
Complete and Decidable Type Inference for GADTs

Tom Schrijvers ∗

Katholieke Universiteit Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Simon Peyton Jones
Microsoft Research Cambridge, UK

simonpj@microsoft.com

Martin Sulzmann
Intaris Software GmbH, Germany
martin.sulzmann@gmail.com

Dimitrios Vytiniotis
Microsoft Research Cambridge, UK

dimitris@microsoft.com

Abstract
GADTs have proven to be an invaluable language extension, for
ensuring data invariants and program correctness among others.
Unfortunately, they pose a tough problem for type inference: we
lose the principal-type property, which is necessary for modular
type inference.

We present a novel and simplified type inference approach for
local type assumptions from GADT pattern matches. Our approach
is complete and decidable, while more liberal than previous such
approaches.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Functional Languages; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs—
Type Structure

General Terms Algorithms, Languages

Keywords Haskell, type inference, GADTs

1. Introduction
Generalized Algebraic Data Types (GADTs) pose a particularly
tough problem for type inference: we lose the principal-type prop-
erty, which is necessary for modular type inference (CH03), and
it is even undecidable whether or not a term has a principal type
(Section 4.3).

A variety of papers have tackled this problem, by a combination
of user-supplied type annotations and/or constraint-based inference
(PVWW06; PRG06; SP07; SSS08). Unfortunately, none of these
approaches is satisfying, even to their originators, for a variety of
reasons (Section 9). Simonet and Pottier give an excellent executive
summary in the closing sentences of their recent paper (SP07):

We believe that one should, instead, strive to produce sim-
pler constraints, whose satisfiability can be efficiently deter-
mined by a (correct and complete) solver. Inspired by Pey-
ton Jones et al.’s wobbly types (PVWW06), recent work by

∗ Post-doctoral researcher of the Fund for Scientific Research - Flanders.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Pottier and Régis-Gianas (PRG06) proposes one way of do-
ing so, by relying on explicit, user-provided type annotations
and on an ad hoc local shape inference phase. It would be
interesting to know whether it is possible to do better, that
is, not to rely on an ad hoc preprocessing phase.

This is the challenge we meet in this paper. In particular, our
contributions are:

• We present OutsideIn, a new inference algorithm for GADT
programs (Sections 4 and 5). It deals with the tricky problem
of solving so-called implication constraints (Section 4.2) by al-
lowing information to propagate from outside a GADT pattern
match to the inside, but not vice versa.
• The declarative specification of the type system is given in Sec-

tion 6. While still not entirely satisfactory, is arguably signifi-
cantly simpler than earlier attempts. It is also rather expressive:
it types strictly more programs than GHC’s existing algorithm
(PVWW06), and very nearly all those typed by (PRG06) —
Section 9 elaborates.
• Our type system has the crucial principal-types property; and

any program accepted by our type system is also typed by the
simpler “natural” type system for GADTs, which lacks princi-
pal types. Furthermore, all programs typeable in our approach
do have principal types in the natural type system for GADTs
and hence our approach is not “adhoc” (Section 7.1). That is not
the case for either (PVWW06) or (PRG06).
• The type inference algorithm is sound and complete with re-

spect to the specification; and it is decidable (Section 7.2).
• The type inference algorithm is easy to implement (Section 8).

The inference engine gathers and solves constraints, but that
is something Haskell compilers already do for type classes; all
we do here is add some new forms of constraints. Nevertheless
inference remains efficient, because almost all equalities can be
solved with on-the-fly unification in the conventional Hindley-
Milner way, with constraints gathered only when necessary. Our
prototype implementation is available for download. Note: we
have not yet implemented it in GHC, but expect to have done so
before ICFP.

Our approach builds directly on the work of others. We urge the
reader to consult Section 9 for a summary of these foundations.

2. The challenge we address
Generalized Algebraic Data Types (GADTs) have proved ex-
tremely popular with programmers, but they present the type in-
ference engine with tricky choices. Consider the following GADT
program:

data T :: *->* where
T1 :: Int -> T Bool
T2 :: [a] -> T a

f1 (T1 n) = n>0

What type should be inferred for function f1? Alas there are two
possible most-general types, neither of which is an instance of the
other:

f1 :: ∀a. T a→ Bool
f1 :: ∀a. T a→ a

The loss of principal types is both well-known and unavoidable
(CH03). Since f1 has no principal type (one that is more general
than all others) the right thing must be to reject the program, and
ask the programmer to say which type is required by means of an
explicit type signature, like this, for example:

f1 :: T a -> a
f1 (T1 n) = n>0

But exactly which programs should be rejected in this way? For
example, consider f2:

f2 (T1 n) = n>0
f2 (T2 xs) = null xs

Since null :: [a] -> Bool returns a Bool, and T2 is an or-
dinary (non-GADT) data constructor, the only way to type f2 is
with result Bool, so the programmer might be confused at being
required to say so. After all, there is only one solution: why can’t
the compiler find it?

An exactly similar issue arises in relation to variables in the envi-
ronment. Consider

h1 x (T1 n) = x && n>0
h1 x (T2 xs) = null xs

Which of these two incomparable types should we infer?

h1 :: ∀a. a→ T a→ Bool
h1 :: ∀a. Bool→ T a→ Bool

Again, since neither is more general than the other, we should reject
the program. But if we somehow know from elsewhere that x is a
Bool, then there is no ambiguity, and we might prefer to accept the
definition. Here is an example

h2 x (T1 n) = x && n>0
h2 x (T2 xs) = not x

The key difficulty is that a GADT pattern match brings local type
constraints into scope. For example in the T1 branch of the defini-
tion of f1, we know that the constraint a ∼ Bool holds, where the
second argument of f1 has type T a.1 Indeed, while the declaration
for the GADT T above is very convenient for the programmer, it
is quite helpful to re-express it with an explicit equality constraint,
like this2:

data T :: *->* where
T1 :: (a~Bool) => Int -> T a

-- Was: T1 :: Int -> T Bool
T2 :: [a] -> T a

1 We consistently use “∼” to denote type equalities, because “=” is used
for too many other things.
2 GHC allows both forms, and treats them as equivalent.

Term variables x, y, z Type constructors S, T
Type variables a, b, c Data constructors K

Unification variables α, β, γ

Programs and data type declarations
prog ::= dd1 . . . ddn; e
dd ::= data T a1...am where

K :: ∀ a1...am, b1...bn.C ⇒
τ1 → ...→ τp → T a1...am

Terms e ::= K | x | λx.e | e e
| let {g = e} in e
| let {g :: σ = e1} in e2
| case e of [pi → ei]i∈I

Patterns p ::= K x1...xn

Type envt Γ ::= {x1 : σ1, ..., xn : σn}
Type variables ν ::= α | a
Monotypes τ, υ ::= ν | τ → υ | T τ̄
Type Schemes σ ::= τ | ∀ā.C ⇒ τ

Constraints C,D ::= τ ∼ τ | C ∧ C | ε
Impl. Constraints F ::= C | [ᾱ](∀b̄.C ⊃ F) | F ∧ F

Unifiers θ ::= ∅ | θ, {α := τ}
Substitutions φ ::= ∅ | φ, {ν := τ}

fuv(τ) = The free unification variables of τ
(and similarly fuv(Γ))

Substitution
φ(F1 ∧ F2) = φ(F1) ∧ φ(F2)

φ([ᾱ]∀b̄.C ⊃ F) = [fuv(φ(ᾱ))]∀b̄.φ(C) ⊃ φ(F)
Substitution on C and τ is conventional

Abbreviations
∀ā.τ , ∀ā.ε⇒ τ

[ᾱ](∀b̄.F) , [ᾱ](∀b̄.ε ⊃ F)

Figure 1. Syntax of Programs

You may imagine a value of type T τ , built with T1, as a heap-
allocated object with two fields: a value of type Int, and some
evidence that τ∼Bool. When the value is constructed the evidence
must be supplied; when the value is de-constructed (i.e. matched
in a pattern) the evidence becomes available locally. While in
many systems, including GHC, this “evidence” has no run-time
existence, the vocabulary can still be helpful and GHC does use
explicit evidence-passing in its intermediate language (SCPD07).

