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Abstract

Haskell has a sophisticated mechanism for overloading iden-
tifiers with multiple definitions at distinct types. Object-
oriented programming has a similar notion of overriding and
overloading for methods names. Unfortunately, it is not
possible to encode object-oriented overloading directly us-
ing Haskell overloading. This deficiency becomes particu-
larly tiresome when Haskell programs wish to call methods
imported from an object-oriented library.

We explore various encodings of object-oriented classes into
Haskell, demonstrate precisely where Haskell’s existing type
class system is unsatisfactory, and propose two refinements.
We proceed in three stages. Firstly, we discuss various ways
of accommodating sub-typing ; we conclude that a simple en-
coding using Haskell classes is better for our purpose than
a more substantial language extension. Second, we intro-
duce a new notion of closed class, and show how this en-
ables improvement of constraints beyond what is possible in
Haskell. Closed classes make it easy to encode the truely ad
hoc overloading of object-oriented methods without the need
for name mangling or gratuitous type annotations. Thirdly,
we allow overlapping instances, and define what it means
for one instance to be better than another. This mechanism
will turn out to mimic the rather complex overloading reso-
lution rules used by object-oriented languages to select the
most-specific method at a call site.

In the Appendix, we present type checking and inference
rules, as well as details of constraint entailment and sim-
plification. However, this workshop paper is somewhat ex-
ploratory: the design may shift once we gain experience with
an implementation, and we have not devoted any time to
showing any formal properties of our system.

1 The problem

The purpose of this paper is to make it easy to import li-
braries from Java[9] or .NET[21], into a Haskell program.
By “easy” we mean that it should be as easy to use the li-
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brary from Haskell than from its native language. Indeed,
Haskell’s higher order features and first-class monadic values
make it a powerful glue language, so if we succeed it might
even be easier to use the library from Haskell than from
its native language. However, these advantages will not be
persuasive if things that are easy in the native language are
clumsy in Haskell. That is the challenge we address here.

The idea of mapping an object-oriented library into the
Haskell type system is not new [6] — we review it in Sec-
tion 2. In this paper, we make three new contributions:

Subtyping. Object oriented languages make extensive use
of implicit coercions between a subtype and its su-
pertypes, while Haskell lacks the entire notion of sub-
typing. In our earlier work [6] we described how to
use polymorphism to encode subtyping using so-called
“phantom types”. Alas, this approach breaks down
when we encounter the multiple supertyping of inter-
face types. In Section 3 we discuss the design alterna-
tives, and show an alternative encoding for subtyping,
using type classes, that is adequate for our purposes.

Ad hoc overloading. While Haskell supports overloading,
all the overloaded instances must share a common type
pattern. In contrast, many object-oriented languages
allow a single method name to be overloaded at un-
related types. One can evade this difficulty by using
name-mangling to give a distinct name to each distinct
overloading of a single method name, but that is ex-
tremely unattractive in practice.

In Section 4 we present an extension to Haskell’s type
class mechanism that smoothly accommodates truely
ad hoc overloading. To make it work effectively in prac-
tice, we introduce the idea of a closed class, which in
turn allows the type checker to make improvement to
inferred types, and hence reduce the need for type an-
notations.

Overlap. Many object-oriented languages also allow a sin-
gle method name to be overloaded at overlapping types;
that is, several methods would be well-typed, but one
of them is the “best match” for the types at the call
site. The definition of “best match” is the subject of
subtle, carefully-worded, but informal, passages in the
language manual.

Hugs and GHC both support the closely-related notion
of overlapping instance declarations, but what exactly
these mean is even less well specified, and polymor-



phism makes the setting more complicated than the
corresponding object-oriented problem.

In Section 4.4 we tackle this issue head-on, giving a pre-
cise story about when and how overloading is resolved
in the presence of overlap.

These extensions have subtle implications for type inference,
as we discuss in Section 5. The Appendix contains a formal
description of type checking and type inference to comple-
ment the informal explanations used here.

Our extensions generalise Haskell’s existing qualified types
[13]. For example, Haskell’s negation function has type:

negate :: (Num a) => a -> a

This type says that negate can be applied to any type a that
satisfies the type constraint (Num a). At run-time, negate
takes an extra parameter apart from the value of type a,
namely a witness that (Num a) indeed holds. In concrete
terms, the witness for Num a is a tuple, or dictionary, of func-
tions for operating over numeric values, one of which is the
negation function.

This approach turns out to have many useful generalisa-
tions, each obtained by introducing a new form of type con-
straint, along with a corresponding new form of witness.
Concrete examples include: implicit parameters [18]; exten-
sible records [7] [12]; and type-indexed rows [28]. We take
exactly the same approach in this paper.

There is a danger here. Is our work simply “yet another
extension of Haskell type classes?” How long can we go on
adding new extensions before the whole system becomes un-
usably complicated? These are good questions. One would
like to find a unifying framework into which all these exten-
sions could fit as special cases. Sulzmann and Stuckey pro-
pose Constraint Handling Rules as such a framework [8]. In
this paper we also also take steps towards a general frame-
work. However, unifying frameworks are easier to design
when there is a rich zoo of motivating special cases, and
our main purpose here is to work out in detail some extra
inhabitants for the zoo.

2 Mapping OOP into Haskell

Given a Java or .NET library, how can we map it into
Haskell’s world? More precisely, given the definition of a
Java or .NET class, we want to specify the interface of a
Haskell module whose implementation is that class. For the
sake of definiteness we will use C ] [20] as the representa-
tive language in which the library is written, but everything
we say applies unqualified to other .NET libraries, and with
very minor qualifications to Java libraries.

We do not address the question about how the interface
might be implemented. A possible route for .NET would
be to compile Haskell to the .NET intermediate language; a
possible route for Java would be to use the Java Native In-
terface [19]. In this paper, however, we focus on the design
of the interface.

We begin by briefly reviewing the approach described in [6]
for mapping an object-oriented library into Haskell. Con-

sider the following C ] class:

class C {

C( int x ) { ... } ; /* Constructor */

static int s( int x ); /* Static method */

int m( bool b, int x ); /* Instance method */

}

This class would be mapped into the following Haskell types
and functions:

newtype C -- An abstract type

newC :: Int -> IO C

s :: Int -> IO Int

m :: (Bool,Int) -> C -> IO Int

The C ] class C is mapped to an abstract Haskell type C.
We write it here newtype without a right hand side, because
its representation is (of course) hidden. The constructor is
called newC, takes the appropriate arguments, and returns a
result of type C. More precisely, it returns a result of type
IO C, because creating a new value of type C is a side effect1.
The static method s has the expected type, again remem-
bering that it may have a side effect.

The instance method m takes a “self” parameter of type C

as its second argument, with the ordinary arguments, in a
tuple, as its first argument. One might expect the self pa-
rameter to be first, but putting it last allows a neat coding
trick [6]. Suppose we have x::C; then we can write the OO-
like call

x # m (True,3)

to call x.m, where the infix operator # is defined as reverse
application, thus:

x # f = f x

Recalling that, in Haskell, function application binds more
tightly than anything else, we have

x # m (True,3) = m (True,3) x

One could equally well choose to have the self parameter as
the first argument; it does not affect anything else in this
paper.

Why are the arguments to m tupled? Again, this is a design
choice. Our intuition is that OO methods are not designed
with currying in mind, and so are likely to be called with all
their arguments. Given this, we are likely to get less confus-
ing error messages if the arguments are uncurried, especially
by the time we have added ad-hoc overloading.

Lastly, one might ask whether all methods need be in the IO
monad; after all, some will be purely-functional, and need
not be. Indeed so, and perhaps some kind of pragma or
meta-data could express this fact. If so, it is readily accom-
modated by omitting the IOmonad from the type of the pure
method. We do not consider the question further here.

1A value of type IO t is a computation that may perform
some side effects before returning a result of type t. See [26]
for a tutorial.



3 Subtyping

Consider the following C ] class declarations:

class C {

int opC( int x ) { ... }

}

class D : C { /* D extends C */

bool opD() { ... }

}

In C ], if d has type D, then one can write d.opC(3), because
any value of type D is also a value of type C. This is called
inclusion subtyping because no coercion is needed to convert
a D to a C [23]. (In future, we will often write “d::D” as
short for “d has type D” even when the variables and types
are those of C ].)

How does this look in Haskell? If we simply expose the types
and operations in Haskell as earlier described, we get this:

newtype C

newtype D

opC :: Int -> C -> IO Int

opD :: D -> IO Bool

The trouble is, of course, that opC is not applicable to a value
of type D, because Haskell does not understand the subtype
relationship between C and D.

3.1 Phantom types

One solution is to use so-called “phantom types” [6] [17],
thus:

newtype C a -- Note the

newtype D a -- type parameter

opC :: Int -> C a -> IO Int

opD :: C (D a) -> IO Bool

The type (C a) is a subtype of the C ] type C. The type
variable “a” is a kind of “hole” that can be filled in by a
more specific type. A value that is certainly of class C (and
not a subtype thereof) has type C Void, where the hole is
filled in by the arbitrary but fixed type Void. A value that
is certainly of class D (and not a subtype thereof) has type
C (D Void); here C’s hole has been filled in by D Void.

The type of opC says that it can accept a value of type
C a, for any type a. In particular, it can accept a value
of type (C Void), or of type (C (D Void)), and so on. In
this way, we can use ordinary parametric polymorphism to
encode subtyping polymorphism.

This is a neat trick, but it has several disadvantages. First,
types can become large, and types show up in type error
messages, so large types are bad. Second, it is somewhat
confusing that C is a type constructor rather than a type,
and that an instance of class D has Haskell type C (D Void).
Most seriously, the scheme breaks down when C ] or Java
interface types are involved, because classes may now have
multiple supertypes. For example, suppose D implements
interface I as well as inheriting from C:

interface I {

C opI( bool x )

}

class D : C, I { /* D extends C and I */

bool opD() { ... }

C opI( bool x ) { ... }

}

Should an instance of class D have Haskell type
I (C (D Void)) or C (I (D Void))? But neither is compat-
ible with methods from both C and I:

opC :: Int -> C a -> IO Int

opI :: Bool -> I a -> IO (C Void)

The second argument cannot have both C and I as its out-
ermost type constructor; the phantom-type trick fails.

3.2 The class-per-class mapping

Since we are modelling C ] classes, another obvious possibil-
ity would be to model each C ] as a Haskell type class, rather
than as a Haskell type, thus:

class C c where

opC :: Int -> c -> IO Int

class C d => D d where

opD :: d -> IO Bool

Now opC has the type

opC :: C c => Int -> c -> IO Int

Since C is a (Haskell) superclass of D, any type that is an
instance of class D is also an instance of C, and hence can
have opC applied to it. So the subtyping “comes for free” —
and multiple supertyping works fine too.

