
Simon Peyton Jones (Microsoft Research)

Chung-Chieh Shan  (Rutgers University)

Oleg Kiselyov (Fleet Numerical Meteorology and Oceanography Center)

Tony Hoare’s 75th birthday celebration, April 2009



 “Program correctness is a basic scientific ideal 
for Computer Science”

 “The most widely used tools [in pursuit of 
correctness] concentrate on the detection of 
programming errors, widely known as bugs.  
Foremost among these [tools] are modern 
compilers for strongly typed languages”

 “Like insects that carry disease, the least 
efficient way of eradicating program bugs is by 
squashing them one by one. The only sure 
safeguard against attack is to pursue the ideal 
of not making the errors in the first place.”

“The ideal of program correctness”, Tony Hoare, BCS lecture and debate, Oct 2006



 Static typing eradicates whole species of bugs

 The static type of a function is a partial 
specification: its says something (but not too 
much) about what the function does

reverse :: [a] -> [a]

The spectrum of confidence

Increasingly precise specification

Increasing 
confidence that the 
program does what 

you want



 The static type of a function is like a weak 
specification: its says something (but not too 
much) about what the function does

reverse :: [a] -> [a]

 Static typing is by far the most widely-used 
program verification technology in use today: 
particularly good cost/benefit ratio
 Lightweight (so programmers use them)

 Machine checked (fully automated, every compilation)

 Ubiquitous (so programmers can’t avoid them)



 Static typing eradicates whole species of bugs

 Static typing is by far the most widely-used 
program verification technology in use today: 
particularly good cost/benefit ratio

The spectrum of confidence

Increasingly precise specification

Increasing 
confidence that the 
program does what 

you want

Hammer
(cheap, easy 

to use, 
limited 

effectivenes)

Tactical nuclear weapon 
(expensive, needs a trained 

user, but very effective 
indeed)



 The type system designer seeks to

 Retain the Joyful Properties of types

 While also:
 making more good programs pass the type 

checker

 making fewer bad programs pass the type 
checker



All programsPrograms that 
work

Programs that are 
well typed

Make this bit 
bigger!



 The type system designer seeks to retain 
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 The type system designer seeks to retain 
the Joyful Properties of types

 While also:
 making more good programs pass the type 

checker

 making fewer bad programs pass the type 
checker

 One such endeavour: 

Extend Haskell with
Indexed type families

I fear that 
Haskell is 
doomed to 
succeed

Tony 
Hoare 
(1990) 



class Num a where

(+), (*) :: a -> a -> a

negate   :: a -> a

square :: Num a => a -> a

square x = x*x

instance Num Int where

(+)    = plusInt

(*)    = mulInt

negate = negInt

test = square 4 + 5 :: Int

Class decl gives type 
signature of each 

method

Instance decl gives a 
“witness” for each 

method, matching the 
signature

plusInt :: Int -> Int -> Int

mulInt :: Int -> Int -> Int

negInt :: Int -> Int



class GNum a b where

(+) :: a -> b -> ???

instance GNum Int Int where

(+) x y = plusInt x y

instance GNum Int Float where

(+) x y = plusFloat (intToFloat x) y

test1 = (4::Int) + (5::Int)

test2 = (4::Int) + (5::Float)

plusInt :: Int -> Int -> Int

plusFloat :: Float -> Float -> Float

intToFloat :: Int -> Float

Allowing more good 
programs



class GNum a b where

(+) :: a -> b -> ???

 Result type of (+) is a function of the 
argument types

 Each method gets a type signature

 Each associated type gets a kind signature

class GNum a b where

type SumTy a b :: *

(+) :: a -> b -> SumTy a b

SumTy is an 
associated type of 

class GNum



 Each instance declaration gives a “witness” 
for SumTy, matching the kind signature

class GNum a b where

type SumTy a b :: *

(+) :: a -> b -> SumTy a b

instance GNum Int Int where

type SumTy Int Int = Int

(+) x y = plusInt x y

instance GNum Int Float where

type SumTy Int Float = Float

(+) x y = plusFloat (intToFloat x) y



 SumTy is a type-level function

 The type checker simply rewrites
 SumTy Int Int -->  Int
 SumTy Int Float --> Float
whenever it can