3. Formal setup
Before we can present our approach, we briefly introduce our
language, and the general form of its type system.

3.1 Syntax

Figure 1 gives the syntax of terms and types, which should look
familiar to Haskell programmers. A program consists of a set of
data type declarations together with a term e. Terms consist of
the lambda calculus, together with let bindings (perhaps with
a user-supplied type signature), and simple case expressions to
perform pattern matching. A data type declaration introduces a type
constructor T and one or more data constructorsKi, each of which
is given a type signature. As described in Section 2, in the case of

C,Γ ` e : τ C,Γ `p p→ e : τ → υ

(VAR) (x : ∀ā.υ) ∈ Γ φ = {a := τ}
C,Γ ` x : φ(υ)

(CON)
K :: ∀ā.D ⇒ υ

φ = {a := τ} C |= φ(D)

C,Γ ` K : φ(υ)

(EQ)
C,Γ ` e : τ1
C |= τ1 ∼ τ2
C,Γ ` e : τ2

(ABS)
C,Γ ∪ {x : τ1} ` e : τ2

C,Γ ` λx.e : τ1 → τ2
(APP)

C,Γ ` e1 : τ1 → τ2 C,Γ ` e2 : τ1

C,Γ ` e1e2 : τ2

(LET)
C,Γ ∪ {g : τ1} ` e1 : τ1 ā = fv(τ1)− fv(C,Γ)

C,Γ ∪ {g : ∀ā.τ1} ` e2 : τ2

C,Γ ` let {g = e1} in e2 : τ2

(LETA)
C,Γ ∪ {g : ∀ā.τ1} ` e1 : τ1
C,Γ ∪ {g : ∀ā.τ1} ` e2 : τ2

C,Γ ` let {g :: ∀ā.τ1 = e1} in e2 : τ2

(CASE)
C,Γ ` e : τ1

C,Γ `p pi → ei : τ1 → τ2 for i ∈ I
C,Γ ` case e of [pi → ei]i∈I : τ2

(PAT)

K::∀ā, b̄.D ⇒ υ1 → ...→ υp → T ā

fv(C,Γ, τ , τr) ∩ b̄ = ∅ φ = {a := τ} consistent(C ∧ φ(D))

C ∧ φ(D),Γ ∪ φ{x1 : υ1, . . . , xp : υp} ` e : τr

C,Γ `p K x1...xp → e : T τ̄ → τr

Figure 2. Simple but over-permissive typing rules

(TRUE)
C |= ε

(REFL)
C |= τ ∼ τ

(SYM)
C |= τ ∼ υ
C |= υ ∼ τ

(TRANS)
C |= τ1 ∼ τ2 C |= τ2 ∼ τ3

C |= τ1 ∼ τ3

(GIVEN)
C1 ∧ C2 |= C2

(CONJ)
C |= F1 C |= F2

C |= F1 ∧ F2

(STRUCT)
C |= τi ∼ υi

C |= T τ̄i ∼ T ῡi
(TCON)

C |= T τ̄i ∼ T ῡi

C |= τi ∼ υi

(IMPL)
C ∧ C1 |= F b̄ ∩ fv(C) = ∅

C |= [ᾱ](∀b̄.C1 ⊃ F)

Figure 3. Equality theory

GADTs the data constructor’s type contains a set of constraints D,
that are brought into scope when K is used in a pattern match, and
required when K is used as a constructor.

The syntax of types, and of constraints, is also given in Fig. 1. Note
that unification variables α denote unknown types and only appear
during type inference, never in the resulting typings. To avoid clut-
ter we use only equality constraints τ1 ∼ τ2 in our formalism, al-
though in GHC there are several other sorts of constraint, including
implicit parameters and type classes. We treat conjunction (∧) as a
commutative and associative operator as is conventional. Implica-
tion constraints F will be introduced in Section 4.4.

3.2 Type system

The declarative specification of a type system usually takes the
form of a typing judgement

Γ ` e : τ

with the meaning “in type environment Γ the term e has type τ”.
In a system with GADTs, however, a pattern match may bring into
scope some local equality constraints. The standard way to express

this is with the judgement

C,Γ ` e : τ

meaning “in a context where constraints C are in scope, and type
environment Γ the term e has type τ”. For example, here is a valid
judgement:

(a∼ Bool), {x : a, not : Bool→ Bool} ` not x : Bool

The judgement only holds because of the availability of the local
equality a∼ Bool.

The type system of Fig. 2 takes exactly this form. For example,
rule (CON) instantiates the type scheme of a data constructor in the
usual way, except that it has the additional premise

C |= φ(D)

This requires that the “wanted” constraints φ(D) must be deducible
from the “given” constraintsC. To be concrete we give the (routine)
definition of |= in Fig. 3. Compare rule (CON) to rule (VAR), where
the type scheme does not mention constraints.

Rule (EQ) allows us to use the available constraints C to adjust the
result type τ1 to any equal type τ2. Finally, a case expression uses
an auxiliary judgement `p to typecheck the case alternatives. No-
tice the way that the local constraints C are extended when going
inside a pattern match (in rule (PAT)), just as the type environment
is augmented when going inside a lambda-term (in rule (ABS)).

Whenever we go inside a pattern match, we require the given
constraint C ∧ φ(D) to be consistent, defined by the rule:

(CONSISTENT)
∃φ. ε |= φ(C)

consistent(C)

i.e. C is consistent if it has a unifier. Consistency implies that we
will reject programs with inaccessible case branches.

A second point to notice about rule (PAT) is that a data constructor
may have existential type variables b̄ as well as universal type
variables ā3. Rule (PAT) must check that the existential variables

3 The former are called existential, despite their apparent quantification with
∀, because the constructor’s type is isomorphic to K::∀ā.(∃b̄.D × υ1 ×
...× υp)→ T ā.

are not mentioned in the environment C,Γ, or the scrutinee type
T τ , or the result type τr . In the following example, fx1 is well-
typed, but fx2 is not because the existential variable b escapes:

data X where
X1 :: forall b. b -> (b->Int) -> X

fx1 (X1 x f) = f x
fx2 (X1 x f) = x

3.3 Properties

The type checking problem for GADTs is decidable (CH03; SP07).
However, type inference turns out to be extremely difficult. The
example from Section 2 shows that GADTs lack principal types.
The difficulty is that the type system can type too many terms.
Hence, our goal is to restrict the type system to reject just enough
programs to obtain a tractable type inference system which enjoys
principal types. Nevertheless, we regard Fig. 2 as the “natural”
type system for GADTs, against which any such restricted system
should be compared.

4. A new approach
In this section we describe our new approach to type inference
for GADTs. Type system designers often develop a type inference
algorithm hand-in-hand with the specification of the type system:
there is no point in a specification that we cannot implement, or an
implementation whose specification is incomprehensible. We begin
with the inference algorithm.

4.1 Type inference by constraint solving

It is well known that type inference can be carried out in two stages:
first generate constraints from the program text, and then solve
the constraints ignoring the program text (PR05). The generated
constraints involve unification variables, which stand for as-yet-
unknown types, and solving the constraints produces a substitution
that assigns a type to each unification variable. The most basic form
of constraint is a type equality constraint of form τ1∼ τ2, where τ1
and τ2 are types.