On closer inspection, however, the attraction is only super-
ficial:

No instances. What types, if any, are instances of the type
classes C and D? We can sidestep this question alto-
gether by giving an existential type to functions that
return an object:

newC :: Int -> (∃c. C c => c)

That is, newC returns a value of some type c, where all
we know about c is that it lies in class C. This is a fine
approach, and one that has been used in Mercury [11].
Unfortunately, though Haskell does support existential
quantification, it does not allow existentials to be used
“anonymously.” Instead, a new data constructor must
be introduced for each class2:

data C = forall c . C c => C c

newC :: Int -> C

Now we have lost the subtyping on object types. An-
other possibility is to introduce a new type as well as a
new type class, as we discuss in Section 3.3.

2Haskell spells “exists” as “forall” in this situation!



Bogus dictionaries. Consider the function opC again. A
Haskell function of type C c => Int -> c -> IO Int takes
a run-time witness argument corresponding to the con-
straint C c. Typically, this argument contains a tuple of
functions, one for each method in the class. But in fact
opC should dispatch through the vector-table attached
to its second argument, not through a separately-passed
method suite. So the run-time witness passing is un-
necessary; and the implementation of opC is not what
one would usually expect.

(In addition, overloading is still problematic. Object-
oriented languages allow a single method name to be used
independently in different classes, and for distinctly-typed
methods within a single class. Haskell permits neither of
these things. But we will address that in Section 4.)

3.3 Encoding subtype constraints using classes

Though the “class-per-class” idea does not work well, a mild
variant works much better. For each C ] class C we generate
(a) a Haskell type C, and (b) a Haskell type class SubC. Thus:

newtype C

class SubC c where {}

instance SubC C

opC :: SubC c => Int -> c -> IO Int

We are back to the simple situation in which there is a
Haskell type C that models the C ] class (= type!) C. A
type is an instance of SubC if the corresponding C ] type is
a subtype of class C. So the Haskell type C is certainly an
instance of SubC. Finally, opC accepts a value of any type
that is in SubC – i.e. is a subtype of C.

Now we can add the encodings of the sub-class D and inter-
face I:

newtype I

class SubI i where {}

instance SubI I

opI :: SubI i => Bool -> i -> IO (C Void)

newtype D

class (SubI d, SubC d) => SubD d where {}

instance SubC D

instance SubD D

instance SubI D

opD :: SubD d => d -> IO Bool

Each comes with a new type D and I, and a class, SubD and
SubI. The new type D is an instance of SubC as well as SubD
and SubI, and hence opC and opI can be applied to a value
of type D.

The superclass relation embodies the expected subtyping
properties. For example, consider this function:

h :: SubD d => d -> IO Int

h d = do { n <- opC 3 d ;

b <- opD d ;

return n }

The call to opC generates the constraint SubC d, but it is
entailed by the constraint SubD d arising from the call to opD,

so the type of h has just the single constraint we expect.

Notice that the SubX classes have no methods — we use them
solely to model the subtype relationship. Since they have no
methods, we need pass no evidence for them, so they have
no run-time overhead. (Haskell allows the “where {}” of a
class declaration to be omitted when there are no methods,
and we will do so in future.)

If the class hierarchy becomes deep, one may have to write a
large number of instance declarations, because each new type
must be made an instance of all its superclasses. However,
we expect the encoding to be carried out by an automatic
tool that reads .NET meta-data and spits out the encod-
ing, so we are not too worried. Of course, the soundness of
this encoding depends on the programmer getting the sub-
type instances right, and not arbitrarily adding new instance
declarations.

3.4 Full-blown subtype constraints

Attractive though the SubX approach is, it is only capable
of encoding a limited variant of subtyping. In particular,
the constraint SubC c encodes the subtype relationship of
the form c :<: C, where “:<:” means “is a subtype of”, and
C is a fixed type. It cannot encode subtype relationships like
C :<: c, where c is an arbitrary type, or type variable, nor
structural subtypes such as (C->a) :<: (b->D). The former,
for example, would be required to express functions with a
covariant result type:

∀a . A :<: a . Int -> a

Few object oriented languages require such types, but they
may in the future. To support covariance, one could try
to add a second class, SupC, for each type, but that is not
enough. For example, consider the type

(SubC c, SupC c) => c -> IO Int

One would have to add subtype-specific-rules to allow this
type to be simplified to

C -> IO Int

To understand what would be involved, we explored in detail
the technical machinery necessary to support fully-fledged
structural sub-typing constraints. We extended Haskell’s
type system with an extra form of constraint, τ1:<:τ2, where
τ1 and τ2 are arbitrary types, along with suitable simplifica-
tion rules. Using these constraints our running example is
rendered like this:

newtype C

newtype I

newtype D :<: C,I

opC :: (c :<: C) => Int -> c -> IO Int

opI :: (i :<: I) => Bool -> i -> IO C

opD :: (d :<: D) => d -> IO Bool

However, the underpinning machinery turned out to be quite
substantual, as we show in Appendix A.9. Even the type
checking rules (let alone type inference) become much more
complicated. This additional complication is not justified
by our goal of importing Java or .NET libraries, since they



do not require covariance. Nor does the extra complexity
buy the Haskell programmer much, because we did not go
as far as to allow the Haskell programmer to introduce new
subtypes (using, say, extensible sums or products).

Another approach, used by O’Haskell [24], is to introduce
implicit subtyping at every application, but forbid subtyp-
ing constraints from appearing within type schemes. This
has the advantage of hiding most of the machinery of sub-
typing from the programmer, who never sees subtype con-
straints. However, it requires residual subtype constraints
accumulated during type inference to be simplified to either
true or false, which in turn destroys completeness of type
inference.

Our conclusion, painfully drawn, is that there is a very sharp
knee in the power-to-weight-ratio curve: fully-fledged sub-
typing is a wondrous thing, but comes at a heavy cost. The
encoding of Section 3.3 gets us just far enough to encode
the type systems we are interested in, and at essentially zero
cost, so we adopt that solution for the rest of this paper.

4 Ad hoc overloading

We accommodated subtyping without extending Haskell,
but we will not be so fortunate in the case of ad-hoc over-
loading. Consider the following C ] class declaration:

class C {

int m( int x );

bool m( bool b );

}

Following the simple approach of Section 2, we would get
two Haskell functions, both called m:

m :: Int -> C -> IO Int

m :: Bool -> C -> IO Bool

But Haskell does not permit two distinct functions to have
the same name. One alternative is to use name-mangling:

m_Int :: Int -> C -> IO Int

m_Bool :: Bool -> C -> IO Bool

From the point of view of Joe Programmer, this is a big
step backwards, especially as OO libraries typically make
heavy use of this sort of overloading. (The overloading of
constructors for the class is another example.) Worse, one
must either invent simple rules for name mangling that give
very long names, or else have complicated rules that usually
give shorter names. There just does not seem to be a good
point in this design space.

4.1 Degenerate classes

A more promising possibility is to employ Haskell’s type
classes in a rather stylised way3:

3Haskell experts will notice that the instances for Has_m
go beyond the Haskell 98 standard, but we do not want to
labour the point here since we intend to discard this ap-
proach.

class Has_m a where

m :: a

instance Has_m (Int -> C -> IO Int) where

m = m_Int

instance Has_m (Bool -> C -> IO Bool) where

m = m_Bool

The name-mangled functions m_Int and m_Bool still exist
behind the scenes, but the programmer never thinks about
them. She simply calls m, which has type

m :: (Has_m a) => a

and with a bit of luck the local type constraints will be
enough to figure out which instance declaration to use. Af-
ter all, they are enough in a C ] program! Even if the type
constraints don’t specify which instance to use, the type sys-
tem can abstract over the constraint, which is more than is
possible in C ]. For example, we can write4:

mlist :: (Has_m (a->b->IO c)) => a -> [b] -> IO [c]

mlist a cs = mapM (m a) cs

By abstracting over the constraint, we defer its choice to the
call site of mlist; in exchange we pay a modest run-time
penalty, by passing the method as a parameter to mlist.

You might wonder whether we could make the class Has_m a
little less degenerate thus:

class Has_m self arg res where

m :: arg -> self -> IO res

However, the same method name m may be used for static
methods (which lack a self parameter), and for purely-
functional methods (whose result type is not in the IO

monad), so there is virtually no useful common structure.

This class-per-method approach is reminiscent of System
O [25]. However, unlike System O, we cannot require all
instances of Has_m be distinguished by the type of the
method’s first argument.

4.2 Improvement

Unfortunately, this stylised use of Haskell’s existing type
classes does not work in practice. Assuming the same two
instance declarations as in Section 4.1, suppose we see the
following function definition:

f c x = m (x::Int) (c::C)

Performing type inference on the right-hand side of f will
give rise to a class constraint Has_m (Int -> C -> r), for
some unknown type r, represented by a fresh type vari-
able. Any C ] programmer would expect that once x is fixed
to have type Int, and c to have type C, there is only one
choice for which instance of m to choose, namely m_Int.
But that is not how Haskell works: one cannot instanti-
ate either of the two instance declarations for Has_m to get
Has_m (Int -> C -> r). So Haskell will generalise over the
constraint to get:

4The standard function mapM has type
(a->IO b) -> [a] -> IO [b].



f :: (Has_m (Int->C->r)) => C -> Int -> r

This is wonderfully general, because it allows for the possi-
bility that the call site might know about other instances of
Has_m. But it is really too general, and will give rise to all
sorts of ambiguity errors. For example, suppose we wrote:

do { r <- m (x::Int) (c::C) ;

print (show r) }

If the knowledge of m’s argument types does not fix its result
type, the show does not know what type its argument will
be, and the compiler will reject the program as ambiguous.
This is really no good.

Instead, the type inference system must perform what Mark
Jones calls “improvement” [14]. Given the class constraint
Has_m (Int -> C -> r) there is only one instance for m that
matches this constraint, namely:

instance Has_m (Int->C->IO Int) where m = m_Int

Since there is exactly one choice, we should make it now, and
that in turn fixes r to be Int. Hence we get the expected type
for f:

f :: C -> Int -> IO Int

It is this additional unification step that constitutes the “im-
provement”. Now the class constraint can be discharged (fix-
ing which instance of m to call), and inference can proceed.

What is the justification for doing this improvement? An-
swer: it is simply a design choice, and one based on the idea
that the class Has_m is closed. We might declare it like this:

class closed Has_m a where

m :: a

By “closed”, we mean that we allow the type inference al-
gorithm to commit to which instance of Has_m to use based
on the instances that are currently in scope. In contrast, for
type classes, it seems generally better to defer such choices,
as discussed in [27]. An elaboration of type classes, called
functional dependencies, does support improvement [15]; but
the sort of improvement we need for Has_m constraints can-
not be modelled by functional dependencies.

This notion of closedness has appeared elsewhere in the guise
of closed kinds [5]. System CT [3] also makes a similar
closed-world assumption (Section 8).

