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Appendix A: Analysis for Affine Constraints Satisfying RIP

We first give a proof of Lemma 2.1 which bounds the error of the (t + 1)-st iterate (ψ(Xt+1)) in
terms of the error incurred by the t-th iterate and the optimal solution.

Proof of Lemma 2.1 Recall that ψ(X) = 1
2∥A(X) − b∥22. Since ψ(·) is a quadratic function, we

have

ψ(Xt+1)− ψ(Xt) = ⟨∇ψ(Xt), Xt+1 −Xt⟩+ 1

2
∥A(Xt+1 −Xt)∥22

≤ ⟨AT (A(Xt)− b), Xt+1 −Xt⟩+ 1

2
· (1 + δ2k) · ∥Xt+1 −Xt∥2F , (0.1)

where the inequality follows from RIP applied to the matrix Xt+1 − Xt of rank at most 2k. Let
Y t+1 = Xt − 1

1+δ2k
AT (A(Xt)− b) and

ft(X) = ⟨AT (A(Xt)− b), X −Xt⟩+ 1

2
· (1 + δ2k) · ∥X −Xt∥2F .

Now,

ft(X) =
1

2
(1 + δ2k)

[
∥X −Xt∥2F + 2

⟨
AT (A(Xt)− b)

1 + δ2k
, X −Xt

⟩]
=

1

2
(1 + δ2k)∥X − Y t+1∥2F −

1

2(1 + δ2k)
· ∥AT (A(Xt)− b)∥2F .

Thus, by definition, Pk(Y
t+1) = Xt+1 is the minimizer of ft(X) over all matrices X ∈ C(k) (of

rank at most k). In particular, ft(Xt+1) ≤ ft(X∗) and,

ψ(Xt+1)− ψ(Xt) ≤ ft(Xt+1) ≤ ft(X∗) = ⟨AT (A(Xt)− b), X∗ −Xt⟩+ 1

2
(1 + δ2k)∥X∗ −Xt∥2F

≤ ⟨AT (A(Xt)− b), X∗ −Xt⟩+ 1

2
· 1 + δ2k
1− δ2k

∥A(X∗ −Xt)∥22 (0.2)

= ψ(X∗)− ψ(Xt) +
δ2k

(1− δ2k)
∥A(X∗ −Xt)∥22,

where inequality (0.2) follows from RIP applied to X∗ −Xt.

We now prove Theorem 1.2.
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Proof of Theorem 1.2 Let the current solution Xt satisfy ψ(Xt) ≥ G∥e∥2/2, where G ≥ 0 is a
universal constant. Using Lemma 2.1 and the fact that b−A(X∗) = e,

ψ(Xt+1) ≤ ∥e∥
2
2

2
+

δ2k
(1− δ2k)

∥b−A(Xt)− e∥22 ≤
∥e∥22
2

+
2δ2k

(1− δ2k)
(ψ(Xt)− eT (b−A(Xt)) + ∥e∥2/2)

≤ ψ(Xt)

G2
+

2δ2k
(1− δ2k)

(
ψ(Xt) +

2

G
ψ(Xt) +

1

G2
ψ(Xt)

)
≤ Dψ(Xt),

where D =
(

1
G2 + 2δ2k

(1−δ2k)

(
1 + 1

G

)2). Recall that δ2k < 1/3. Hence, selecting G > (1 +

δ2k)/(1 − 3δ2k), we get D < 1. Also, ψ(X0) = ψ(0) = ∥b∥2/2. Hence, ψ(Xτ ) ≤ C∥e∥2 + ϵ

where τ =
⌈

1
log(1/D) log

∥b∥2

2(C∥e∥2+ϵ)

⌉
and C = G2/2.

Appendix B: Proof of Weak RIP for Matrix Completion

We now give a detailed proof of the weak RIP property for the matrix completion problem, Theorem
2.2.

Proof of Lemma 2.4 Let X = UΣV T be the singular value decomposition of X . Then,

|Xij | = |eTi UΣV T ej | = |
k∑

l=1

UilΣllVjl| ≤
k∑

l=1

Σll|Uil||Vjl|.