For example, consider the definition

data Pair :: *->*->* where
MkP :: a -> b -> Pair a b

f = \x -> MkP x True

The data type declaration specifies the type of the constructor MkP,
thus:

MkP : ∀ab. a→ b→ Pair a b

Now consider the right-hand-side of f. The constraint generator
makes up unification variables as follows:

α type of the entire right-hand side
βx type of x

γ1, γ2 instantiate a, b respectively, when instantiating
the call of MkP

From the text we can generate the following equalities:

βx ∼ γ1 First argument of MkP
Bool∼ γ2 Second argument of MkP
α∼ Pair γ1 γ2 Result of MkP

These constraints can be solved by unification, yielding the substi-
tution {α := Pair βx Bool, γ2 := Bool, γ1 := βx}. This substi-
tution constitutes a “solution”, because under that substitution the
constraints are all of form τ ∼ τ . Not only that, but the unification

algorithm finds the most general substitution that solves the con-
straints. Temporarily leaving aside the question of generalization
that’s all there is to type inference for ML.

4.2 Constraint solving with GADTs

What happens when GADTs enter the picture? Consider our stan-
dard example term:

\x -> case x of { T1 n -> n>0 }

recalling the type of T1:

T1 : ∀a.(Bool∼ a)⇒ Int→ T a

Again we make up fresh unification variables for any unknown
types:

α type of the entire right-hand side
βx type of x

Matching x against a constructor from type T imposes the con-
straint βx ∼ T γ, for some new unification variable γ. From the
term n>0 we get the constraint α∼ Bool, but that arises inside the
branch of a case that brings into scope the constraint γ ∼ Bool.
We combine these two into a new sort of constraint, called an im-
plication constraint:

γ ∼ Bool ⊃ α∼ Bool

Now our difficulty becomes clear: there is no most-general unifier
for implication constraints. The substitutions

{α := Bool} and {α := γ}
are both solutions, but neither is more general than the other.

On the other hand, sometimes there obviously is a unique solution.
Consider f2 from Section 2:

\x -> case x of { T1 n -> n>0; T2 xs -> null xs }

From the two alternatives of the case we get two constraints,
respectively:

γ ∼ Bool ⊃ α∼ Bool and α∼ Bool

Since the second constraint can be solved only by {α := Bool},
there is a unique most-general unifier to this system of constraints.

4.3 GADT type inference is undecidable

Multiple pattern clauses give rise to a conjunction of implication
constraints

(C1 ⊃ C′1) ∧ ... ∧ (Cn ⊃ C′n)

The task of GADT type inference is to find a substitution θ such
that each θ(C′i) follows from θ(Ci). This problem is identical
to the simultaneous rigid E-unification problem which is known
to be undecidable (DV95). Hence, we can immediately conclude
that GADT type inference is undecidable in the unrestricted type
system. To restore decidability and most general solutions, we
consider a restricted implication solver algorithm.

4.4 The OutsideIn solving algorithm

Our idea is a simple one: we must refrain from unifying a global
unification variable under a local equality constraint. By “global”
we mean “free in the type environment4”, and we must record that
information in the implication constraint itself, thus

[α] (γ ∼ Bool ⊃ α∼ Bool)

because α is free in the type environment. Here γ∼Bool is a given
equality constraint that may only locally be assumed to hold, i.e., to
solve the constraint to the right of the implication sign: α∼ Bool.

4 We must treat the result type as part of the type environment.

When solving this constraint we must refrain from unifying {α :=
Bool}; hence, the constraint by itself is insoluble. It can be solved
only if there is some other constraint that binds α.

The syntax of implication constraints F is given in Fig. 1. An
implication constraint is an ordinary constraint C, or a conjunction
of implications, or has the form [ᾱ]∀b̄.C ⊃ F . We call the set
of unification variables ᾱ the untouchables of the constraint, and
the set of type variables b̄ the skolems of the constraint. Applying
a substitution to an implication constraint requires a moment’s
thought, because an untouchable might be mapped to a type by the
substitution, so we must take the free unification variables of the
result; see Fig. 1. We often omit the untouchables, skolems, or C
when they are empty.

More precisely, to solve a set of implication constraints F , proceed
as follows:

1. Split F into Fg ∧Fs, where all the constraints in Fg are proper
implications, and Fs are all simple. An implication is simple if
it does not involve any local equalities, and proper otherwise:

Fg ::= Fg ∧ Fg | [ᾱ]∀b̄.C ⊃ F C 6≡ ε
Fs ::= Fs ∧ Fs | C | [ᾱ]∀b̄.ε ⊃ Fs

2. Solve the simple constraints Fs by ordinary unification, yield-
ing a substitution θ.

3. Now apply θ to Fg , and solve each implication in θ(Fg).

In the last step, how do we solve a proper implication [ᾱ]∀b̄.C ⇒
F ? Simply find φ, the most general unifier of C, and solve φ(F),
under the restriction that the solution must not bind ᾱ.

This algorithm is conservative: if it finds a unifier, that solution
will be most general, but the converse is not true. For example, the
algorithm fails to solve the constraint

[α] (γ ∼ Bool ⊃ α∼ Int)

but the constraint actually has a unique solution, namely {α :=
Int}.

5. The OutsideIn approach in detail
It is time to nail down the details. Our approach relies on constraint
generation and constraint solving. We specify top-level constraint
generation with Γ `W e : τ, F to be read as: in the environment
Γ, we may infer type τ for the expression e and generate constraint
F . Solving a constraint F to produce a substitution θ is specified
with `s F : θ. The top-level inference algorithm is then given by
the judgement `inf in Fig. 4.5

We start by discussing constraint generation (Section 5.1) and con-
straint solving (Section 5.2). Subsequently we present the high-
level declarative type system (Section 6).

5.1 Generating implication constraints

The constraint generation algorithm is given in Fig. 4 with the
judgement

Γ `W e : τ, F

In this judgement, thought of as an algorithm, Γ and e are inputs,
while τ and F are outputs.

Rules (VAR), (CON), (ABS), and (APP) are straightforward. Rule
(PAT) generates an implication constraint, as described infor-
mally in Section 4.2. Rule (CASE) “peeks” inside the pattern

5 We start with an initially-empty environment, informally relying on a
fixed, implicit global environment to specify the types of each data con-
structor.

`inf e : τ

(INFER)
`W e : τ, F `s F : θ

`inf e : θ(τ)

Γ `W e : τ, F

(VAR)
(x : ∀ā.τ) ∈ Γ α fresh φ = {a := α}

Γ `W x : φ(τ), ε

(CON)
K :: ∀ā.C ⇒ τ α fresh φ = {a := α}

Γ `W K : φ(τ), φ(C)

(APP)
Γ `W e1 : τ1, F1 Γ `W e2 : τ2, F2

α fresh F = F1 ∧ F2 ∧ (τ1 ∼ τ2 → α)

Γ `W e1 e2 : α, F

(ABS)
α fresh Γ ∪ {x : α} `W e : τ, F

Γ `W λx.e : α→ τ, F

(LETA)

Γ ∪ {g : ∀ā.τ} `W e1 : τ ′, F1

Γ ∪ {g : ∀ā.τ} `W e2 : υ, F2

F = F2 ∧ [fuv(Γ)](∀ā.F1 ∧ τ ∼ τ ′))
Γ `W let {g :: ∀ā.τ = e1} in e2 : υ, F

(LET)

α fresh Γ ∪ {g : α} `W e1 : τ, F1

F ′1 = F1 ∧ α∼ τ Fs = simple(F ′1) `s Fs : φs

β = fuv(φs(τ))− fuv(φs(Γ))

b fresh θk = {β := b}
Γ ∪ {g : ∀b̄.θk(φs(τ))} `W e2 : υ, F2

F = F2 ∧ [fuv(Γ)]∀b̄.θk(F ′1)

Γ `W let {g = e1} in e2 : υ, F

(CASE)

T = constructor(pi) for i ∈ I
Γ `W e : τe, Fe ᾱ, β fresh

Γ `P pi → ei : T ᾱ→ β, Fi for i ∈ I
F = Fe ∧ τe ∼ T ᾱ ∧

∧
i∈I Fi

Γ `W case e of [pi → ei]i∈I : α, F

Γ `P p→ e : τ → υ, F

(PAT)

K::∀ā, b̄.D ⇒ υ1 → ...→ υp → T ā

b 6∈ ftv(Γ, τr) φ = {a := τ}
Γ ∪ φ{x1 : υ1, . . . , xp : υp} `W e : τe, Fe

F = [α ∪ fuv(Γ, τe)](∀b̄.φ(D) ⊃ Fe ∧ τe ∼ τr)

Γ `P K x1 . . . xp → e : T τ → τr, F

Figure 4. Translation to Constraints

match alternatives to determine the constructor type T (by call-
ing constructor(pi)) and subsequently pushes the type of e (T ᾱ)
in the typing clause for each alternative (rule (PAT)). Finally rule
(CASE) returns the constraints arising from the alternatives.

