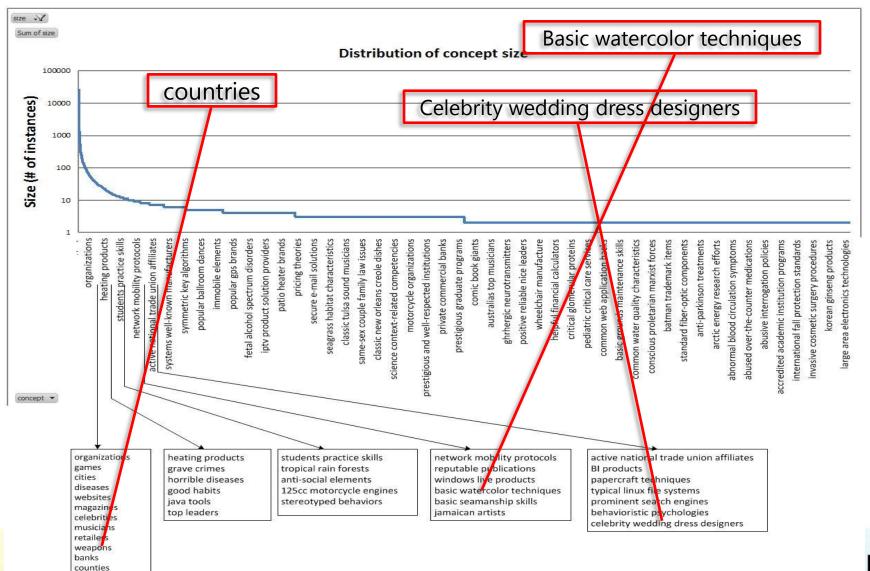
world

powered by a distributed graph engine called Trinity.

Probase Internals



2.7 million concepts



publishers

Data Sources

Patterns for single statements

```
NP such as {NP, NP, ..., (and|or)} NP such NP as {NP,}* {(or|and)} NP NP {, NP}* {,} or other NP NP {, NP}* {,} and other NP NP {,} including {NP ,}* {or | and} NP NP {,} especially {NP,}* {or|and} NP
```

- Examples:
 - Good: "rich countries such as USA and Japan ..."
 - Tough: "animals other than cats such as dogs ..."
 - Hopeless: "At Berklee, I was playing with cats such as Jeff Berlin, Mike Stern, Bill Frisell, and Neil Stubenhaus."

Properties

- Given a class, find its properties
- Candidate seed properties:
 - "What is the [property] of [instance]?"
 - "Where", "When", "Who" are also considered

Similarity between two concepts

- Weighted linear combinations of
 - Similarity between the set of instances
 - Similarity between the set of attributes
- (nation, country)
- (celebrity, well-known politicians)

Beyond noun phrases

- Example: the verb "hit"
 - Small object, Hard surface
 - (bullet, concrete), (ball, wall)
 - Natural disaster, Area
 - (earthquake, Seattle), (Hurricane Floyd, Florida)
 - Emergency, Country
 - (economic crisis, Mexico), (flood, Britain)

Quantify Uncertainty

Typicality

```
P(concept | instance)
P(instance | concept)
```

```
P(concept | property)
P(property | concept)
```

Similarity

```
sim(concept<sub>1</sub>, concept<sub>2</sub>)
```

the foundation of text understanding and reasoning

Text Mining / IE: State of the Art

- Bag of words based approach: e.g., LDA
 - Based on multiple document statistics
 - Simple bag-of-words, no semantics
- Supervised learning: e.g., CRF
 - Labeled training data required
 - Difficulty for out-of-sample features
- Lack of semantics
- What role can a knowledgebase play?

Shopping

Haixun Wang

Five of us bought 5 Kinects and posed in front of

Five of us bought 5 Kinects and posed in front of an Apple store.

Monday at 10:37am · Like · Comment · Shar

Jiang-Ming Yang, Bin Sh

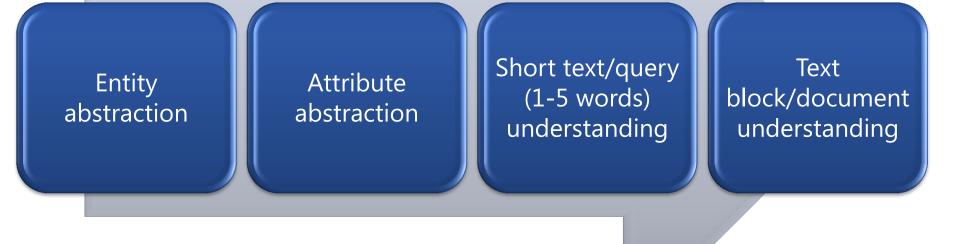
View all 7 comments

Tuesday at 1:26am LIKE

Jiang-Ming Yang Crazy~ 15 hours ago · Like

Write a comment...