4.3 Method constraints

So far, we have seen how to extend Haskell’s type-class mech-
anism to support ad-hoc overloading, by adding the idea of
a closed class. From a programming point of view, though,
using it seems rather a heavyweight approach. We have to
invent a new class for each method name, and there may be
no obvious place to declare the class. (The method name
may be used in multiple sibling libraries.) Indeed, having to
declare the class at all seems cumbersome. Lastly, the Has_m
class must somehow be declared as “closed”.

Instead, we provide direct syntactic support by introducing
a new form of type constraint, a method constraint. For
example, we can write the type of mlist like this:

mlist :: (m :: a->b->IO c) => a -> [b] -> IO [c]

We have simply identified the degenerate class Has_m with
the overloaded function m. Corresponding to the new form
of constraint is a new form of instance declaration5:

instance m :: Int -> C -> IO Int where

m = m_Int

instance m :: Bool -> C -> IO Bool where

m = m_Bool

There is no need to declare a class. The function m is brought
into scope by any instance declaration for m, and has the
type:

m :: (m::a) => a

At first sight this type may look confusing, but it simply
says this: the function m has any type a that satisfies the
method constraint m::a. (Recall that in Haskell all types
are universally quantified over their free type variables, so
this type for m means m :: ∀α . (m :: α)=>α).) We are using
the same name, “m”, for both the function m and the method
constraint m, but functions and method contraints live in
different name spaces, so there is no confusion — compare
the type of m in Section 4.1.

The function m can be exported and imported by name, just
like any other function.

Overloaded functions can be polymorphic without any diffi-
culty. For example:

instance op :: [a] -> [a] where op = op1

instance op :: Bool -> Bool -> Bool where op = op2

Here, the first overloading of op is polymorphic, while the
second is not. As before, we simply pick the one that
matches the method constraint. For example, the call
op [1,2,3] matches the first instance, but not the second,
so we can safely commit to the first.

Nor is there any difficulty if the overloaded function has
a context in its type. For example, we can add a third
instance for op:

instance op :: Num a => Maybe a -> a where op = op3

Now, if we encounter the call op (Just 3) we again know
exactly which instance to pick, in this case driven by the
type of the first argument.

4.4 Overlapping instances

Consider the following C ] class declarations:

class B : A { ... }

class C {

int m( A x ) { ... } ;

int m( B x ) { ... } ;

}

Now consider a call c.m( b ) where b::B and c::C. Both m

methods are applicable to b, but the second is a better “fit”

5Others have suggested that a better keyword might be
“overloaded” rather than “instance”.



to the argument type. On the other hand, given the call
c.m( a ), where a :: A, the second method is not applica-
ble, so the first is used. The sections of the C ] language
specification that describe exactly what “best fit” means are
carefully written, but still informal.

What is the corresponding problem in Haskell? The above
declarations will be rendered thus:

class SubA b => SubB b

instance m :: (SubA a, SubC c) => a -> c -> IO Int

instance m :: (SubB b, SubC c) => b -> c -> IO Int

The overlap problem is that anything that matches the sec-
ond instance declaration will also match the first. Over-
lapping instance declarations are not permitted in standard
Haskell 98, but are present in various experimental exten-
sions. However, we are not aware of any precise description
of the type system of Haskell together with overlapping in-
stance declarations. Indeed, as we shall see, the combination
of overlap with multiple arguments, and polymorphism, is
rather subtle. A key contribution of this paper is to give
a precise account of how they interact. In particular, we
establish a partial ordering on instance declarations which
resembles the instantiation ordering on type schemes, and
specify that a method constraint may be resolved to a partic-
ular instance only when it is the least amongst all candidate
instances.

There is one difference beteen our approach and that taken
by existing Haskell implementations that support overlap-
ping instances. Both GHC and Hugs prohibit instance dec-
larations that unify without overlapping. For example:

instance Eq a => Wuggle (Int, a) where ...

instance Eq a => Wuggle (a, Int) where ...

These two instance declarations would be rejected, because
the constraint

Wuggle (Int,Int)

matches both of them, yet neither is more specific than
the other. In this paper, we advocate allowing the in-
stance declarations, raising an error only if the constraint
Wuggle (Int,Int) acutally comes up in practice. (If it does,
there will be two candidate instances, and we will report
an ambiguity error.) But it may not come up! Instead
we may encounter the constraint Wuggle (Int,Char), which
matches only one of the intances, or Wuggle (Bool,Int),
which matches only the other instance. In short, the in-
stance declarations are innocent, and potentially useful. Our
framework allows them, and yet only makes a commitment
when there is a unique choice.

Nothing in the above discussion is specific to imported .NET
or Java libraries. Ad-hoc, overlapping overloading can use-
fully be deployed in native Haskell programs.

5 Type inference

Here is the story so far:

Subtyping: use an encoding into type classes.

Ad-hoc overloading: add the notion of a closed class,
plus the syntactic sugar of method constraints.

Overlap: allow overlapping instance declarations.

Type systems are usually described formally in two stages.
First, one gives the type checking rules that explain how to
check whether a typing derivation for a program is correct.
Second, one gives a type inference algorithm that takes a
program and infers a valid typing derivation for it.

In Appendix A.3 we give the type checking rules for our
proposed extensions. The differences from standard Haskell,
lacking closed classes and overlapping instance declara-
tions, are not great. Our proposed extensions offer quite
a range of choices for the type inference process, however.
In the rest of this section we offer an informal description of
these choices; Appendix A.5 presents the algorithm formally.

A type inference algorithm tries to infer a typing derivation
for the program. It may succeed, in which case the program
is definitely well typed. It may fail because the program has
no typing derivation. A complete type inference algorithm
always succeeds if a valid typing derivation exists.

Type inference for Haskell is already incomplete, because of
polymorphic recursion. In Haskell, a function may call itself
at its polymorphic type provided the programmer supplies a
type signature for the function. In the absence of a signature,
type inference will fail, even though there is a valid typing
derivation for the program. The inference algorithm we de-
scribe below is incomplete in other ways, a design choice we
shall discuss in Section 5.7.

5.1 Type inference for Haskell

We begin with a sketch of type inference for an ordinary
Haskell function involving qualified types:

palin :: Eq e => [e] -> Bool

palin = \xs -> xs == reverse xs

Here, (==) has type Eq a => a -> a -> Bool. When the com-
piler performs type inference on the right hand side of palin,
it emerges with (a) the type of the RHS, [e] -> Bool, and (b)
a set of constraints, in this case the singleton set {Eq [e]}.
The contraint arises from the application of the overloaded
function (==).

What happens next depends on whether the programmer
supplies a type signature for the function. If so, as in this
case, the compiler must check (a) that the type of the RHS
matches the part after the => in the signature (it does),
and (b) that the constraints needed by the RHS (Eq [e])
can be deduced from the constraints in the signature (Eq e)?
Or, put the other round, does Eq e entail Eq [e]? More
concretely, can we construct a dictionary for Eq [e] from a
dictionary for Eq e? Yes, we can, using the (global) instance
declaration to discharge the constraint Eq [e]:

instance Eq a => Eq [a] where ...

If the programmer did not supply a type signature, the com-
piler can abstract over the constraints, to infer a type

palin :: Eq [e] => [e] -> Bool



Alternatively, it may also choose to simplify the set of con-
straints, to get an equivalent but simpler set, and the ab-
stract over the simpler set, to get

palin :: Eq e => [e] -> Bool

Notice that these two ways of typing palin will lead to two
distinct valid typing derivations for the program.

Remember:

• A type signature forces an entailment check.

• Simplification can be done at any time, yielding an
equivalent set of constraints.

5.2 Coherence

A single program may have many different typing deriva-
tions. For example, consider the expression

let id x = x in id ’c’

One derivation might give id the type Int->Int, while an-
other might give it the type ∀a. a->a. But it does not matter
which derivation we choose; the meaning of the program is
independent of the derivation.

Where type classes are involved, however, a typing deriva-
tion embodies choices about which instance declaration to
use to discharge each type constraint. In the absence of
overlapping instances, there is a unique way of construct-
ing (say) a dictionary for Eq [a] from a dictionary for Eq a.
Hence, it is relatively easy to show that, although there may
be many valid typing derivations for one program, they all
give the same answer when run. We say that the type sys-
tem is coherent. Coherence is a vital property, because it
ensures that the meaning of the program is independent of
the details of the typing algorithm.

5.3 Type inference with improvement and overlap

The type inference process is complicated by the addition of
improvement, and overlapping instances. The key compo-
nent is the simplifier, which simplifes sets of constraints.

Suppose that the simplifer is considering a particular con-
straint, the target constraint. There are four steps involved:

Identify the candidate instances; that is, the instance
declarations that match the target constraint (Sec-
tion 5.3.1). There may be more than one candidate,
either because of overlapping instances, or because the
call site has too little type context to distinguish among
candidate instances.

Perform improvement. If all the candidates agree about
how to instantiate a type variable in the target method
constraint, then instantiate it (Section 5.3.2). For ex-
ample, suppose the target constraint is m :: a -> b,
and the candidate instances are m :: Int -> Int and
m :: Int -> Char. They both agree that the first ar-
gument must be Int, so we can instantiate a to Int.

Identify the best candidate, provided that a unique
best candidate exists (Section 5.3.3).

Check that this candidate matches the target. In
particular, we must check that choosing it would not
instantiate any type variables in the target constraint
(Section 5.3.4).

We discuss each of these steps in more detail.

5.3.1 Identify the candidates

Consider type-checking the following declarations:

instance null :: [a] -> Bool where ....

instance null :: (Float,Float) -> Bool where ....

foo (x:zs) = (ord x, null zs)

From the pattern-match on the LHS of foo we can see
that zs must be a list, and from the expression ord x we
can see that the element type must be Char (assuming
ord :: Char -> Int). So the method constraint that arises
from the call to null is null :: [Char] -> t where t is a
fresh type variable. Now consider matching this method
constraint against the two instance declarations. The sec-
ond definitely does not match, but the first does. Notice,
though, that to make it match, we must instantiate both the
instance declaration (instantiating a to Char) and the tar-
get method constraint (instantiating t to Bool). In short, to
identify candidate instances, we begin by unifying the target
method constraint with the instance types.

However, it is not enough to treat any instance that uni-
fies as a candidate. Consider type-checking the following
declaration of g1:

newtype A; class SubA a; instance SubA a

newtype C; class SubC c; instance SubC C

instance m :: SubA a => a -> Int where ...

instance m :: SubC c => c -> Int where ...

g1 c = m (c::C) + (1::Int)

The call to m gives rise to a method constraint
(m :: C -> Int). What are the candidate m-instances? If we
ignore the contexts, it seems that both instance declara-
tions match, by instantiating a or c to C. But their contexts
tell us that the first of these apparent matches is spurious;
the first instance declaration can only match if a is C, and
hence if SubA C, which does not hold.