Rule (LETA) generates implication constraints for an annotated let-
binding. Pay attention to two details: (a) the inferred type τ ′ must

equate to the declared type τ , and (b) the universally quantified
variables ā must not escape their scope. The first is captured in an
additional equality constraint τ∼τ ′, and the latter in the degenerate
implication constraint.

Rule (LET) for unannotated let-expressions is much trickier. First,
it derives the constraint F1 for the bound expression e1. The con-
ventional thing to do at this point is to create fresh type variables b̄
for the variables β̄ that are not free in the environment with a sub-
stitution θk = {β := b}, and abstract over the constraints, inferring
the following type for g (SP07):

g : ∀b̄.θk(F1 ⇒ τ)

This is correct, but by postponing all solving until the second phase
we get unexpectedly complicated types for simple definitions. For
example, from the definition

g = \x -> x && True

we would infer the type

g :: ∀b.b∼ Bool⇒ b→ Bool

when the programmer would expect the equivalent but simpler type
Bool → Bool. Furthermore, this approach obviously requires
that types can take the form F ⇒ τ — including the possibility
that F is itself an implication! It all works fine (see (SP07) for
example), but it makes the types significantly more complicated
and, in an evidence-passing internal language such as that used by
GHC, creates much larger elaborated terms.

Instead, we interleave constraint generation and constraint solving
in rule (LET), thus6:

• Generate constraints for e1 under the assumption that g : α (we
allow recursion in let).
• Add the constraint α ∼ τ to tie the recursive knot in the usual

way, forming F ′1.
• We cannot, at this stage, guarantee to solve all the constraints in
F ′1, because the latter might include implications that can only
be solved in the presence of information from elsewhere. So we
extract from F ′1 the “simple” constraints, Fs:

simple(C) = C
simple(F1 ∧ F2) = simple(F1) ∧ simple(F2)

simple([ᾱ](∀b̄.F)) = [ᾱ]∀b̄.simple(F)
simple([ᾱ](∀b̄.C ⊃ F)) = ε C 6≡ ε

• Solve Fs appealing to our solver ` Fs : φs. Notice that this
φs may bind skolems, a point that we will return to. Moreover,
notice that if unification fails for a simple constraint (such as
Bool∼ Int) then the program is definitely untypeable.
• Apply the solving substitution φs to τ and Γ, and compute the

set of variables β̄ over which to quantify in the usual way.
• Skolemise the variables we can quantify over, using a substitu-

tion θk.
• Typecheck the body of the let, with a suitable type for g.
• Lastly we figure out the constraint F to return. It includes F2

of course, and F ′1 suitably wrapped in a ∀ to account for the
skolemized variables just as in (LETA).

There are two tricky points in this process.

• First, notice that the substitution returned by solving Fs is a
φ-substitution and not merely a θ-substitution, and hence can

6 This interleaving is not so unusual: every Haskell compiler does the same
for type-class constraints. Alternatively, Pottier and Rémy (PR05) show
how to defer quantification to the solving phase and avoid interleaving.

`s F : φ

(S-SOLVE)
simple(F) = Fs `?

s Fs : φ `?
s φ(F) : θ

`?
s F : θ · φ

`?
s F : φ

(S-EMPTY)
`?

s ε : ∅
(S-SPLIT)

`?
s F1 : φ1

`?
s φ1(F2) : φ2

`?
s F1 ∧ F2 : φ2 · φ1

(S-REFL)
`?

s τ ∼ τ : ∅
(S-CONS)

`?
s (

∧
i τi ∼ τ ′i) : φ

`?
s T τ̄ ∼ T τ̄ ′ : φ

(S-UL)
ν 6∈ τ

φ = {ν := τ}
`?

s ν ∼ τ : φ

(S-UR)
ν 6∈ τ

φ = {ν := τ}
`?

s τ ∼ ν : φ

(S-SIMPL)
`?

s F : φ fv(φ(ᾱ)) ∩ b̄ = ∅ b̄ ∩ dom(φ) = ∅
`?

s [ᾱ](∀b̄.F) : φ

(S-PIMPL)
C 6≡ ε `?

s C : φ

`s φ(F) : θ ᾱ ∩ dom(θ) = ∅
`?

s [ᾱ](∀b̄.C ⊃ F) : θ

Figure 5. Solver algorithm

bind skolem variables. This is perhaps unintuitive—after all in
ordinary Hindley-Milner we would require that the substitution
binds only unification variables. Nevertheless, in the presence
of given equations this is not enough. Consider:

data T where
MkT :: forall a b. (a ~ b) => a -> b -> T

foo = case e of
MkT y z -> let h = [y,z] in ()

Constraint generation for the inner let definition produces the
constraint a ∼ b, where a and b are the existential variables
introduced by the pattern match. But we must not fail at this
point and hence the solver of the Fs constraint must be prepared
to encounter equalities between skolem variables.
• Second, notice that we do not apply φs to F ′1. Why not? Be-

cause φs may bind variables free in Γ, and we must not lose
that information. But the very same information is present in the
original F ′1, so if we return F ′1 unchanged (apart from applying
the skolemizing substitution θk, then the rest of the derivation
will be able to “see” it too.

Finally, notice that there is quite a bit of “junk” in F ′1. Consider the
definition of g given earlier in this subsection. We will get

τ = β → Bool, F ′1 = β ∼ Bool, θs = {β := Bool}
Now β plays no part in the rest of the program, but still lurks in F ′1.
Because of our freshness assumptions, however, it does no harm
either.

5.2 The OutsideIn Implication Solver

Figure 5 presents the rules of our implication solver. The solver
judgement is of the form `s F : φ. This judgement should

be thought of as taking F as input and producing a φ, such that
|= φ(F) according to the equational theory of Fig. 3. The judge-
ment appeals to simple(F) first, to extract the simple part of the
constraint Fs. It solves the simple part using the auxiliary judge-
ment `?

s F : φ. It applies the substitution to the original constraint
and tries to solve the returned constraint.7

Notice that the solver returns a φ substitution, which can bind
both skolem variables and unification variables. As discussed in the
previous section, being able to handle equalities between skolem
variables is important for the interleaving of solving and constraint
generation in rule (LET). Nevertheless, only a θ is returned the
second time we attempt to solve the constraints. This is because the
second time the solver will attempt to solve the proper implications
that remain – and solutions to those may only bind unification
variables as we shall shortly see (rule (S-PIMPL)).

The judgement `?
s F : φ is the core of our constraint solver.

Rules (S-EMPTY) and (S-SPLIT) are straightforward. The remain-
ing rules deal with a single equality constraint. Rule (S-CONS) de-
constructs a type constructor application, and Rule (S-REFL) dis-
charges trivial equality constraints. Rules (S-UL) and (S-UR) ac-
tually instantiate a type variable variable ν with a type τ . They must
be careful not to violate the occurs-check (ν 6∈ τ).