 But (SumTy t1 t2) is still a perfectly good type, 
even if it can’t be rewritten.   For example:

class GNum a b where

type SumTy a b :: *

instance GNum Int Int where

type SumTy Int Int = Int :: *

instance GNum Int Float where

type SumTy Int Float = Float

data T a b = MkT a b (SumTy a b)



 Simply omit instances for incompatible types

newtype Dollars = MkD Int

instance GNum Dollars Dollars where

type SumTy Dollars Dollars = Dollars

(+) (MkD d1) (MkD d2) = MkD (d1+d2)

-- No instance GNum Dollars Int

test = (MkD 3) + (4::Int) -- REJECTED!



 Consider a finite map, mapping keys to values

 Goal: the data representation of the map 
depends on the type of the key
 Boolean key: store two values (for F,T resp)

 Int key: use a balanced tree

 Pair key (x,y): map x to a finite map from y to 
value; ie use a trie!

 Cannot do this in Haskell...a good program 
that the type checker rejects



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

data Maybe a = Nothing | Just a

Map is indexed by k, 
but parametric in its 

second argument



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

instance Key Bool where

data Map Bool v = MB (Maybe v) (Maybe v)

empty = MB Nothing Nothing

lookup True  (MB _ mt) = mt

lookup False (MB mf _) = mf  

data Maybe a = Nothing | Just a

Optional  value 
for False

Optional value 
for True



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

instance (Key a, Key b) => Key (a,b) where

data Map (a,b) v = MP (Map a (Map b v))

empty = MP empty

lookup (ka,kb) (MP m) = case lookup ka m of

Nothing -> Nothing

Just m2 -> lookup kb m2

data Maybe a = Nothing | Just a

Two-level 
lookup

Two-level 
map

See paper for lists as keys: arbitrary depth tries



 Goal: the data representation of the map 
depends on the type of the key
 Boolean key: SUM

 Pair key (x,y): PRODUCT

 List key [x]: SUM of PRODUCT + RECURSION

 Easy to extend to other types at will



 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

 Type of the process expresses its protocol

 Client and server should have dual protocols:

run addServer addClient -- OK!

run addServer addServer -- BAD!

Client Server



 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

Client Server

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End

NB punning



 Nothing fancy here

 addClient is similar

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End

addServer :: In Int (In Int (Out Int End))

addServer = In (\x -> In (\y ->

Out (x + y) End))



 Same deal as before: Co is a type-level 
function that transforms a process type into 
its dual

run :: ??? -> ??? -> End

class Process p where

type Co p

run :: p -> Co p -> End

A process A co-process



Just the obvious thing really

class Process p where

type Co p

run :: p -> Co p -> End

instance Process p => Process (In v p) where

type Co (In v p) = Out v (Co p)

run (In vp) (Out v p) = run (vp v) p

instance Process p => Process (Out v p) where

type Co (Out v p) = In v (Co p)

run (Out v p) (In vp) = run p (vp v)

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End



 The hoary printf chestnut
printf “Name:%s, Age:%i” :: String -> Int -> String
 Can’t do that, but we can do this:

 Machine address computation
add :: Pointer n -> Offset m -> Pointer (GCD n m)

 Tracking state using Hoare triples

printf (lit “Name:” <> string <> lit “, Age:” <> int)

:: String -> Int -> String

acquire :: (Get n p ~ Unlocked) 

=> Lock n -> M p (Set n p Locked) ()

Lock-state before Lock-state after



 Types have made a huge contribution 
to this ideal

 More sophisticated type systems 
threaten both Happy Properties:

1. Automation is harder

2. The types are more complicated 
(MSc required)

 Some complications (2) are exactly 
due to ad-hoc restrictions to ensure 
full automation

 At some point it may be best to say 
“enough fooling around: just use Coq”.  
But we aren’t there yet

 Haskell is a great place to play this 
game

Type systems
Weak, but
• Automatically checked
• No PhD required

(1000,000s of daily users)

Theorem provers
Powerful, but
• Substantial manual 

assistance required 
• PhD absolutely essential 

(100s of daily users)

Today’s
experiment