Step by Step Understanding



Short Text

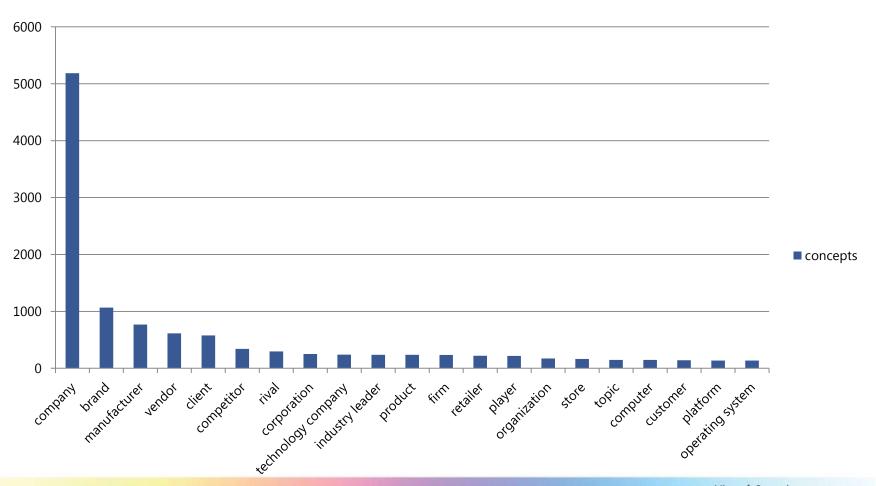
- Challenge:
 - Not enough statistics
- Applications
 - Twitter
 - Query/Search Log
 - Anchor Text
 - Image/video tag
 - Document paraphrasing and annotation

Comparison of Knowledge Bases

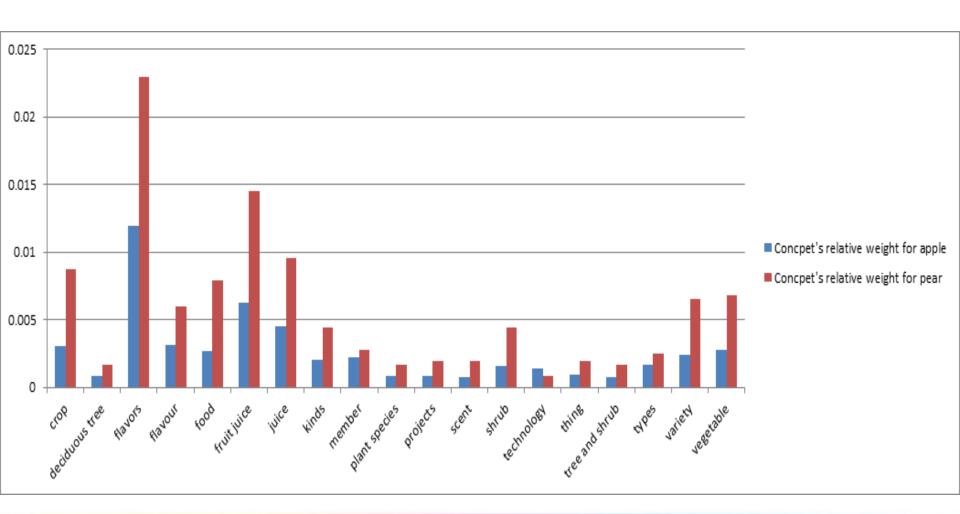
	WordNet	Wikipedia	Freebase	Probase
Cat	Feline; Felid; Adult male; Man; Gossip; Gossiper; Gossipmonger; Rumormonger; Rumourmonger; Newsmonger; Woman; Adult female; Stimulant; Stimulant drug; Excitant; Tracked vehicle;	Domesticated animals; Cats; Felines; Invasive animal species; Cosmopolitan species; Sequenced genomes; Animals described in 1758;	TV episode; Creative work; Musical recording; Organism classification; Dated location; Musical release; Book; Musical album; Film character; Publication; Character species; Top level domain; Animal; Domesticated animal;	Animal; Pet; Species; Mammal; Small animal; Thing; Mammalian species; Small pet; Animal species; Carnivore; Domesticated animal; Companion animal; Exotic pet; Vertebrate;
IBM	N/A	Companies listed on the New York Stock Exchange; IBM; Cloud computing providers; Companies based in Westchester County, New York; Multinational companies; Software companies of the United States; Top 100 US Federal Contractors;	Business operation; Issuer; Literature subject; Venture investor; Competitor; Software developer; Architectural structure owner; Website owner; Programming language designer; Computer manufacturer/brand; Customer; Operating system developer; Processor manufacturer;	Company; Vendor; Client; Corporation; Organization; Manufacturer; Industry leader; Firm; Brand; Partner; Large company; Fortune 500 company; Technology company; Supplier; Software vendor; Global company; Technology company;
Language	Communication; Auditory communication; Word; Higher cognitive process; Faculty; Mental faculty; Module; Text; Textual matter;	Languages; Linguistics; Human communication; Human skills; Wikipedia articles with ASCII art	Employer; Written work; Musical recording; Musical artist; Musical album; Literature subject; Query; Periodical; Type profile; Journal; Quotation subject; Type/domain equivalent topic; Broadcast genre; Periodical subject; Video game content descriptor;	Instance of: Cognitive function; Knowledge; Cultural factor; Cultural barrier; Cognitive process; Cognitive ability; Cultural difference; Ability; Characteristic; Attribute of: Film; Area; Book; Publication; Magazine; Country; Work; Program: Media: City:

Program; Media; City; ...

In the mind of the machine: when it sees the word 'apple'



... when it sees the words 'apple' and 'pear' together



Entity Abstraction

urn the most likely concept which can generalize all the entities. The top entities in the concept are also ret "Russia", "India" and "Brazil", then click 'Abstract' and you can find something interesting.)

Entity Abstraction

n the most likely concept which can generalize all the entities. The top entities in the concept are also re "Russia", "India" and "Brazil", then click 'Abstract' and you can find something interesting.)

Entities in this concept include

Entity Abstraction

Given a set of entities

$$E = \{e_i, i \in 1, ..., M\}$$

Target Concept (Naïve Bayes Rule)

$$P(c_k|E) = \frac{P(E|c_k)P(c_k)}{P(E)} \propto P(c_k) \prod_{i=1}^{M} P(e_i|c_k).$$

ullet Where c_k a concept, and

$$P(e_i|c_k) = \frac{P(e_i,c_k)}{P(c_k)}$$
 is computed ba

How to Infer Concept from Attribute?

- Given a set of attributes
- The Naïve Bayes Rule gives

$$A = \{a_j, j \in 1, ..., N\}.$$

where

$$P(c_k|A) = \frac{P(A|c_k)P(c_k)}{P(A)} \propto P(c_k) \prod_{j=1}^{N} P(a_j|c_k),$$

$$P(a_j|c_k) = \sum_{i:e_i \in E} P(a_j|e_i)P(e_i|c_k),$$

(university, florida state university, 75)

(university, harvard university, 388) (university, university of california, 142)

(country, china, 97346)

(country, the united states, 91083)

(country, india, 80351)

(country, canada , 74481)

(florida state university, website, 34)

(harvard university, website, 38)

(university of california, city, 12)

(china, capital, 43)

(the united states , capital, 32)

(india, population, 35) (canada, population, 21)

 \Rightarrow

(university, website, 4568) (university, city, 2343) (country, capital, 4345) (country, population, 3234)

....

racarrysaminit

When Type of Term is Unknown:

- Given a set of terms with unknown types $T = \{t_l\}, l = 1, \dots, L$
- Generative model

$$P(t_l|c_k) = P(t_l|z_l = 1, c_k)P(z_l = 1|c_k) + P(t_l|z_l = 0, c_k)P(z_l = 0|c_k)$$