Simple implication constraints, i.e. with empty given constraints,
are treated by the (S-SIMPL) rule. A simple implication constraint
is treated almost as if it were just a basic constraint with two
differences. First, we make sure that the returned φ does not unify
any of the skolemized variables of the constraint – it would be
unsound to do otherwise. Second, we must never instantiate any
of the variables captured in [ᾱ] with a type that contains some of
the skolemized variables b̄. (In this case “untouchables” for the ᾱ
variables is a bad name. For example, it is fine – indeed essential –
to unify α in [α]∀b.α∼ Bool.)

Proper implication constraints are tackled by the (S-PIMPL) rule.
First it computes φ that solves the assumptions C — if there is
no solution, the implication constraint originates from a dead code
branch. Next, it applies it to F and solves F recursively yielding
θ. Finally, it checks that the solution θ does not touch any of the
untouchables.

There are several tricky points:
• There is some non-determinism in rule (S-SPLIT), but it is

harmless. When solving simple constraints, the order of solving
them does not matter; and when solving conjunctions of proper
constraints solutions from one can never affect the other.
• Some non-determinism appears in (S-PIMPL). For example,

consider the constraint [α]∀.C ⊃ α ∼ β. The recursive invo-
cation of `s could return either φ = {α := β} or {β := α},
but only one will satisfy the untouchables check. In contrast,
any most-general unifier of C will do for φ. Similarly, in a sim-
ple constraint []∀c.β ∼ c there is a choice to bind either β or c
when we solve the constraint β ∼ c. However, because of the
conditions in rule (S-SIMPL), only the solution {β := c} is
acceptable.
• Rule (S-PIMPL) does not need the skolem-escape check that

appears in (S-SIMPL). Because θ does not affect α, such a
check cannot fail.
• In (S-PIMPL), solving C requires us to bind skolem variables

as well as unification variables, and hence we return a φ. This

7 A more realistic implementation would split the constraint, solve the
simple part and use that substitution to solve the proper part – no need to
re-solve the simple part. We chose our current formalism as it saves us the
definition of splitting.

is important to type constraints whose assumptions involve
skolem variables, such as (a∼ Int ⊃ Int∼ a). Furthermore,
in rule (S-PIMPL) the solution of the right-hand side of the
constraint is required to be a θ. The reason is because this
rule is triggered whenever we are trying to solve a proper
implication constraint, and hence the solver is not called from
rule (LET), but rather after constraint generation has finished. In
order to solve such a constraint at the end, it is unsound to bind
skolem variables: Equalities that involve skolems may only be
discharged by given equalities. Hence we must not return a φ,
but a substitution that binds unification variables only (i.e. a θ).

5.3 Example

Consider again our standard example

\x -> case x of { T1 n -> n>0 }

for which the type αx → β is derived, and the constraint

F = αx ∼ T α ∧ [α, αx, β](α∼ Bool ⊃ β ∼ Bool)

If we solve first the simple constraint on the left, we get the sub-
stitution [αx := T α]. We apply this substitution on the implica-
tion constraint, yielding [α, β](α ∼ Bool ⊃ β ∼ Bool). Next, we
try to solve the implication constraint. Firstly, applying the mgu of
α∼Bool, i.e. [α := Bool], to β∼Bool) has no impact. Secondly,
we try to solve β ∼ Bool by substituting β for Bool. Yet this fails,
because β is an “untouchable”. Hence, our algorithm rejects the
program.

Now let’s add a second branch to the example

\x -> case x of { T1 n -> n>0 ; T2 xs -> null xs }

Again the type αx → β is derived, now with the constraint

F ′ = F ∧ αx ∼ T α′ ∧ [α′]∼ [α′′] ∧ β ∼ Bool

The first additional constraint originates from the pattern T2 xs,
the second and third from null xs. Solving all simple constraints
first, we get the substitution [αx := T α, α′ := α, α′′ := α, β :=
Bool]. These reduce the implication constraint to [α](α∼ Bool ⊃
Bool∼ Bool), which is now readily solved. Hence, the expression
is accepted with type T α→ Bool.

6. Specifying the restricted type system
It is all very well having an inference algorithm, but must also
explain to the programmer which programs are accepted by the type
checker and which are not. Every GADT inference algorithm has
difficulty with this point, and ours is no exception.

Figure 6 presents the rules of the restricted type system. The top-
level typing judgement is C,Γ `R e : τ which asserts that
expression e has type τ with respect to environment Γ and type
constraints C. This judgement is defined by rule (R-MAIN) which
in turn is defined in terms of the auxiliary judgement

C,Γ `r e : τ, P

which should be read “under constraints C and type environment
Γ, the term e has type τ and suspended typing judgements P ”.

What are these suspended judgements? The idea is that we type-
check the original term simply ignoring any GADT case alterna-
tives. Instead, these ignored alternatives, along with the current
environment and result type, are collected in a set P of tuples
〈C,Γ, e, τ〉. Suppose the original top-level program term can be
typed, so that

Γ `r e : τ, P

holds. Then, for every such typing (or, more realistically for the
principal typing) we require that all the suspended typing prob-
lems in P are soluble. That is what the (rather complicated) rule

C,Γ `R e : τ

(R-MAIN)
consistent(C) C,Γ `r e : τ, P

∀τ ′, P ′. (C,Γ `r e : τ ′, P ′)⇒ ∀〈Ci,Γi, ei, τi〉 ∈ P ′. Ci,Γi `R ei : τi

C,Γ `R e : τ

C,Γ `r e : τ, P

(R-VAR) (x : ∀ā.υ) ∈ Γ φ = {a := τ}
C,Γ `r x : φ(υ), ∅

(R-CON)
K :: ∀ā.D ⇒ υ

φ = {a := τ} C |= φ(D)

C,Γ `r K : φ(υ), ∅
(R-EQ)

C,Γ `r e : τ1, P

C |= τ1 ∼ τ2
C,Γ `r e : τ2, P

(R-APP)
C,Γ `r e1 : τ1 → τ2, P1 C,Γ `r e2 : τ1, P2

C,Γ `r e1 e2 : τ2, P1 ∪ P2
(R-ABS)

C,Γ ∪ {x : τ1} `r e : τ2, P

C,Γ `r λx.e : τ1 → τ2, P

(R-LET)
C,Γ ∪ {g : τ1} `r e1 : τ1, P1 ā = fv(τ1)− fv(C,Γ)

C,Γ ∪ {g : ∀ā.τ1} `r e2 : τ2, P2

C,Γ `r let {g = e1} in e2 : τ2, P1 ∪ P2

(R-LETA)
C,Γ ∪ {g : ∀ā.τ1} `r e1 : τ1, P1

C,Γ ∪ {g : ∀ā.τ1}, `r e2 : τ2, P2

C,Γ `r let {g :: ∀ā.τ1 = e1} in e2 : τ2, P1 ∪ P2

(R-CASE)
C,Γ `r e : τ1, P C,Γ `rp pi → ei : τ1 → τ2, Pi for i ∈ I

C,Γ `r case e of [pi → ei]i∈I : τ2, P ∪
⋃

i∈I Pi

C,Γ `rp p→ e : τ → υ, P

(R-VPAT)

K : ∀ā, b̄.ε⇒ υ1 → ...→ υp → T ā

fv(C,Γ, τ̄ , τr) ∩ b̄ = ∅ φ = {a := τ}
C,Γ ∪ φ{x1 : υ1, . . . , xp : υp} `r e : τr, P

C,Γ `rp K x1 . . . xp → e : T τ̄ → τr, P

(R-GPAT)

K : ∀ā, b̄.D ⇒ υ1 → ...→ υp → T ā D 6= ε

fv(C,Γ, τ̄ , τr) ∩ b̄ = ∅ φ = {a := τ}
P = {〈C ∧ φ(D), Γ ∪ φ{x1 : υ1, . . . , xl : υl}, e, τr〉}

C,Γ `rp K x1 . . . xl → e : T τ̄ → τr, P

Figure 6. Typing Rules for the Restricted Type System

(R-MAIN) says. It ensures that typing information from inside a
GADT match does not influence the typing of code outside that
match — just as the algorithm does. Observe the recursive nature
of rule (R-MAIN), which defers and processes nested case expres-
sions one layer at a time.