But wait a minute! SubA C might not hold where g1 is de-
fined, but it might hold at the call site for g1. In principle,
we might defer the choice, and instead infer the type:

g1 :: (m :: C->Int) => C -> Int

But this is not what Haskell does. Consider:

foo x = x + (1::T)

If T is not an instance of class Num we do not infer the type

foo :: Num T => T -> T



Instead, the compiler complains that there is no instance
for Num T. Our conclusion is this: it is legitimate to use the
absence of an instance as a reason to declare unsatisfiability
of a ground constraint.

More precisely, then, an instance declaration is a candidate
for a target method constraint if

(a) the type after the “=>” unifies with the target constraint,
and

(b) the context of the instantiated instance may be satisfi-
able.

We return to the question of satisfiability in Section 5.4.

5.3.2 Improvement

At this point, we have a set of candidate instances, and
we can use them to perform improvement, as we sketched in
Section 4.2. In that section we said that if there was just one
candidate, we could use it to instantiate type variables in the
target constraint, if the class concerned is closed. Method
constraints are implicitly closed.

However, in general there may be several candidate in-
stances. Can we do any improvement? Yes, we can: if all
the candidates agree that a particular type variable in the
target method constraint must be instantiated in the same
way, then (again assuming that methods are closed) we can
safely instantiate it. Here is an example:

instance n :: Int -> Char -> (Char,Int)

instance n :: Int -> Bool -> (Bool,Int)

instance n :: Char -> Bool

h x = n (3::Int) x

The target constraint, garnered from the RHS of h is
n :: Int -> r -> s. The first two instances are candiates for
this target; the third is not. The first two instances agree
that the result must be a pair, and that the second compo-
nent of the pair is Int. So we can improve s to (s1,Int)

where s1 is a fresh type variables. The inferred type for h
is:

h :: (n :: Int -> r -> (s1,Int)) => r -> (s1,Int)

We could, in principle, go a little further. It would also be
legitimate to spot that both candidate instances of n share
a common pattern, namely that the type of the second ar-
gument is the same as the first component of the result, and
thereby infer a more specific type for h:

h :: (n :: Int -> r -> (r,Int)) => r -> (r,Int)

However, it is significantly harder to spot this kind of com-
mon pattern, involving finding the least common generalisa-
tion of a set of types, so we choose not to try. Interestingly,
this operation shows up in System CT, though in a different
way (see Section 8).

To summarise, our plan is to treat method constraints as
closed, and to use this information to perform improvement,
thereby obtaining earlier commitment and less ambiguity.

5.3.3 Finding the best candidate

Let us return to the main example of the previous section,
and consider the function g2:

class SubA a

class SubA b => SubB b

class SubC c

instance m :: SubA a => a -> Int where ...

instance m :: SubB b => b -> Int where ...

instance m :: SubC c => c -> Int where ...

g2 :: B -> Int

g2 b = m b + 1

A simple unsatisfiability test will reject the third instance
for m, but that still leaves two candidates:

instance m :: SubA a => a -> Int where ...

instance m :: SubB b => b -> Int where ...

Which should we choose? You may say this is a bad situ-
ation, but object-oriented programs do this kind of thing a
lot: their answer is “choose the most specific”. In this case,
the second is more specific than the first, so we choose it.
How can we make precise this notion of “more specific”?

We define a partial order over the instance declarations,
independent of any particular target method constraint. If
the set of candidate instances (Section 5.3.1) contains a least
member with respect to the partial order, that is the most
specific candidate.

The partial order is defined like this. An instance
m :: C1 => T1 is more specific than m2 :: C2 => T2, if (a) we
can instantiate the latter instance to get C2’ => T1, and (b)
from C1 we can deduce C2’. In our example, instantiate
b->Int to a->Int (by substituting b for a) and now we can
certainly deduce SubA b from SubB b. All this is formalised
in Appendix A.4. The main point here is that we must take
contexts into account when defining the partial order.

5.3.4 Checking the match

Now we have identified the best candidate. But the game is
not quite over. Consider another example:

instance ppr :: Show a => a -> String where ...

instance ppr :: [Char] -> String where ...

The intent here is “use the second instance on arguments of
type [Char], and the first instance otherwise”. Now consider
this definition:

sc c = ppr [c,c,c]

Here, the method constraint will be ppr :: [s] -> t. Both
instances are candidates, and improvement will fix t to be
String. Now undoubtedly, the second instance is the more
specific. Should we therfore choose it, and fix s to be Char?
Certainly not! The programmer might be surprised to find
that sc is not applicable to a Bool, for example.

The point here is that only improvement may instantiate
type variables in the target constraint. Improvement gives
us ppr :: [s] -> String, and that is as far as we can go. So
we cannot commit to either instance at this point. Instead,



we must abstract over the method constraint, giving

sc :: (ppr :: [s]->String) => s -> String

At one call site of sc we might instantiate s to (say) Int, in
which case we will dischage the ppr constraint with the first
instance. At another call site we might instantiate s with
Char, in which case we discharge the ppr constraint with the
second instance. It is simply premature to discharge it here.

5.4 Satisfiability

The test for candidature (Section 5.3.1) depends in turn on
a test for satisfiability. There is a range of possible design
choices, for the satisfiability decision. All that is necessary
for soundness is that we reject no valid candidate. Within
this constraint, a more refined test will reject more candi-
dates but may be more expensive. A less refined test might
be cheaper, but risks rejecting a program when it is clearly
well typed.

For example, recall our example g1, but this time annotated
by a type signature:

newtype A; class SubA a; instance SubA a

newtype C; class SubC c; instance SubC C

instance m :: SubA a => a -> Int where ...

instance m :: SubC c => c -> Int where ...

g1 :: C -> Int

g1 c = m c + 1

At one extreme, we could use the vacuous test that rejected
no candidates (i.e. declared all constraints to be satisfiable);
when doing type inference for g1, we would be unable to
make a unique choice between the two m-instances to dis-
charge the constraint m :: C->Int, and hence we would re-
ject the definition. While rejection is sound, it would be
surprising and unwelcome behaviour, because it is plain as
a pikestaff that g1 satisfies the specified type signature.

So a reasonable compiler will certainly look at the context of
a candidate. Even then, however, it can choose how hard to
work to identify unsatisfiable contexts. Consider this variant
of an earlier example:

instance op :: (Int, Int) -> Int where ...

instance op :: (Bool, Bool) -> Bool where ...

f4 x = op (x+x, x)

From f4’s right hand side we get the two constraints
(op :: (a,a) -> b, Num a); the first arises from the use of
op, and the second from the use of (+). Now, we can rea-
son that the second instance of op does not match, because
that would imply that a is Bool and hence we would require
Num Bool — and Bool is not an instance of class Num. So
again, exactly one instance matches, but this time the proof
of unsatisfiability is a bit more elaborate, because it involves
considering both constraints together.

Our point is this: there a spectrum of design choices in the
satisfiability test, but something relatively simple will catch
the cases we care about.

5.5 Termination

Consider the following instance declaration:

instance Eq [[a]] => Eq [a] where ...

If it were legal, this declaration could send the constraint
simplifier into an infinite loop. Suppose the simplifier needs
to satisfy Eq [t]; since this constraint matches the head (i.e.,
r.h.s.) of the instance declaration, it will use the instance to
discharge the constraint, giving the new constraint Eq [[t]].
And so on. To ensure termination we must ensure that a con-
straint in the context (i.e., l.h.s.) of the instance declara-
tion is strictly simpler than that in the head. Haskell ensures
this by requiring that constraints in the context mention only
simple type variables, while the head must mention a type
constructor.

Improvement complicates matters, however. Suppose we
have a closed class C, and just one instance declaration for
C:

instance C a => C [a] where ...

Suppose the simplifier is faced with the constraint C b, where
b is a type variable. Since there is only one instance declara-
tion for C, we can improve b to [b1], where b1 is a fresh type
variable, and then use the instance declaration to discharge
C [b1]. But now we are left with the constraint C b1 where
b1 is a type variable, and the process repeats.

Our solution is to adopt the following syntactic restrictions:

1) A closed class cannot be a superclass of another class.

2) The context of an instance declaration must not mention
a closed class.

5.6 Ambiguity

Sometimes the type inference algorithm may be unable to
make a unique choice of which instance declaration to use to
discharge a constraint. Our guiding principle is that, under
these circumstances, the constraint simplifier must refrain
from making arbitrary choices.

Ambiguity may arise because the constraint matches
no instance declaration (such as the constraints
(Read a, Show a) arising from show (read x)), or be-
cause it matches more than one candidate but no candidate
is better than all the others.

Constraints that cannot be uniquely discharged are either
generalised or floated outwards, in the hope that the extra
context available at the call site, or further “up” the expres-
sion, respectively, will resolve the choice. If the constraint
cannot be resolved by the time the constraint emerges at
the top level of the module, it is reported as ambiguous; the
programmer must add extra type information to guide the
inference algorithm’s choice.

5.7 Incompleteness

As we mentioned earlier, type inference is incomplete. There
is a choice of improvement algorithms; a cheap one may fail



where an expensive one succeeds.

For example, if we are prepared to look at constraints to-
gether, we can eliminate method constraints more eagerly.
For example, consider:

instance foo :: Int -> Int where ...

instance foo :: Bool -> Int where ...

instance baz :: Int -> Int where ...

instance baz :: Char -> Int where ...

undefined :: a

undefined = undefined

w :: Int

w = (\x -> foo x + baz x) undefined

Arising from the right-hand side of w we will get the method
constraints (foo :: a -> Int, baz :: a -> Int). If we take
these constraints one at a time, there is no way to decide
which to choose. Hence, type inference will reject the pro-
gram, complaining that the annotated type for w cannot be
shown to be an instance of its inferred type:

w :: (foo :: a -> Int, baz :: a -> Int) => Int

But if we take these constraints together, we can see that
the only consistent choice is to choose the first instance of
foo and baz, because they both need their first argument to
be of type Int. Hence type inference succeeds. Of course,
the difficulty with this test is that it is (potentially) much
more expensive to compute.

Does this incompleteness matter? One might say “no, pro-
vided the error message explains where to add a type an-
notation to guide the inference process”, because then the
programmer can simply add a suitable type signature. In
the above example, the programmer need simply annotate x
with type Int. The problem is that it becomes harder to say
what is a valid Haskell program. Perhaps a particular pro-
gram will typecheck fine on one implementation of Haskell,
while being rejected by another.

This sounds unpleasant. Yet, to formalise the notion of
a Haskell program that is accepted by every implementa-
tion one must give a type inference algorithm, or something
equivalent. That in turn is undesirable.

In the end, it is a matter of taste. There are many inter-
esting type system developments that stray into territory
where type inference is incomplete. Should we reject such
developments? Should we accept incompleteness? Should
we specify the weakest acceptable inference algorithm? Food
for thought!

5.8 Summary

Obtaining a system that is both coherent and expressive is
a surprisingly subtle business. Candidates must be identi-
fied using two-way matching (unification), but without yet
committing to any particular instance (Section 5.3.1). In-
formation the candidates agree on (and no more) may be
applied to the target constraint (Section 5.3.2). A unique
best candidate can then be identified (if one exists) but it

can only be used if it matches the target method constraint
using one-way matching (Section 5.3.3 and 5.3.4).