Since X is µ-incoherent,

|Xij | ≤
k∑

l=1

Σll|Uil||Vjl| ≤
µ√
mn
· (

k∑
l=1

Σll) ≤
µ√
mn
·
√
k · (

k∑
l=1

Σ2
ll)

1/2 =
µ
√
k√

mn
· ∥X∥F .

We also need the following technical lemma for our proof.

Lemma 0.1 Let a, b, c, x, y, z ∈ [−1, 1]. Then,

|abc− xyz| ≤ |a− x|+ |b− y|+ |c− z|.

Proof We have,

|abc− xyz| = |(abc− xbc) + (xbc− xyc) + (xyc− xyz)|
≤ |a− x||bc|+ |b− y||xc|+ |c− z||xy|
≤ |a− x|+ |b− y|+ |c− z|.

We now prove Lemma 2.5. We use the following form of the classical Bernstein’s large deviation
inequality in our proof.

Lemma 0.2 (Bernstein’s Inequality, see [3]) Let X1, X2, . . . , Xn be independent random vari-
ables with E[Xi] = 0 and |Xi| ≤M for all i. Then,

P [
∑
i

Xi > t] ≤ exp

(
− t2/2∑

i V ar(Xi) +Mt/3

)
.

Proof of Lemma 2.5 For (i, j) ∈ [m] × [n], let ωij be the indicator variables with ωij = 1 if
(i, j) ∈ Ω and 0 otherwise. Then, ωij are independent random variables with Pr[ωij = 1] = p. Let
random variable Zij = ωijX

2
ij . Note that,

E[Zij ] = pX2
ij , V ar(Zij) = p(1− p)X4

ij .

Since X is α-regular, |Zij − E[Zij ]| ≤ |Xij |2 ≤ (α2/mn) · ∥X∥2F . Thus,

M = max
i,j
|Zij − E[Zij ]| ≤

α2

mn
∥X∥2F . (0.3)
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Now, define random variable S =
∑

i,j Zij =
∑

i,j ωijX
2
ij = ∥PΩ(X)∥2F . Note that, E[S] =

p∥X∥2F . Since, Zij are independent random variables,

V ar(S) =
∑
i,j

p(1− p)X4
ij ≤ p (max

i,j
X2

ij) ·
∑
i,j

X2
ij ≤

pα2

mn
∥X∥4F . (0.4)

Using Bernstein’s inequality (Lemma 0.2) for S with t = δp∥X∥2F and Equations (0.3) and (0.4)
we get,

Pr[|S − E[S]| > t] ≤ 2 exp

(
−t2/2

V ar(Z) +Mt/3

)
≤ 2 exp

(
− δ2pmn

α2(1 + δ/3)

)
≤ 2 exp

(
−δ

2pmn

3α2

)
.

Proof of Lemma 2.6 We construct S(µ, ϵ) by discretizing the space of low-rank incoherent matri-
ces. Let ρ = ϵ/

√
9k2mn and D(ρ) = {ρ i : i ∈ Z, |i| < ⌊1/ρ⌋}. Let

U(ρ) = {U ∈ Rm×k : Uij ∈ (
√
µ/m) ·D(ρ) },

V (ρ) = {V ∈ Rn×k : Vij ∈ (
√
µ/n) ·D(ρ) },

Σ(ρ) = {Σ ∈ Rk×k : Σij = 0, i ̸= j, Σii ∈ D(ρ)},
S(µ, ϵ) = {UΣV T : U ∈ U(ρ),Σ ∈ Σ(ρ), V ∈ V (ρ) }.

We will show that S(µ, ϵ) satisfies the conditions of the Lemma. Observe that |D(ρ)| < 2/ρ. Thus,

|U(ρ)| < (2/ρ)mk, |V (ρ)| < (2/ρ)nk, |Σ(ρ)| < (2/ρ)k.

Hence, |S(µ, ϵ)| < (2/ρ)mk+nk+k < (mnk/ϵ)3(m+n)k.

Fix a µ-incoherent X ∈ Rm×n of rank at most k with ∥X∥2 = 1. Let X = UΣV T be the singular
value decomposition of X . Let U1 be the matrix obtained by rounding entries of U to integer
multiples of

√
µρ/
√
m as follows: for (i, l) ∈ [m]× [k], let

(U1)il =

√
µρ
√
m
·
⌊
Uil

√
m

√
µρ

⌋
.