The only rule that adds a deferred typings to P is R-GPAT; it defers
the typing of a branch of a case expression that matches a GADT
constructor pattern. This rule only applies to GADT constructors
that bring a type equality into scope. In all other cases, when no
new type equalities are brought into scope, the rule R-PAT applies,
which does not defer the typing.

7. Formal properties
In this section we describe the properties of our type system and its
inference algorithm.

7.1 Properties of the type system

As we have discussed, implication constraints arising from pro-
gram text may have a finite or infinite set of incomparable solu-
tions. This ambiguity makes type inference hard. Even in the case
when the solutions are finite (but cannot be described by a com-
mon most general solution) modular type inference is impossible.
Our restricted system however imposes conditions on the typeable
programs of the unrestricted system, which ensure that we can per-
form tractable type inference without having to search the complete
space of possibly incomparable solutions for the arising constraints.

First, the restricted type system is sound wrt. the unrestricted type
system:

THEOREM 7.1 (Soundness). If ε,Γ `R e : τ in the restricted
type system (Fig. 6), then ε,Γ ` e : τ in the unrestricted type
system (Fig. 2).

It is fairly easy to see that this theorem holds. In addition to all
the constraints of the unrestricted type system, the restricted type
system imposes one more constraint on well-typing: the universal
well-typing of the deferred typings discussed above.

Moreover, the restricted type system has the important property that
it only admits expressions that have a principal type.

THEOREM 7.2 (Principal Typing in the Restricted Type System).
If an expression e is typeable in the restricted type system wrt.
a type environment Γ, then there is a principal type τp such
that ε,Γ `R e : τp and such that for any other τ for which
ε,Γ `R e : τ , there exists a substitution φ such that φ(τp) = τ .

Note that the principality is not an artifact of the restricted type
system. A principal type in the restricted type system is also a
principal type in the unrestricted type system:

THEOREM 7.3 (Principal Typing in the Unrestricted Type System).
Assume that the type τp is the principal type of e wrt. a type en-
vironment Γ in the restricted type system. Then, for for any other
τ for which ε,Γ ` e : τ , there exists a substitution φ such that
φ(τp) = τ .

all expressions

well-typed in
unrestricted

principal type in
unrestricted

well-typed in
restricted

Figure 7. The space of programs

Note that not all programs with a principal type in the unrestricted
type system, are accepted in the unrestricted type system.

Consider the following program:

data T a where MkT :: (a ~ Bool) => T a

f :: T a -> Char
f x = let h = case x of MkT -> 3

in ’a’

The principal type for h in the unrestricted type system is Int. The
restricted, ignoring the case branch, attempts to assign ∀b.b as the
principal type for h. However, this does not allow the implication
(a ∼ Bool) ⊃ (b ∼ Int) to be solved. Hence, the program is
rejected.

Hence, the gray area in Fig. 7 is non-empty. We leave it as a
challenge for future work to expand the innermost area towards the
dashed line.

Finally, we observe that nearly all well-typings in the unrestricted
type system can be recovered in the restricted type system by
adding additional type annotations to the program. Because our lan-
guage does not provide a means to name existential type variables
brought into scope by GADT pattern matches, we cannot recover
thos well-typings that require mentioning them. Open type annota-
tions8 would lift that limitation.

7.2 Properties of the inference algorithm

The solver algorithm has a number of vital properties. First, the
search for solution always terminates, either in failure or success.

THEOREM 7.4 (Termination). The solver algorithm terminates.

Second, when a solution is found, it is a proper well-typing in the
restricted type system.

THEOREM 7.5 (Soundness). If `inf e : τ then ε, ∅ `R e : τ

Third, when a solution is found, it is not an arbitrary solution, but
the principal solution.

THEOREM 7.6 (Principality). The inferred type is the principal
type in the restricted type system: If `inf e : τ and ε, ∅ `R e : υ
then υ = φ(τ) for some φ.

Finally, if an expression is well-typed, then the solver algorithm
finds a solution.

THEOREM 7.7 (Completeness). If ε, ∅ `R e : τ then `inf e : υ.

Of course, in order to prove the solver algorithm properties, we
have to generalize appropriately the statements of the theorems

8 i.e. containing free occurrences of lexically scoped type variables.

in this section, but we refrain from presenting the generalized
statements for the sake of clarity of exposition.

8. Implementation Aspects
A key property of OutsideIn is that it is easy to implement, and the
implementation is efficient. To substantiate this claim we briefly
describe our implementation of OutsideIn in Haskell. Our imple-
mentation is available for download from

http://research.microsoft.com/people/dimitris/

and additionally supports bidirectional type checking, open type
annotations, and type annotations with constraints.

We introduce a datatype MetaTv for unification variables α, β, . . .
and a datatype TyVar for skolem variables a, b, As in tradi-
tional implementations (PVWS07), the MetaTv contains a refer-
ence cell that may contain a type to which the variable is bound:

data MetaTv = Meta Name (IORef (Maybe Type))
newtype TyVar = TyV Name

The main type checker is written in a monad Tc a, which is a func-
tion from environments TcEnv and encapsulates IO and threading
of error messages.

newtype Tc a = Tc (TcEnv -> IO (Either ErrMsg a))
data TcEnv

= TcEnv { var_env :: Map Name Type
, lie_env :: IORef [Constraint]
, untouchables :: [MetaTv]
, ... }

Among other fields, the TcEnv environment contains a typing en-
vironment var_env, which is a map from term variable names to
types. The field lie_env collects the set of Constraints that arise
during type inference.9 The Constraint datatype holds equality
and implication constraints.

8.1 Constraint generation

In traditional implementations, unification variables are typically
eagerly unified to types as type inference proceeds. In contrast, the
algorithm of Fig. 4 first generates (lots of) constraints, and then
solves them, which is much less efficient. In our implementation we
choose an intermediate path, which results in much more compact
generated constraints. The environment TcEnv is equipped with the
untouchables field, which records the untouchable variables. As
type inference proceeds we perform eager unification by side effect
in the usual way, except that we refrain from unifying a variable α
from the untouchable set to a type τ . In that case, we defer the
constraint α ∼ τ , to be dealt with after constraint generation is
finished. Hence, the unifier has signature:

unify :: Type -> Type -> Tc [Constraint]

It accepts, two types to unify, unifies them (perhaps using side
effects on MetaTvs that are not untouchable), and returns a list of
deferred equalities for variables that belong in the untouchables
field of the environment.

How does the untouchables environment field get updated?
Whenever we perform type inference for a pattern match clause
with non-empty given equations, the main type checker:

1. extends the untouchables field with the unification variables
of the scrutinee and the environment and the return type, as
required by Fig. 4,

9 The name lie env is folklore from type class implementations, where it
stands for Local Instance Environment.

2. performs type inference for the right-hand-side of the clause
and returns the deferred constraints, and

3. defers an implication constraint whose right-hand side consists
of the aforementioned deferred constraints.

8.2 Constraint solving

During type inference we need to solve the generated constraints
at two points: when the constraints for the complete program have
been generated (rule (INFER), Fig. 4), but also, more subtly, when
we encounter a let-bound definition with no annotation (rule (LET),
Fig. 4) – in the latter case we must only solve the simple constraints.

Post-constraint-generation-solving After constraint generation
is finished, the lie_env field holds the set of deferred constraints.
At this point we may appeal to our constraint simplifier, which is
written in a lightweight error-threading monad, implemented with
Haskell’s Either datatype. By design, this monad is pure in the
sense that it does not support in-place updating of MetaTvs.

solveConstraints :: [MetaTv] -> [CConstraint] ->
Either SimplifierError ()

solveConstraints untch cs
= do { let (simples, propers) = splitCConstrs cs

; subst <- solveSimples (Unif untch) simples
; spropers <- substToCConstrs subst propers
; mapM_ solveProper spropers }

The function solveConstraints accepts a list of untouchable
variables and a list of constraints (cs)10 to simplify. It splits the
constraints to simples and propers, solves the simples, applies
the substitution to the propers (yielding spropers) and solves
spropers. The function solveConstraints is the final step of
type inference, and we need not return any value back – hence the
() return type.