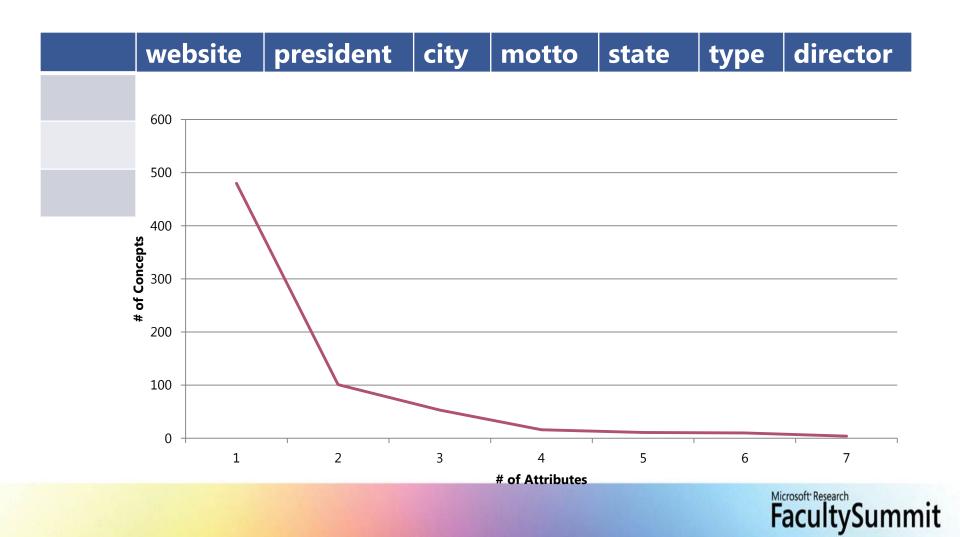
Using Naive Bays
$$P(c_k|T) = \frac{P(T|c_k)P(c_k)}{P(T)} \propto P(c_k) \prod_l^L P(t_l|c_k)$$

Discriminative model (Noisy-OR)

$$P(c_k|t_l) = 1 - (1 - P(c_k|t_l, z_l = 1))(1 - P(c_k|t_l, z_l = 0))$$

And using twice
$$P(c_k|T)\propto P(c_k)\prod_l^L P(t_l|c_k) \propto \frac{\prod_l P(c_k|t_l)}{P(c_k)^{L-1}}$$
 $z_l=1$ $z_l=0$

When you see attributes ...



Understanding = Concept Forming

apple		
pear		

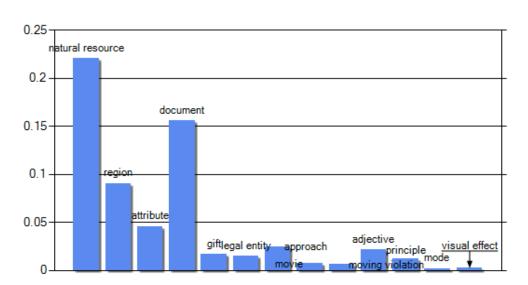
Short Text Conceptualization

Please input your query/text

What happens to lakes in an area hit by forest fires and floods?

Some will glow in the dark.

Parse



Parsed text: area; hit; forest; will; glow; dark;

Recommend Attribute: Recommend Concept: Recommend Entity:

Clustering Twitter Messages

- Problem 1 (unique concepts): use keywords to retrieve tweets in 3 categories:
 - 1. Microsoft, Yahoo, Google, IBM, Facebook
 - 2. cat, dog, fish, pet, bird
 - 3. Brazil, China, Russia, India
- Problem 2 (concepts with subtle differences): use keywords to retrieve tweets in 4 categories:
 - 1. United states, American, Canada
 - 2. Malaysia, China, Singapore, India, Thailand, Korea
 - 3. Angola, Egypt, Sudan, Zambia, Chad, Gambia, Congo
 - 4. Belgium, Finland, France, Germany, Greece, Spain,
 Switzerland

Comparison Results

Clustering NMI scores on Twitter data.

Method	@Problem1	@Problem2
Original Data	0.215 ± 0.010	0.452 ± 0.076
LDA (1×Cluster Num)	0.161 ± 0.065	0.114 ± 0.037
LDA (2×Cluster Num)	0.067 ± 0.022	0.069 ± 0.024
WordNet	0.195 ± 0.070	0.074 ± 0.074
Freebase	0.531 ± 0.164	0.204 ± 0.037
Wikipedia (Category-Link)	0.540 ± 0.077	0.336 ± 0.089
Wikipedia (ESA)	0.351 ± 0.132	0.340 ± 0.800
Probase (Top 10)	0.318 ± 0.110	0.490 ± 0.029
Probase (Top 20)	0.479 ± 0.111	0.555 ± 0.019
Probase (Top 50)	0.559 ± 0.123	0.632 ± 0.066
Probase (Top 500)	0.826 ± 0.062	0.301 ± 0.189
Probase (Top 5000)	0.690 ± 0.176	0.095 ± 0.084

Many Applications ...