Now, since |Uil| ≤
√
µ/
√
m, it follows that U1 ∈ U(ρ). Further, for all i ∈ [m], l ∈ [k],

|(U1)il − Uil| <
√
µ
√
m
ρ ≤ ρ.

Similarly, define V1,Σ1 by rounding entries of V,Σ to integer multiples of
√
µρ/
√
n and ρ respec-

tively. Then, V1 ∈ V (ρ), Σ1 ∈ Σ(ρ) and for (j, l) ∈ [n]× [k],

|(V1)jl − Vjl| <
√
µρ
√
n
≤ ρ, |(Σ1)ll − Σll| < ρ.

Let X(ρ) = U1Σ1V
T
1 . Then, by the above equations and Lemma 0.1, for i ∈ [m], l ∈ [k], j ∈ [n],

|(U1)il(Σ1)ll(V1)jl − UilΣllVjl| < 3ρ.

Thus, for i, j ∈ [m]× [n],

|X(ρ)ij −Xij | = |
k∑

l=1

(U1)il(Σ1)ll(V1)jl − UilΣllVjl|

≤
k∑

l=1

|(U1)il(Σ1)ll(V1)jl − UilΣllVjl|

< 3kρ. (0.5)
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Using Lemma 2.4 and Equation (0.5)

max
i,j
|X(ρ)ij | < max

i,j
|Xij |+ 3kρ ≤ µ

√
k√

mn
· ∥X∥F +

ϵ√
mn

.

Also, using (0.5),

∥X(ρ)−X∥2F =
∑
i,j

|X(ρ)ij −Xij |2 < 9k2mnρ2 = ϵ2.

Further, by triangle inequality, ∥X(ρ)∥F > ∥X∥F − ϵ > ∥X∥F /2. Since, ϵ < 1 and µ
√
k∥X∥F ≥

1,

max
i,j
|X(ρ)ij | <

2µ
√
k√

mn
· ∥X∥F <

4µ
√
k√

mn
· ∥X(ρ)∥F .

Thus, X(ρ) is 4µ
√
k-regular. The lemma now follows by taking Y = X(ρ).

We now prove Theorem 2.2 by combining Lemmas 2.5 and 2.6.

Proof of Theorem 2.2 Let m ≤ n, ϵ = δ/9mnk and

S′(µ, ϵ) = {Y : Y ∈ S(µ, ϵ), Y is 4µ
√
k-regular},

where S(µ, ϵ) is as in Lemma 2.6. Then, by Lemma 2.5 and a union bound,

Pr
[ ∣∣∥PΩ(Y )∥2F − p∥Y ∥2F

∣∣ ≥ δp∥Y ∥2F for some Y ∈ S′(µ, ϵ)
]
≤ 2

(
mnk

ϵ

)3(m+n)k

exp

(
−δ2pmn
16µ2k

)
≤ exp(C1nk log n) · exp

(
−δ2pmn
16µ2k

)
,

where C1 ≥ 0 is a constant independent of m,n, k.

Thus, if p > Cµ2k2 log n/δ2m, whereC = 16(C1+1), with probability at least 1−exp(−n log n),
the following holds:

∀Y ∈ S′(µ, ϵ), |∥PΩ(Y )∥2F − p∥Y ∥2F | ≤ δp∥Y ∥2F . (0.6)

As the statement of the theorem is invariant under scaling, it is enough to show the statement for
all µ-incoherent matrices X of rank at most k and ∥X∥2 = 1. Fix such a X and suppose that (0.6)
holds. Now, by Lemma 2.6 there exists Y ∈ S′(µ, ϵ) such that ∥Y −X∥F ≤ ϵ. Moreover,

∥Y ∥2F ≤ (∥X∥F + ϵ)2 ≤ ∥X∥2F + 2ϵ∥X∥F + ϵ2 ≤ ∥X∥2F + 3ϵk.