We will return to solveSimples and the meaning of the argument
(Unif untch), but for now let us focus on the solvePropers
function:

solveProper :: CConstraint -> Either SimplifierError ()

The function solveProper accepts a single proper implication and
solves it. Notice that, since the argument is a proper implication, its
solution cannot affect anything in the environment and hence we
may simply return () – the substitution in Fig. 5, rule (S-PIMPL)
is only there to enable clean statements and proofs of some formal
properties.

We now turn to solveSimples, below:

solveSimples :: SimplifierMode -> [CConstraint] ->
Either SimplifierError Substitution

solveSimples mode = foldM (solveSimple mode) emptySubst

solveSimple :: SimplifierMode ->
Substitution -> CConstraint ->
Either SimplifierError Substitution

The Substitution datatype denotes substitutions from either
MetaTv or TyVar variables to types. Notice that solveSimples
is defined as a fold, that starts-off with the empty substitution
and updates it as it solves each simple constraint. In contrast,
we use mapM_ to solve each proper constraint independently in
solveConstraints, because they cannot affect each other. The
SimplifierMode argument to solveSimple stands for the mode
of operation:

10 The CConstraint datatype is a “canonicalized” variant of Constraint,
and we can ignore their differences below.

• If the flag is (Unif untch) then the returned Substitution
binds only unification variables that do not appear in the list of
untouchables, untch.11

• If the flag is All then the returned Substitution binds in-
variably skolem and unification variables. Notice that it would
be wrong to apply this substitution to unification variables as a
side-effect – for example it is definitely wrong in the context of
solving the local assumptions of an implication constraint.

One reason we need the flag All is because solveSimple has
to unify both skolem and unification variables when called on the
given equalities of implication constraints. Concretely, here is the
definition of solveProper (simplified):

solveProper (CImplicConstraint envs sks gs ws)
= do { subst <- solveSimples All gs

; ws_cs <- substToCConstrs subst ws
-- find untouchables from envs and subst
; let all_envs = ...
; solveConstraints all_envs ws_cs }

The datatype CImplicConstraint envs sks gs ws stands for
the proper constraint [envs]∀sks.gs ⊃ ws. Notice characteristi-
cally that the givens gs are unified using the All flag. Subsequently,
the substitution is applied to ws, and the new untouchable vari-
ables are calculated (all_envs). Finally, solveConstraints is
recursively called with the new list of untouchables. The function
solveConstraints returns () but that’s all that we need when
solving the right-hand side of proper implication constraints: Any
solution for a proper implication constraint could only bind “inter-
nal” variables to that constraint (i.e. not in the untouchables) and
consequently does not affect any other constraint.

It is because of this recursive call to solveConstraints from in-
side of solving a proper implication that we need to pass it the list of
untouchable variables — our top-level call to solveConstraints
is with empty untouchable variables.

Solving for let-bound definitions When type checking a let-
bound definition, rule (LET) in Fig. 4 requires that we solve the
generated simple constraints. We already have the mechanism for
doing so, via solveSimples. We give below a code excerpt from
type checking let bindings.

-- type check binding
...
-- call the simplifier
; (propers, phi) <- simplifyTc $

do { ...
-- cs: the constraints from type checking
; let (simples,propers) = splitCConstrs cs
; phi <- solveSimples All simples
; return (propers, subst) }

...
-- compute quantified vars
; let forall_tvs = ...
-- create new skolems
; sks <- ...
-- skolemizing substitution forall_tvs |-> sks
; let thetak = ...
; let phi_thetak = thetak ‘composeSubst‘ phi
; spropers = map (substToConstr phi_thetak) propers
-- write back constraints
; deferred <- eqCheckSubst phi_thetak
; deferImpl env_tvs sks [] (spropers ++ deferred)
-- quantify and return type
...

11 We could in principle apply the returned substitution as side-effect but we
chose to not do so in order to treat this case uniformly with the case when
the flag is All, to be described next.

We first type check the binding and get the resulting constraints
and its type. Subsequently, we call the simplifier: we split the con-
straints to simples and propers, we solve the simples (using
mode All) and return the propers and the resulting substitution,
subst. Next, we compute the variables to quantify and the skolem-
izing substitution θk of rule (LET) in Fig. 4 (thetak).

Next, we need to extend the lie_env with a constraint. At this
point we could in principle return the original constraint to which
we have applied θk, wrapped as a simple implication constraint, as
in rule (LET). As an optimization however, we call unify on each
binding ν := τ in phi_thetak; in the common case where ν is
a (touchable) unification variable α unify will update α in-place,
otherwise it will defer the constraints. Those deferred constraints
are bound to deferred, and finally return a simple implication
constraint that contains the skolemized proper part of the original
(spropers) and those deferred.

9. Related Work
Since GADTs have become popular there has been a flurry of pa-
pers on inference algorithms to support them in a practical pro-
gramming language.

9.1 Fully-annotated programs

One approach is to assume that the program is fully type-annotated,
i.e. each sub-expression carries explicit type information. Under
this (strong) assumption, we speak of type checking rather than in-
ference. Type checking boils down to unification which is decid-
able. Hence, we can conclude that type checking for GADTs is
decidable. For example, consider (CH03) and (SP07).

9.2 Entirely unannotated programs

Type inference for unannotated programs turns out to be extremely
hard. The difficulty lies in the fact that GADT pattern matches
bring into scope local type assumptions (Section 2). Following the
standard route of reducing type inference to constraint solving,
GADTs require implication constraints to capture the inference
problem precisely (SSS08).

Unification is no longer sufficient to solve such constraints. We
require more complicated solving methods such as constraint ab-
duction (Mah05) and E-unification (GNRS92). It is fairly straight-
ward to construct examples which show that no principal solutions
(and therefore no principal types) exist. We can even conclude that
GADT inference is undecidable by reduction to simultaneous rigid
E-unification problem which is known to be undecidable (DV95).

How do previous inference approaches tackle these problems?

Simonet and Pottier (SP07) solve the inference problem by admit-
ting (much) richer constraints. They sidestep the problems of un-
decidability and lack of principal types altogether by reducing type
inference to type checking. Their inference approach only accu-
mulates (implication) constraints and refrains from solving them.
As a result, implications may appear in type schemes, which is
a serious complication for the poor programmer (we elaborate in
Section 5.1). Furthermore, no tractable solving algorithm is known
for the constraints they generate, largely because of the (absolutely
necessary) use of implications.

Sulzmann et al (SSS08) go the other direction, by keeping con-
straints (in types) simple, and instead apply a very powerful (abduc-
tive) solving mechanism. To avoid undecidability, they only con-
sider a selected set of “intuitive” solutions. However they give only
an inference algorithm, and it is not clear how to give a declarative
description that specifies which programs are well-typed and which
are not. Furthermore their system lacks principal types.

9.3 Practical compromises

We conclude that tractable type inference for completely unanno-
tated programs is impossible. It is therefore acceptable to demand a
certain amount of user-provided type information. We know of two
well-documented approaches:

Régis-Gianas and Pottier stratify type inference into two passes.
The first figures out the “shape” of types involving GADTs, while
the second performs more-or-less conventional type inference
(PRG06). Régis-Gianas and Pottier present two different shape
analysis procedures, the Wob and Inst systems. The Wob system has
similar expressiveness and need for annotation as in (PVWW06).
The Ibis system on the other hand has similar expressiveness as
our system, with a very aggressive iterated shape analysis process.
This is reminiscent of our unification of simple constraints arising
potentially from far-away in the program text, prior to solving a
particular proper constraint. In terms of expressiveness, the vast
majority of programs typeable by our system are typeable in Ibis
but we conjecture that there exist programs typeable in our sys-
tem not typeable in Ibis, because unification of simple (global)
constraints may be able to figure more out about the types of ex-
pressions than the preprocessing shape analysis of Ibis. On the
other hand, Ibis lacks a declarative specification that does not force
the programmer to understand the intricacies of shape propagation.