- Mapping questions to knowledge
 - How many people are in China? → entity: China, Attribute: population
 - Where is MSR? → entity: MSR, Attribute: location
 - How long does it take for Asclepius to take effect? → entity: Asclepius, Attribute: pharmaceutical effect
- Synonym
 - China national song → entity: China, Attribute: national anthem
 - USA headline → entity: USA, Attribute: news
 - India demographic → entity: India, Attribute: population
- Misspelling
 - Japan poulation → entity: Japan, Attribute: population
- Correlated indirectly
 - google earth China → entity: China, Attribute: map
 - China dishes → entity: China, Attribute: food
 - what is the exchange rate for UK → entity: UK, Attribute: currency FacultySumn

Summary

A little knowledge goes a long way

 A concept space large enough to model the concepts in a human mind

 Scores and weights that enable Bayesian reasoning.

Many applications

Thanks!

Examples

Concept	Entity	Co-occurrence	Concept Number	Entity Number	P(e c)	P(c e)
country	india	80905	2262485	197915	0.03576	0.40879
country	china	98517	2262485	269127	0.04354	0.36606
emerging market	china	6556	29298	269127	0.22377	0.02436
emerging market	india	5702	29298	197915	0.19462	0.02881
area	china	2231	2525020	269127	0.00088	0.00829
area	india	1797	2525020	197915	0.00071	0.00908

Concept	Attribute	P(c, a)	P(c)	P(a)	P(a c)	P(c a)
country	population	4.08183	173.44931	41736.78060	0.02353	0.00010
country	language	1.48795	173.44931	58584.50905	0.00858	0.00003
emerging market	language	4.52949	402.13772	58584.50905	0.01126	0.00008
emerging market	population	16.54701	402.13772	41736.78060	0.04115	0.00040

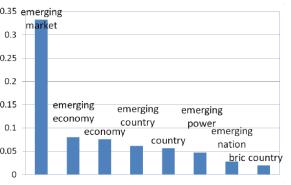
Examples

 Given "china", "india", "language" and "population", "emerging market" will be ranked as 1st

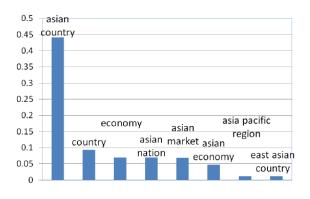
Concept	Entity	Co-occurrence	Concept Number	Entity Number	P(e c)	P(c e)
country	india	80905	2262485	197915	0.03576	0.40879
country	china	98517	2262485	269127	0.04354	0.36606
emerging market	china	6556	29298	269127	0.22377	0.02436
emerging market	india	5702	29298	197915	0.19462	0.02881
area	china	2231	2525020	269127	0.00088	0.00829
area	india	1797	2525020	197915	0.00071	0.00908

Concept	Attribute	P(c, a)	P(c)	P(a)	P(a c)	P(c a)
factor	population	75.74704	71073.46656	41736.78060	0.00107	0.00181
factor	language	113.32628	71073.46656	58584.50905	0.00159	0.00193
countries	population	4.08183	173.44931	41736.78060	0.02353	0.00010
countries	language	1.48795	173.44931	58584.50905	0.00858	0.00003
emerging market	language	4.52949	402.13772	58584.50905	0.01126	0.00008
emerging market	population	16.54701	402.13772	41736.78060	0.04115	0.00040 n

Example (Cont'd)

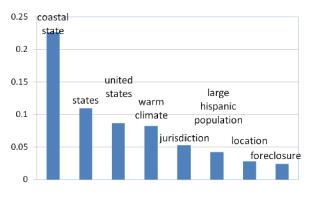


a) China (I), Russia (I), India (I), Brazil (I)

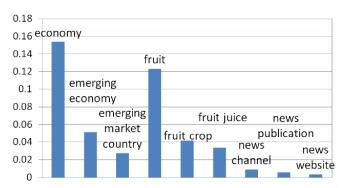


(b) China (I), India (I), Japan (I), Singapore (I)

(C) population (A), location (A), president (A)



(d) California (U), Florida (U), population (U)



(e) China (U), Brazil (U), Russia (U), apple (U), banana (U), BBC (U), New York Time (U)

FacultySummit