We make all these things precise in the Appendix. Mean-
while, one might reasonably ask “does the programmer need
to understand all this to use the system”. Fortunately, the
answer is “no”. Firstly, because the system is coherent, the
details of the typing algorithm do not affect the meaning of
the program: either the program is rejected, or it is typed
with a unique meaning. Secondly, our framework supports a
range of “cleverness”, as the numerous design choices above
attest. One could leave out improvement altogether, or have
a degnerately incomplete unsatisfiability test, and still have
a sound system. The effect would be that the system would
more often reject the program saying “I cannot tell which
of the following m-instances you intended to use”. The pro-
grammer can easily solve this problem by adding type an-
notations. The only thing that does depend on the typing
algorithm is the exact boundary between when the system
will make a unique choice and when it will reject the pro-
gram.

6 Encoding class hierarchies

In Figure 1 we show a larger C ] class hierarchy. (As be-
fore, we use C ] as our prototypical foreign language.) The
corresponding Haskell interfaces are given in Figure 2, while
Figure 3 shows some well-typed Haskell programs that use
these interfaces.

Notice that there is one instance declaration for each call
pattern of a method. By call pattern, we mean the actual
bytecode sequence to invoke the appropriate method. This
can be a little confusing. For example, the virtual method
o in class E is overridden in class F. Even though method o

has two implementations, there is only one calling pattern
for x.o, since virtual method dispatch is through the vtable
associated with x. Hence, there is only one instance decla-
ration for o. Similarly, method m (on integers) in interface
I has no implementation per se, but any class which im-
plements interface I must supply such an implementation.
Again, the same calling pattern applies to each implemen-
tation, and thus there is a single instance declaration for m
(on integers). By contrast, when method n is overridden in
class F, the calling pattern changes, and so we supply a new
instance declaration.

6.1 Sub-classing and call-backs

This paper discusses how to import classes from C ], but it
does not discuss how to export classes to C ]. We provide no
way to define a completely new C ] class in Haskell, or even
to create a sub-class of an existing C ] class. If we wanted
to allow this, we would have to make much more substantial
changes to the language; the MLj compiler exemplifies this
approach [1].

However, some C ] library methods (especially those involved
with graphical user interfaces) rely on sub-classing to define
“callback objects”. For example the library method might
be



/* NB: parameter names and method bodies

omitted for the sake of brevity */

class A { ... }

class B : A { ... }

class C { ... }

/* A,B,C have nullary constructors */

class D : C { D(char); ... }

/* D has an explicit constructor */

interface I {

int m(int);

}

interface J {

int m(int, int);

int m(int, bool);

}

class E : I, J {

E(); /* Overloaded constructor */

E(bool);

int m(int);

int m(int, int);

int m(int, bool);

int n(A, D);

int n(B, C);

virtual int o(int);

}

class F : E {

F();

new int n(A, C);

override int o(int);

}

class G {

G();

int m(int);

}

Figure 1: An example class heirarchy

class Button {

void OnClick( Click h )

...other methods...

}

where the Click interface is defined thus:

interface Click {

void ClickMe()

}

The OnClick method installs the callback object h as a han-
dler to service button clicks. A functional programmer would
think of such a callback object as simply a closure, but a C ]

programmer must define a sub-class of the Click interface,
thus:

class MyClick : Click {

OnClick() { ...service a click... }

}

newtype A; class SubA a; instance SubA A

newtype B; class SubB b; instance SubB B

instance SubA B

newA :: IO A; newB :: IO B

newtype C; class SubC c; instance SubC C

newtype D; class SubD d; instance SubD D

instance SubC D

newC :: IO C; newD :: Char -> IO D

-- interface I

newtype I; class SubI i

instance m :: SubI i => Int -> i -> IO Int

-- interface J

newtype J; class SubJ j

instance m :: SubJ j => (Int,Int) -> j -> IO Int

instance m :: SubJ j => (Int,Bool) -> j -> IO Int

-- class E

newtype E; class SubE e; instance SubE E

instance SubI E; instance SubJ E

instance newE :: IO E;

instance newE :: Bool -> IO E;

instance n :: (SubA a, SubD d, SubE e)

=> (a, d) -> e -> IO Int

instance n :: (SubB b, SubC c, SubE e)

=> (b, c) -> e -> IO Int

instance o :: SubE e => Int -> e -> IO Int

-- class F

newtype F; class SubF f; instance SubF F

instance SubE F; instance SubI F; instance SubJ F

newF :: IO F

-- n is new, so new instance for n

instance n :: (SubA a, SubC c, SubF f)

=> (a, c) -> f -> IO Int

-- o is overridden, so no new instance for o

-- class G

newtype G; class SubG g; instance SubG G

newG :: IO G

instance m :: SubG g => Int -> g -> IO Int

Figure 2: Representation of Figure 1 in Haskell

(C ] also has a notion of delegates which is slightly more
convenient in this situation, but nevertheless the problem
remains.) Since we cannot sub-class in Haskell, does that
render the Button class useless to the Haskell programmer?

We can solve the problem, albeit slightly clumsily. What we
want to do is to give behaviour to the Click interface; we
do not want to add methods or otherwise extend it. We can
write a generic MyClick class like this:

class HClick : Click {

private HaskellClosure h;

new( HaskellClosure h’ ) { h = h’; }

OnClick() { h.run() }

}



f :: J -> Int -> IO Int

f j y = do p <- j # m (y, 1)

q <- j # m (y, True)

return p + q

g :: E -> IO Int

g e = do a <- newA

b <- newB

c <- newC

d <- newD

i <- e # n (a, d)

j <- e # n (b, c)

return i + j

Figure 3: Example well-typed terms using declarations of
Figure 2

Defining this class requires knowledge of the representation
of Haskell closures in the .NET world. In particular, the run
method of a HaskellClosure will perform its I/O actions.
The code for HClick could be generated from the interface
specification for Click, though we have not yet implemented
this.

If we now import this class into Haskell, using the mecha-
nisms already defined, we can now create a callback object
using newHClick:

onClick :: Button -> IO () -> IO ()

onClick but click_handler

= do { cb <- newHClick( click_handler ) ;

but # onClick( cb ) }

The bottom line is this: we can create callback objects with-
out too much difficulty, but we cannot create genuinely new
classes and export them back to the C ] world.

6.2 A dark corner: The new modifier

In fact, Figure 2 is not completely accurate in its represen-
tation of C ]’s overload resolution. Consider the Haskell call

n (b::B, d::D) (f::F)

All three instances for n in Figure 2 are candidates, but there
is no best fit. So the type inference engine will complain
that it cannot choose, and (what is worse) we can’t fix the
problem by supplying more type information.

What happens in C ], given the call f.n( b, d )? The seman-
tics of the “new” qualifier for method n in class F is that this
definition of n “hides” all definitions of n in F’s sub-classes.
So now there is only one candidate to choose.

We can accommodate this in Haskell, but only in a rather
brutal way. In Figure 2, interface I defines m thus:

instance m :: SubI i => Int -> i -> IO Int

The subtyping constraint on i means that m works on values
of type E, as it should. But we could instead say:

instance m :: Int -> I -> IO Int

and in addition, when E is declared, add

instance m :: Int -> E -> IO Int

However, these two instance declarations would share a
common witness. In effect, we simply copy all inherited
methods into each sub-class, with fresh instance declara-
tions but common witnesses.

What does this buy us? It allows us to refrain from copying
the instances of n into F’s class, so that there just a single
instance for n with self-parameter F:

instance n :: (SubA a, SubC b)

=> (a, b) -> F -> IO Int

The C ] design treats the self parameter specially, whereas
our system does not.

7 Futher directions

In this section we collect random thoughts that don’t seem
to belong in the main thread.

7.1 Haskell records

Our approach to ad-hoc overloading alows us to steal the
encoding of records used by System O [25].

In Haskell, every record type must use distinct field labels.
For example, the following text is illegal in Haskell 98:

data V2 = V2 { x,y :: Float }

data V3 = V3 { x,y,z :: Float }

The two records cannot share the common fields x and y.
With our extension, as in System O, we could redeclare them
like this:

data V2 = V2 { v2_x,v2_y :: Float }

data V3 = V3 { v3_x,v3_y,v3_z :: Float }

instance x :: V2 -> Float where x = v2_x

instance y :: V2 -> Float where y = v2_y

instance x :: V3 -> Float where x = v3_x

instance y :: V3 -> Float where y = v3_y

instance z :: V3 -> Float where z = v3_z

Indeed, one could imagine these instance declarations be-
ing automatically generated, just as the selector functions
themselves are, so that the field names v2_x etc were never
exposed to the programmer. Once this is done, we can write
examples like this:

length :: V2 -> Float

length v = x v + y v

There’s a problem with record update, however. A heavier
encoding might solve it (adding a “set” method as well as a
“get” function), but it makes the story less compelling.

7.2 Class methods

We can link Haskell’s “traditional” type classes with our ad-
hoc overloading. For example, the Num class is defined like
this:



class Num a where

(+) :: a -> a -> a

negate :: a -> a

...etc...

This brings into scope the functions

(+) :: Num a => a -> a -> a

negate :: Num a => a -> a

...etc...

So we cannot use (+) for a function of type
Int -> Float -> Float, since it does not fit the tem-
plate in the Num declaration. But with our new method
constraints, we could instead specify that the class

declaration brings into scope the following functions and
instance declarations:

num1 :: Num a => a -> a -> a -- (+)

num2 :: Num a => a -> a -- negate

instance (+) :: Num a => a -> a -> a where

(+) = num1

instance negate :: Num a => a -> a where

negate = num2

Now we are free to add new instances for (+), thus:

instance (+) :: Int -> Float -> Float where

(+) = plusIF

In effect, the arbitrarily-named num1, num2 etc are simply
record selectors very like v2_x, v2_y in the Section 7.1; the
instance declarations attach them to their familiar names,
(+) and negate.

8 Related work

8.1 System CT

System CT [3] is a Haskell-like type system that supports
ad-hoc polymorphism in a similar manner to that described
in Section 4. For example, CT will infer the following type
for insert:

insert :: {(==) :: a->a->Bool}. a -> [a] -> [a]

insert a [] = [a]

insert a (b:xs) | a==b = b : xs

| otherwise = b : insert a xs

Our syntax differs slightly from CT’s, but the method
constraint (==)::a->a->Bool plays the same role in both
systems. However, System CT takes a more radical ap-
proach than we do. CT has no class or instance dec-
larations; instead every let-definition introduces a new
potentially-overloaded identifier. (To mimic this in our sys-
tem, one would have an instance declaration for every let-
definition.)

Since every let-definition is effectively an instance declara-
tion, System CT must confront and solve the issue of local
instance declarations. That is not something we have tack-
led in the main body of our paper. It is present in our formal
treatment, and while it does not much complicate the typing
rules, we believe that it would add signficant complexity to
proofs about the system.