Peyton Jones et al require that the scrutinee of a GADT match has
a “rigid” type, known to the type checker ab initio. A number of
ad hoc rules describe how a type signature is propagated to control
rigidity (PVWW06). Because rigidity analysis is more aggressive
in our system we type many more programs than in (PVWW06),
including the carefully-chosen Example 7.2 from (PRG06). On the
other hand a program fails to type check in our approach if the type
of a case branch is not determined by some “outer” constraint:

data Eq a b where { Refl :: forall a. Eq a a }

test :: forall a b. Eq a b -> Int
test x = let funny_id = \z -> case x of Refl -> z

in funny_id 3

By contrast this program is typeable in (PVWW06). Arguably,
though, this program should be rejected, because there are several
incomparable types for funny_id (in the unrestricted system of
Fig. 2), including ∀c.c→ c and a→ b.

The implementation of GHC is a slight variation that requires that
the right-hand-side of a pattern match clause be typed in a rigid
environment12. Hence, it would reject the previous example. Our
system is strictly more expressive than this variation:

test :: forall a b. Eq a b -> Int
test x = (\z -> case x of Eq -> z) 34

The above program would fail to type check in GHC, as the “wob-
bly” variable z cannot be used in the right-hand-side of a pattern
match clause, but in our system it would be typeable because the
“outer” constraint forces z to get type Int.

In both approaches, inferred types are maximal, but not necessarily
principal in the unrestricted natural GADT type system. The choice
for a particular maximal type over others relies on the ad hoc
rigidity analysis or shape pre-processing. By contrast, in our system
only programs that enjoy principal types in the unrestricted type
system are accepted.

12 GHC’s algorithm is described in an Appendix to the online version of the
paper, available from:
http://research.microsoft.com/people/simonpj/papers/gadt

Moreover, in both approaches the programmer is required to under-
stand an entirely new concept (shape or rigidity repectively), with
somewhat complex and ad hoc rules (e.g. Fig. 6 of (PRG06)). Nor
is the implementation straightforward; e.g., GHC’s implementation
of (PVWW06) is known to be flawed in a non-trivial way.

10. Further work
Although we have focused exclusively on GADTs, we intend to ap-
ply our ideas in the context of Haskell, and more specifically of the
Glasgow Haskell Compiler. The latter embodies numerous exten-
sions to Haskell 98, some of which are highly relevant. Notably, a
data constructor can bring into scope a local type-class constraint:

class Eq a where { (==) :: a -> a -> Bool }
data D a where { D1 :: Eq a => a -> D a }

h :: a -> D a -> Bool
h x (D1 y) = x==y

The pattern match on D1 brings the (Eq a) constraint into scope,
which can be used to discharge the (Eq a) constraint that arises
from the occurrence of (==). Note that D1 is not a GADT; it brings
into scope no new type equalities. The same thing may happen with
Haskell’s implicit parameters (LLMS00).

Since type inference for Haskell already involves gathering and
solving type-class constraints, the constraint-gathering approach to
inference is quite natural. The above extension to Haskell gener-
alises the idea of local type constraints to constraints other than
equalities, and these naturally map to the same implication con-
straints we need for GADTs.

More ambitiously, GHC also supports indexed type families and
type-equality constraints between them (SJCS08). So we may write

type family F :: * -> *
type instance F Int = Int
type instance F [a] = F a

data E a where { E1 :: (F a ~ Int) => a -> E a }

Here, when we match on E1 we get the local constraint that
F a∼ Int, which in turn gives rise to new questions for the solver
(SJCS08).

Unsurprisingly, these extensions raise similar issues that we found
with simple equality constraints. For example, it turns out that type
classes suffer from the same lack of principal types as equality
constraints (SSS06). Consider this function:

data T a where { MkT :: Eq a => T a }

f x y = case x of { MkT -> y==y } :: Bool

What type should be inferred for f? Here are two, neither of which
are more general than the other:

f :: ∀a.T a→ a→ Bool
f :: ∀ab.Eq b⇒ T a→ b→ Bool

However, type classes cannot be treated identically to equality
constraints. For example, consider this variation of f:

data T a where { MkT :: Eq a => T a }

f x y = case x of { MkT -> y } :: Bool

This will generate the constraint [βy](Eq a ⊃ βy ∼ Bool), where
y : βy . In our treatment (thus far) of implication constraints we treat
βy as untouchable, so the constraint appears insoluble; but in fact
the C part of the implication (Eq a in this case) cannot bring any

equalities into scope, so it is perfectly fine to unify [βy := Bool];
indeed, it would be unreasonable not to. We must modify our
notion of “proper” constraints to ones whose C constraints include
equalities. For the inference algorithm, this is straightforward; it is
not so clear what the type system might look like.

Finally, in practice, our type checker algorithm would have to be
augmented with the generation of evidence, witnessing that the the
wanted constraints hold. In GHC’s intermediate language, evidence
for equality constraints takes the form of type equality coercions,
while dictionaries are the evidence for type class constraints. We
have omitted evidence handling here so as not to distract from the
essence of the OutsideIn algorithm.

Acknowledgements We are grateful to the anonymous ICFP 2009
reviewers, and to James McKinna’s team for their comments.

References
[CH03] J. Cheney and R. Hinze. First-class phantom

types. TR 1901, Cornell University, 2003. http:
//techreports.library.cornell.edu:8081/Dienst/
UI/1.0/Display/cul.cis/TR2003-1901.

[DV95] A. Degtyarev and A. Voronkov. Simultaneous regid E-
unification is undecidable. In Proc. of CSL’95, volume 1092
of LNCS, pages 178–190. Springer-Verlag, 1995.

[GNRS92] J. H. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem
proving using equational matings and rigid e-unification. J.
ACM, 39(2):377–429, 1992.

[LLMS00] J. R. Lewis, J. Launchbury, E. Meijer, and M. Shields. Implicit
parameters: Dynamic scoping with static types. In POPL,
pages 108–118, 2000.

[Mah05] M. Maher. Herbrand constraint abduction. In Proc. of
LICS’05, pages 397–406. IEEE Computer Society, 2005.

[PR05] F. Pottier and D. Rémy. The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT
Press, 2005.

[PRG06] F. Pottier and Y. Régis-Gianas. Stratified type inference for
generalized algebraic data types. In Proc. of POPL’06, pages
232–244. ACM Press, 2006.

[PVWS07] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields.
Practical type inference for arbitrary-rank types. Journal of
Functional Programming, 17:1–82, January 2007.

[PVWW06] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn.
Simple unification-based type inference for GADTs. In Proc.
of ICFP’06, pages 50–61. ACM Press, 2006.

[SCPD07] M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In Proc. of
TLDI’07. ACM, 2007.

[SJCS08] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulz-
mann. Type checking with open type functions. SIGPLAN
Not., 43(9):51–62, 2008.

[SP07] V. Simonet and F. Pottier. A constraint-based approach to
guarded algebraic data types. ACM Trans. Prog. Languages
Systems, 29(1), January 2007.

[SSS06] M. Sulzmann, T. Schrijvers, and P. J. Stuckey. Principal
type inference for GHC-style multi-parameter type classes.
In Proc. of APLAS’06, volume 4279 of LNCS, pages 26–43.
Springer-Verlag, 2006.

[SSS08] M. Sulzmann, T. Schrijvers, and P. Stuckey. Type inference
for GADTs via Herbrand constraint abduction. Report CW
507, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, January 2008.