Proceeding similarly, we can show that

|∥X∥2F − ∥Y ∥2F | ≤ 3ϵk. (0.7)

Further, starting with ∥PΩ(Y −X)∥F ≤ ∥Y −X∥F ≤ ϵ and arguing as above we get that

|∥PΩ(Y )∥2F − ∥PΩ(X)∥2F | ≤ 3ϵk. (0.8)

Combining inequalities (0.7), (0.8) above, we have

|∥PΩ(X)∥2F − p∥X∥2F | ≤ |∥PΩ(X)∥2F − ∥PΩ(Y )∥2F |+ p |∥X∥2F − ∥Y ∥2F |+ |∥PΩ(Y )∥2F − p∥Y ∥2F |
≤ 6ϵk + δp∥Y ∥2F from (0.6), (0.7), (0.8)

≤ 6ϵk + δp(∥X∥2F + 3ϵk) from (0.7)

≤ 9ϵk + δp∥X∥2F
≤ 2δp∥X∥2F . since ∥X∥2F ≥ 1

The theorem now follows.
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Appendix C: SVP-Newton

The affine rank minimization problem is a natural generalization to matrices of the following com-
pressed sensing problem (CSP) for vectors:

min
x
∥x∥0,

s.t. Ax = b, (0.9)

where ∥x∥0 is the l0 norm (size of the support) of x ∈ Rn, A ∈ Rm×n is the sensing matrix and
b ∈ Rm are the measurements. Similar to ARMP, the compressed sensing problem is also NP-hard
in general. However, similar to ARMP, compressed sensing can also be solved for measurement
matrices that satisfies restricted isometry property.

Restricted Isometry Property (RIP) for the Compressed Sensing problem is similar to the corre-
sponding definition for matrices:

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22, (0.10)

where support(x) ≤ k. Note that support of a vector is same as the rank of the corresponding
diagonal matrix whose diagonal is given by the same vector.

Since, Compressed Sensing is a special case of Affine Rank Minimization Problem (ARMP) with
diagonal matrices, i.e., with fixed basis vectors Uk = Ik, Vk = Ik (see step 4, SVP algorithm).
Hence, SVP-Newton can be directly applied to Problem 0.9.

The corresponding updates for SVP-Newton applied to compressed sensing are given by:

yt+1 ← xt − ηtAT (Ax− b), (0.11)

S ← Set of top k elements ofyt+1, (0.12)

xt+1
S ← argmin

xS

∥ASxS − b∥22, (0.13)

We now present a Theorem that shows that the SVP-Newton method applied to the Compressed
Sensing problem converges to the optimal solution in O(log k) iterations where k is the optimal
support.

Theorem 0.3 Suppose the isometry constant of A in CSP satisfies δ2k < 1/3. Let b = Ax∗ for
a support-k vector x∗, i.e., ∥x∗∥0 = k and bi ≤ 1,∀i. Then, SVP-Newton algorithm for CSP
(Updates 0.13) with step-size ηt = 4/3 converges to the exact x∗ in at most 2

log 1/α logα
k√

1−δ2kc

iterations, where c = mini ∥x∗i ∥ and α = 1/3+δ2k
1−δ2k

.

Proof Assume that x0 = 0. Now, using Lemma 2.1 specialized to CSP (or see Theorem 2.1 in Garg
and Khandekar [1]),

(1− δ2k)∥xt − x∗∥ ≤ ∥Axt − b∥2 ≤ αt∥b∥2,

where α = 1/3+δ2k
1−δ2k

.

Let us assume that the support set S discovered by SVP-Newton at the t-th step differs from the
optimal set S∗ (support set for x∗) on at least one element. Now, note that if the support set S
discovered by SVP-Newton is the optimal set S∗ (support set for x∗) then xt = x∗ as xt minimizes
∥ASxS − b∥22.

Since, S ∩ S̄∗ ̸= ϕ,
∥xt − x∗∥2 ≥ c2.

Hence, (1− δ2k)c2 ≤ αt∥b∥2, implying,

t ≤ 2

log 1/α
logα

k√
1− δ2kc

.

Note that SVP-Newton converges to the optimal solution in logarithmic number of queries rather
than ϵ-approximate solution obtained by GradeS [1] which is just a specialization of SVP to the
compressed sensing problem. Note that the number of iterations required is an improvement over
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O(k) bound provided by [2]. [2] requires incoherence property for the measurement matrix1, which
is a stronger condition to RIP. In fact, one can construct measurement matrices A with bounded RIP
constant but unbounded incoherence constant.
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