On the other hand, we are forced (by our desire to import
.NET classes) to confront and solve overlap, whereas CT is
not.

Lastly, there are CT programs that we cannot express. Sys-
tem CT can type the following program, whereas we cannot:

let

g = let f = <..rhs1..> :: Int->Int

f = <..rhs2..> :: Char->Char

in

f

in

(g 1, g ’c’)

CT will assign g the type

g :: {f :: a->a}. a -> a

even though the definitions of f are not lexically visible at g’s
call site. We do not fully understand this aspect of System
CT, but it certainly affects the complexity of the translation
into witness-passing form.

8.2 Multi methods

Recall that our encoding of C ] classes lifts all methods out
into a single namespace, and relies on ad-hoc overloading to
distinguish methods of the same name belonging to distinct
classes. Indeed, we don’t treat overloading across classes
(class C and D both implement a method called m) any dif-
ferently from overloading within classes (class C implements
two methods called m).

In this respect, our approach is very similar to that of “multi-
method” based object-oriented languages such as CLOS [4].
In these languages, methods are regarded simply as over-
loaded functions, and method dispatch is based on the dy-
namic types of all method arguments instead of just the
(implicit) “this” argument.

Bourdoncle and Metz [2] have proposed an ML-like language
built upon this notion of multi-methods which has many
similarities with the work of this paper. In particular, they
use constrained polymorphism and subtype constraints to
assign each method a principal type.

However, the language of Bourdoncle and Metz differs from
our proposal in the treatment of dynamic dispatch. In their
language, every object is wrapped by a tag encoding its type,
and every method name has a single entry point which dis-
patches according to these tags. By contrast, our approach
relies on the underlying machinery of .NET to perform dy-
namic dispatch, and we resolve at compile-time which calling
sequence is to be used to invoke a particular method.

None the less, it would be interesting to push this connec-
tion further. In particular, we have already seen examples
where method constraints escaped into type schemes when
insufficient type information was available at compile-time
to resolve a call. This suggest the witness passing of our
implementation could be used to simulate the dynamic dis-
patch of multi-method based implementations.



8.3 Constraint handling rules

It is clear that the type-class design space is complicated.
Stuckey, Sulzmann and Glynn have proposed Constraint
Handling Rules as a formal framework for specifying and rea-
soning about type-class systems [8]. The advantage is that
properties like ambiguity and coherence may be expressed in
a single uniform way, rather than having to be re-expressed
for each extension.

We have not yet worked out whether our types system can
be expressed in their framwork.
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A Formal Development

In the remainder of the paper we present λO, a small lambda-
calculus of type-based overloading. We intend λO to be the
kernel language for Haskell extended with support for OO-
style overloading. However, for brevity, we have ellided much
of the structure needed for full Haskell: base types, recursive

Type variables a, b, c ::= a, b, c, . . .

Newtype names A,B ::= A, B, . . .

Class names C ,D ::= C, D, . . .

Class modifiers m ::= closed | overlap
| local | global
| {a} -> {b}

Type decls decl ::= newtype A

| class m φ => C a where τ

Types τ, υ ::= (τ) | υ -> τ | A | a
Prim constraints φ, ξ ::= forall a . φ => C τ

Type schemes σ ::= forall a . φ => τ

Variables x, y, z ::= x, y, z, . . .

Terms t , u ::= x | \x -> t | t u | C
| let x = u in t

| instance a . φ => C τ = u in t

Programs prog ::= decl t

Figure 4: Syntax of λO types and source-level terms

datatypes, higher kinds, recursion, Haskell-style newtypes,
case discrimination and higher-ranked polymorphism.

In this workshop paper we won’t demonstrate any properties
of λO, in particular, soundness and (weak) completeness of
type inference with respect to type checking. This is not to
say we believe these proofs to be straightforward, or even
that we believe the following presentation to be without er-
ror! Rather, we would like to first gain some experience with
an implementation to check the feasibility of this design be-
fore investing a lot of effort in showing the correctness of
something which may well change.

We shall present the system in two stages. In the first
stage we assume subtyping is implemented by the encod-
ing scheme given in Section 3.3. Though very inexpressive,
this approach seems sufficient for encoding the subtyping
constraints required for methods from .NET classes. In the
second stage, we build subtyping constraints directly into the
calculus. This second approach is much more expressive, and
supports structural subtyping and covariant methods. How-
ever, this comes at the cost of a considerably more complex
system.

In a few places, λO is a little more expressive than required
for the subject of this paper. For example, we have included
local instance declarations and functional dependencies [15].
This is to demonstrate how easily these features coexist with
closed classes.

A.1 Source Syntax

Figure 4 presents the syntax of type declarations, types, con-
straints, and source terms.

For brevity we shall exploit a sequence notation throughout.
We write X to denote a sequence X1, . . . ,Xn for some un-
specified, and possibly zero n. We shall systematically abuse



this notation. For example, given τ and υ, we write τ :=: υ to
denote τ1:=:υ1, . . . , τn :=:υn . Notice that this implicitly con-
strains τ and υ to be of the same length. If τ is a scalar and
υ a sequence, we write τ :=: υ to denote τ :=:υ1, . . . , τ :=:υn .
By even further abuse, we write ∆ ` τ type to denote
(∆ ` τ1 type) ∧ . . . ∧ (∆ ` τn type). We shall occasion-
ally treat a sequence X as the set {X1, . . . ,Xn}. The empty
sequence is written as ·.

The type declaration newtype A introduces an uninterpreted
type constant A. In λO, newtypes shall be used exclusively
to represent .NET class types, and hence a value of type A
is a .NET object created by a call to a .NET constructor.
There is no way to construct such values within λO alone.
In practice, we should allow newtypes to be assigned a body
type, as in Haskell. Newtypes which are intended to denote
an external class-type would then be given a uniform body
type such as ObjRef.

The type declaration class m ξ => C a where τ introduces
a type class C , paramaterized by the type variables a. In-
formally, we may think of this as introducing an identifier,
C , which may be bound to an as yet unspecified number of
values at distinct types. Furthermore, we can be sure each
such type is an instance of τ for which the constraints in ξ
are satisfied. We shall call ξ the superclass constraints of C ,
even though in stage two such constraints need not be just
class constraints.

More precisely, such a declaration introduces a family of
primitive class constraints of the form C υ. The constraint
C υ arises when C is used within a term at type [a 7→ υ] τ .
Such a constraint is satisfied when an instance declaration
has been supplied for C at types υ. In this case, we say
that the instance declaration provides a witness for the sat-
isfaction of C υ. In λO, instance declarations belong within
terms rather than as top-level declarations, and so shall be
discussed shortly.

Class declarations may include modifiers which allow the
λO constraint simplifier to exploit invariants amongst in-
stance declarations. These modifiers may be divided into
three groups.

If class C includes the closed modifier, then the program-
mer must ensure all of the instance declarations for C are in
scope whenever a constraint involving C may arise. In re-
turn for this restriction, the λO constraint simplifier is able
to improve, and, in many situations, elliminate altogether,
constraints involving C . If class C does not include the mod-
ifier overlap, then the programmer must ensure all instance
declarations for C are mutually non-unifiable. In return, the
simplifier is able to elliminate class constraints more eagerly
than if instances declarations were allowed to overlap. The
closed modifier subsumes the overlap modifier.

The modifier {a} -> {b} on a class C signals that a func-
tional dependency exists between the parameters of C in
positions a and those in position b. (a ++ b must be a per-
mutation of the type variable parameters for C .) In particu-
lar, the programmer must ensure that there are no instance
declarations for C which agree on types in positions a but
disagree on those in positions b. Again, this restriction al-
lows the simplifier to agressively collapse class constraints.

We refer the reader to the work of Jones [15] for a full expo-
sition. A class may contain zero, one, or more functional de-
pendencies. If a is empty, only a single instance declaration
for C is possible. If b is empty, the functional dependency
is trivial and may be elliminated.

The local modifier signals that a class C may have local
instance declarations, and hence class constraints using C
must not be inherited from an outer context. In this way,
any local class constraints within a let-bound term will be
generalized, and propogate to each specialization point for
the let-bound variable. The constraint may thus be satisifed
by instance declarations which are otherwise not in the let-
binding’s scope. Implicit parameters [18] are a degener-
ate example of local classes with a functional dependency.
Dually to local, a global modifier signals that class con-
straints using C must be inherited, and thus may never ap-
pear within a type scheme. Clearly, it makes no sence for a
class to be both local and global.

For technical reasons, we disallow class declarations whose
superclass constraint contains non-trivial instance schemes
(see below) or class constraints for closed or overlapping
classes.

The language of types includes tuples, functions, newtypes
and type variables.

In stage one, λO primitive constraints are just in-
stance schemes. An instance scheme of the form
forall a . ξ => C τ may be thought of as the type of an
instance declaration. It is witnessed by a polymorphic func-
tion from witnesses to [a 7→ υ] ξ to a witness for the class

constraint C [a 7→ υ] τ . We shall identify the trivial instance
scheme forall · . · => C τ with the class constraint C τ .

Constraints are conjunctions (written as a sequence) of prim-
itive constraints. The empty constraint, ·, is typically writ-
ten as true. We write false to denote some fixed, unsatis-
fiable primitive constraint.

Type schemes are defined as usual. In common with instance
schemes, we identify the trivial type scheme forall · . · => τ
with the type τ . It is important to distinguish instance
schemes, which are inhabited by witness building functions,
from type schemes, which are inhabited by ordinary func-
tions.

Terms include the usual abstraction, application and poly-
morphic let-binding, along with variables and class names.
A class declaration such as class m ξ => C a where τ in
effect introduces an identifier C with polymorphic type
forall a . C a => τ . In a significant departure from
Haskell, λO terms also include instance declarations. The
term instance a . ξ => C τ = u in t introduces a new way
of satisfying primitive constraints involving C . In partic-
ular, it introduces, within the context of t , a witness, W ,
to the instance scheme forall a . ξ => C τ . Given wit-
nesses to [a 7→ υ] ξ, the witness W produces a witness to

C [a 7→ υ] τ which contains the value u. Only classes con-
taining the local modifier may have instance declarations
which are not at the top-level of the program.

It is straightforward to translate Haskell class and instance
declarations into λO. Rather than describe this formally,
Figure 5 simply presents an example translation for the



Haskell Declarations

class Monad m where

return :: a -> m a

bind :: m a -> (a -> m b) -> m b

instance Monad [] where

return a = [a]

bind ma f = concat (map f ma)

λO Declarations

data MonadD m =

MonadD (forall a . a -> m a)

(forall a b . m a -> (a -> m b) -> m b)

class Monad m where MonadD m

return :: forall a . Monad m => a -> m a

return = case Monad of MonadD r _ -> r

bind :: forall a b .

Monad m => m a -> (a -> m b) -> m b

bind = case Monad of MonadD _ b -> b

instance Monad [] =

MonadD (\a -> [a])

(\ma f -> concat (map f ma))

Figure 5: Encoding Haskell class and instance declarations
in λO (extended by datatypes and higher-ranked polymor-
phism)

Monad class. This translation assumes λO to be augmented
by datatypes with polymorphic data constructors.

Our informal presentation adopted some syntactic sugar for
method declarations, which we now explain. We assume the
first instance declaration of a method m introduces the λO

class declaration:

class closed Has_m a where a

(As mentioned in Section 4.3, it is not feasible to require the
programmer to include such a declaration explicitly, since
there is no unique module for it to live within.) A method
instance declaration such as:

instance m :: a :<: A => a -> IO Int

is represented as the λO instance declaration:

instance a . a :<: A => Has_m (a -> IO Int) = stub

where stub stands for whatever stub code is required to mar-
shal the arguments, make the appropriate call, and unmar-
shal the result.

A variation of this encoding is to make all method constraint
classes global:

class closed global Has_m a where a

This would prevent a method constraint from ever appear-
ing within a type scheme, which in turn would force the type
inference system to reject any program containing a method

Witness vars w ::= w, . . .

Constraint contexts Φ,Ξ ::= w : φ

Witness bindings B ::= w =W

Witness terms
W ::= w

| C W T Construct dictionary
| letw B in W ′ Bind witnesses
| ProjCi W Extract superclass witness
| Λa .W |W τ Type abs. and app.

| λw .W |W W ′ Witness abs. and app.

Run-time terms
T ,U ::= x | λx . T | T U

| let x = U in T
| Λa . T | T τ Type abs. and app.
| letw B in T Bind witnesses
| ProjC

V
W Extract instance impl.

| λw . T | T W Witness abs. and app.

Figure 6: Syntax of λO run-time terms

call which cannot be resolved by local type context. This en-
coding may be more palatable to programmers accustomed
to the method overloading resolution rules of object-oriented
languages.

We write a ` τ type to denote the judgement that τ is a well-
formed type. In λO, this reduces to checking all free type
variables of τ are within a. Well-formedness for constraints
(a ` ξ constraint) and type schemes (a ` σ scheme) is defined
in the obvious way.

A.2 Run-time syntax

Every satisfied constraint has a coresponding witness. Poly-
morphic terms may give rise to constraints which, though
satisfiable, are not yet satisfied. Such constraints appear
within type schemes, and are propogated by type inferer-
ence. When such a constraint is instantiated to be satisfied,
the coresponding witness must be conveyed from the point of
specialization to the point of use. One way of achieving this
is to tranform source programs into a run-time language in
which these witnesses are passed as implicit arguments to ev-
ery polymorphic function with constraints. This is achieved
using the well-known dictionary transformation [29].

It shall be the job of type inference to convert source terms
to run-time terms with explicit witness passing. In keeping
with modern practice, this translation shall also make all
type passing explicit, even though no type information is
actually required at run-time.

Figure 6 defines the syntax of these run-time terms and wit-
nesses. We prefer to seperate witnesses from run-time terms,
even though they share much structure. This is so that, if
λO were to be extended by recursion, we could be sure that
witness calculations always terminate.

Given the declaration class m ξ => C a where τ , a witness
to C υ is of the form C W T , where W are witnesses to



a | Φ | Γ ` t : τ ↪→ T

(class m Ξ => C b where τ) ∈ decls
a ` υ type Φ `e C υ ↪→W

class
a | Φ | Γ ` C : [b 7→ υ] τ ↪→ ProjC

V
W

(x : forall b . ξ => τ) ∈ Γ

a ` υ type Φ `e [b 7→ υ] ξ ↪→W
var

a | Φ | Γ ` x : [b 7→ υ] τ ↪→ x υ W

a ` υ type
a | Φ | Γ, x : υ ` t : τ ↪→ T

abs
a | Φ | Γ ` \x -> t : (υ -> τ) ↪→ λx . T

a | Φ | Γ ` t : (υ -> τ) ↪→ T
a | Φ | Γ ` u : υ ↪→ U

app
a | Φ | Γ ` t u : τ ↪→ T U

x ∈ fv(t) a ∩ b = ∅ a ++ b ` Ξ constraint

σ = forall b . anon(Ξ) => υ gens(Ξ) = Ξ

a ++ b | inhs(Φ) ++ Ξ | Γ ` u : υ ↪→ U
a | Φ | Γ, x : σ ` t : τ ↪→ T

let
a | Φ | Γ ` let x = u in t : τ ↪→

let x = Λb . λnames(Ξ) . U in T

(class m ξ′ => C c where υ′) ∈ decls

C ∈ fcv(t) a ∩ b ∩ c = ∅ w fresh

Ξ = named(ξ) a ++ b ` Ξ constraint a ++ b ` υ type

φ = forall b . ξ => C υ gens(Ξ) = Ξ
(Γ 6= ·) ∨ (inhs(Ξ) 6= Ξ) =⇒ local ∈ m

inhs(Φ) ++ Ξ `e [c 7→ υ] ξ′ ↪→W

a ++ b | inhs(Φ) ++ Ξ | Γ ` u : [c 7→ υ] υ′ ↪→ U
Φ′ = extend(Φ | w : φ) well-defined

a | Φ′ | Γ ` t : τ ↪→ T
inst

a | Φ | Γ `
instance b . ξ => C υ = u in t : τ ↪→

letw w = Λb . λnames(Ξ) . C W U in T

Figure 7: Well-typed λO terms

each primitive constraint in [a 7→ υ] ξ, and T is a run-time
value of type [a 7→ υ] τ . ProjCi projects the witness Wi , and
ProjC

V
projects the run-time value T .

The remaining witness forms and run-time terms are those
of System F, augmented by let (for sharing terms) and letw
(for sharing witnesses).

A.3 Type Checking

Figure 7 presents the rules for deciding the well-typing judge-
ment a | Φ | Γ ` t : τ ↪→ T . Here a is the set of type
variables in scope, and Γ the type context, for source term
t . Φ is a constraint context, and T is the run-time term to
which t is translated.

inheritable(forall a . φ => C τ)⇐⇒ local 6∈ m

where (class m ξ => C b where υ) ∈ decls

inhs(Φ) = {w : ξ | (w : ξ) ∈ Φ, inheritable(ξ)}

generalizable(forall a . φ => C τ)⇐⇒ global 6∈ m

where (class m ξ => C b where υ) ∈ decls

gens(Φ) = {w : ξ | (w : ξ) ∈ Φ, generalizable(ξ)}

named(φ) = w : φ where w fresh

anon(w : φ) = φ

names(w : φ) = (w)

matchclasses(C τ ,D υ)⇐⇒ ff where C 6= D
matchclasses(C τ ,C υ)⇐⇒

∃({a} -> {a ′}) ∈ (m ∪ ({c} -> {})) .
∀b ∈ a .
[c′ 7→ τ ] ◦ [c 7→ c′] b = [c′ 7→ υ] ◦ [c 7→ c′] b

where (class m ξ => C c where υ′) ∈ decls
and c′ fresh

extend(· | w : φ) = w : φ
extend(w ′ : ξ,Ξ | w : φ) = extend(Ξ | w : φ)

where (class m ξ′ => C c where υ′) ∈ decls
and local ∈ m

and ξ = forall b . ξ′ => C υ

and φ = forall a . φ′ => C τ

and a ′, b′ fresh

and matchclasses(C [a 7→ a ′] τ ,C [b 7→ b′] υ)
extend(w ′ : ξ,Ξ | w : φ) = undefined

where (class m ξ′ => C c where υ′) ∈ decls
and overlap 6∈ m and closed 6∈ m

and ξ = forall b . ξ′ => C υ

and φ = forall a . φ′ => C τ

and a ′, b′ fresh

and mgus(∅ | [a 7→ a ′] τ :=: [b 7→ b′] υ) 6= ∅
extend(w ′ : ξ,Ξ | w : φ) = w ′ : ξ, extend(Ξ | w : φ)

Figure 8: Ancillary definitions for type checking

A constraint context is a sequence of named primitive con-
straints of the form w : φ. The name w is arbitrarily chosen
to represent the witness variable which will be bound to a
witness to φ at run-time. These witness variables shall be
introduced within T during type checking. The functions
named and anon, given in Figure 8, mediate between con-
straints and constraint contexts, while the function names
returns the tuple of witness names of its argument constraint
context.

The type checking rules make use of an entailment judge-
ment Φ `e ξ ↪→ W , which is true when constraint ξ is a
logical consequence of the constraint context Φ, and is wit-
nessed by W . This will be explained shortly.

Rule class checks that a class identifier C is used at a type
for which an instance declaration is available. It produces a
run-time term which projects the value from the appropriate



witness.

Rule var performs specialization of a polymorphic variable
x . Any constraint on x must be entailed by Φ. The term x
is translated to a run-time term in which both the types to
which x is specialized, and the witnesses to x ’s constraints,
are passed as tuples.

Rules abs and app are standard.

Rule let type checks polymorphic terms in the usual way.
The let-bound term u is type checked using a constraint con-
text extended by the arbitrary constraint Ξ, and t is type
checked using a type context extended by x . The result-
ing run-time term makes all type and witness abstraction
explicit.

This rule has two subtleties. The first is that we reject
programs with redundant let bindings, i.e., let-bound terms
which are unused. This is so that we may avoid having to
check for the satisfiability of the constraints of let-bound
terms. Since we know x ∈ fv(t), we can be sure that Φ en-
tails some instance of Ξ. Hence the satisfiability of Φ guar-
antees the satisfiability of Ξ. Dually, if Ξ is unsatisfiable,
then the entire program will be untypable within the empty
constraint context. We refer the reader to the work of Jones
[14] for a more thorough explanation of this subtlety.

The second subtelty stems from local and global classes.
We must take care to type check u without using any of
the local constraints from Φ. This in effect forces any local
constraints required by u to appear within the generalized
constraint Ξ. Dually, we must check that any global con-
straints required by u are inherited from Φ, and do not ap-
pear within Ξ. These tests make use of the functions inhs
and gens, defined in Figure 8, which yield just the inherita-
ble (non local) and generalizable (non global) constraints of
their argument.

Finally, rule inst type checks an instance declaration. This
rule shares much of the structure of rule let, but is refined
in four ways. Firstly, an instance declaration which is not
at the top level of the program (i.e., Γ is non-empty) must
be for a local class. Furthermore, if the instance depends
on any local classes, then the instance itself must be for a
local class, otherwise the simplifer could change the dynamic
binding of witnesses within a let-bound term. Secondly, u
cannot be of any type, but must type check at the instance
[c 7→ υ] υ′ of υ′ if it is to satisfy C υ. Thirdly, witnesses for
the superclass constraints [c 7→ υ] ξ′ of C must be available
in order to construct the witness for C υ.

The fourth subtlety of rule inst is to prevent overlapping
instances for non-closed and non-overlapping classes, and to
allow the shadowing of instance declarations for local classes.
In order to type check t , Φ must be extended with the in-
stance scheme φ coresponding to the instance declaration for
class C . This is formalized by the function extend , defined
in Figure 8. If C is a local class, the extend function removes
from Φ any instance schemes for C which “match” the new
scheme for C . If C is a non-closed or non-overlapping class,
extend is undefined if Φ contains any instance schemes for
C which are unifiable with the new scheme.

The notion of matching class constraints is formalized by
the function matchclasses, also defined in Figure 8. We con-

mgus(a | true) = {Id}
mgus(a | b :=: b,Φ) = mgus(a | Φ)
mgus(a | b :=: τ,Φ) =

{θ ◦ [b 7→ τ ] | θ ∈ mgus(a | [b 7→ τ ] Φ)}
where b 6∈ fv(τ) and b 6∈ a

mgus(a | τ :=: b,Φ) = mgus(a | b :=: τ,Φ)
mgus(a | (τ) :=: (υ),Φ) = mgus(a | τ :=: υ ++Φ)
mgus(a | (τ -> υ) :=: (τ ′ -> υ′),Φ) =

mgus(a | τ :=: τ ′, υ :=: υ′,Φ)
mgus(a | A :=: A,Φ) = mgus(a | Φ)
mgus(a | ) = ∅

Figure 9: The function mgus

sider two classes to match when they are exactly equal on
all their argument types, or exactly equal on the argument
types in the input positions for one of the classes’ functional
dependencies. The test for unifiability is implemented by the
function mgus, defined in Figure 9. Given a set of equality
constraints, mgus returns the empty set if they are unsatis-
fiable, or a singleton set of a most general unifier satisfying
all the constraints. mgus also accepts a set of type variables
which should be treated as skolem constants—this shall be
important in the sequel.

For example, an implicit parameter may be declared as:

class local {} -> {a} Imp_x a where a

Now when typing:

instance Imp_x Int = 1 in

instance Imp_x Bool = True in

Imp_x

the second instance declaration attempts to introduce the
class constraint Imp_x Bool, which, by the matching rule,
shadows the class constraint Imp_x Int. Hence, the program
has type Bool.

It should be noted that local instance declarations are very
likely to surprise the programer unless they are strictly con-
trolled using functional dependencies. The combination of
local with overlapping or closed is also likely to lead to
surprises.

A.4 Constraint Entailment

Constraint entailment is decided by the four judgements
given in Figures 10 and 11. The judgement Φ `p φ ↪→W is
true when the primitive constraint φ either appears directly
within Φ (rule pid), or appears within the superclass con-
straints of a class constraint which may itself be projected
from Φ (rule pproj). Hence, the witness W is a possibly
empty chain of witness projections applied to a witness vari-
able.

The judgement Φ `c φ ↪→ W extends the projection judge-
ment in two ways. Firstly, a class constraint may be satisfied
by instantiating an instance scheme (rule cinst). The appro-
priate instance scheme is found by projection, and witnesses
to the scheme’s argument constraints are found recursively.
The resulting witness records both the types and argument



Φ `p φ ↪→W

(w : φ) ∈ Φ
pid

Φ `p
φ ↪→ w

(class m φ => C a where τ) ∈ decls
Φ `p C υ ↪→W

pproj
Φ `p [a 7→ υ] φi ↪→ ProjCi W

Φ `c φ ↪→W

Φ `p forall a . φ => C υ ↪→W

Φ `c [a 7→ υ′] φ ↪→W ′

cinst
Φ `c C [a 7→ υ′] υ ↪→W υ′ W ′

a ∩ fv(Φ) = ∅ Ξ = named(ξ)
Φ ++ Ξ `c C τ ↪→W

cho
Φ `c

forall a . ξ => C τ ↪→ Λa . λnames(Ξ) .W

Φ `e φ ↪→W

S = {W | (Φ `c φ ↪→W )}
{W } = minimals(Φ | S)

eleast
Φ `e

φ ↪→W

Figure 10: λO entailment

witnesses at which the instance scheme is instantiated. We
intend this rule to also apply when a and φ are empty, in
which case the rule projects the desired class constraint di-
rectly from Φ.

Secondly, a higher-order instance scheme may be satis-
fied if an appropriate witness function can be constructed
(rule cho). This is the usual rule of function introduction
in intuitionistic logic.

Notice that the `p and `c judgements cannot be conflated.
Otherwise, given the declaration:

class C a => D a where a

and the constraint context:

Φ = w : forall · . C Int => D Int

then:
Φ `e

C Int ↪→ ProjD1 (w (ProjD1 (w . . .)))

would be true with an infinite derivation. Similarly, it would
allow class constraints to be satisfied by the indirect route
of first constructing a witness for a larger constraint, then
projecting out the the desired class constraint, which is just
silly.

In the absence of overlapping instances, the `c judgement
would be the appropriate notion of entailment. However,
when instance schemes may overlap this judgement is non-
deterministic. To account for this, the actual entailment
judgement Φ `e φ ↪→ W must first collect all possible wit-

Φ `W ≤W ′

ovarproj
Φ ` w ≤ ProjDj W

ovarinst
Φ ` w ≤ w ′

τ ′ W ′

oprojinst
Φ ` ProjCi W ≤ w ′

τ ′ W ′

Φ `W ≤W ′

oproj1
Φ ` ProjCi W ≤ ProjCi W ′

(C , i) ≤ (D , j )
oproj2

Φ ` ProjCi W ≤ ProjDj W ′

Φ `W ≤W ′

oinst1
Φ ` w τ W ≤ w τ W ′

w 6= w ′ (w : φ) ∈ Φ (w ′ : ξ) ∈ Φ
w ′ : ξ `e φ

oinst2
Φ ` w τ W ≤ w ′

τ ′ W ′

minimals(Φ | S) =







W ∈ S

∣

∣

∣

∣

∣

∣

∀W ′ ∈ S .

Φ `W ′ ≤W =⇒
Φ `W ≤W ′







Figure 11: Partial order on witnesses

nesses for φ using the `c judgement, and then test if W is
the least such witness.

The ordering on witnesses is decided by the judgement Φ `
W ≤ W ′, whose rules appear in Figure 11. The ordering
is particularly weak: we do not attempt to order witness
functions, nor witnesses which instantiate projected witness
functions. Witnesses such as these only arise in the presence
of higher-order instances schemes, which are sufficiently rare
that supporting them with overlapping instances seems of
dubious benefit.

By inspection of rule eleast, and by an easy induction
on the rules of Figure 11, only witnesses to the same con-
straint shall ever be compared. Furthermore, by inspection
of rules cinst and cho, all witnesses to instance schemes
must be in η-normal form. Thus, only class constraint wit-
nesses appear within the conclusions of the rules of Figure 11,
and witness functions are incomparable.

There are three forms of witness to a class constraint: a wit-
ness variable if the class constraint appears directly within
Φ, a projection from another class constraint, or an instan-
tiation of a witness function. Rules ovarproj, ovarinst

and oprojinst place projection witnesses before instance
witnesses, and place shorted chains of projections before
longer ones.



Roughly speaking, projection witnesses and instance wit-
nesses are ordered lexicographically amongst themselves.
Rules oproj1 and oinst1 deepen the comparison when the
topmost witnesses are identical. Rule oproj2 imposes an ar-
bitrary (and, for this paper, unspecified) ordering on projec-
tion witnesses from different class constraints. This is sound
since if two classes share a superclass, their witnesses must
similarly share a superclass witness, hence either one may
be chosen without changing the semantics of the program.
(Showing this is indeed the case, particularly in the presence
of local classes, is quite subtle and should be formalized in
the full paper.)

Rule oinst2 compares two witnesses which were constructed
by the application of two distinct witness functions, bound
to w and w ′. In this case, we attempt to order the instance
schemes, φ and ξ, which w and w ′ themselves witness, by
placing the more specific/constrained scheme first. This is
accomplished by asking if ξ entails φ.

An example helps motivate this definition. Assume the type
definitions:

class C a where a

class D a => C a where a

class E a where a

and that:

Φ = w : forall · . D Int => E Int,w ′ : forall a . C a => E a

Then there is a derivation of:

w ′ : forall a . C a => E a `c

forall · . D Int => E Int ↪→ λw ′′ . w ′ Int (ProjD1 w ′′)

(using rule cho, then rule cinst twice)

Furthermore, since this is the only such derivation, we have

w ′ : forall a . C a => E a `e

forall · . D Int => E Int ↪→ λw ′′ . w ′ Int (ProjD1 w ′′)

Notice, however, that the converse entailment does not hold.
Thus, w is strictly less that w ′ in the witness ordering.

We shall consider the finiteness of entailment derivations in
Section A.8.

A.5 Type Inference

In this section we turn our attention to type inference. As
usual, inference proceeds by accumulating a constraint con-
text which is simplified wherever possible. Hence, just as
type checking builds upon constraint entailment, type infer-
ence shall build upon a notion of constraint simplification.

Like many languages supporting type inference, Haskell al-
lows let-bound terms to be annotated with a user-supplied
type signature. It is the responsibility of type inference to
check that such a type signature is indeed an instance of the
term’s principal (i.e., inferred) type. This test is typically
left unspecified within formal presentations of type inference
systems. However, we feel the complexity of λO constraint
entailment warrants a formal treatment of user-supplied type
signatures. Indeed, we found that doing so exposed substan-
tial additional complexity both in the type inference system
and the constraint simplifier.

a | Φ0 | θ | Φ | Γ ` t : τ ↪→ T

(class m ξ => C b where τ) ∈ decls
c fresh

iclass
a | Φ0 | Id | w : C c | Γ ` C : [b 7→ c] τ ↪→ ProjC

V
w

(x : forall b . ξ => τ) ∈ Γ
c fresh Ξ = named([b 7→ c] ξ)

ivar
a | Φ0 | Id | Ξ | Γ ` x : [b 7→ c] τ ↪→ x c names(Ξ)

b fresh
a | Φ0 | θ | Φ1 | Γ, x : b ` t : τ ↪→ T

iabs
a | Φ0 | θ\{a} | Φ1 | Γ ` \x -> t : (θ b -> τ) ↪→ λx . T

a | Φ0 | θ1 | Φ1 | Γ ` t : υ ↪→ T
a | Φ0 | θ2 | Φ2 | θ1 Γ ` u : υ

′ ↪→ U
b fresh

Φ3 = Φ1 ++Φ2 ++ (υ :=: (υ′ -> b))
iapp

a | Φ0 | θ2 ◦ θ1 | Φ3 | Γ ` t u : b ↪→ T U

x ∈ fv(t)
a | inhs(Φ0) | θ1 | Φ1 | Γ ` u : υ ↪→ U

(Φ2 | b | Φ3) = gen(θ1 Γ | Φ1 | υ)
gens(Φ3) = Φ3

σ = forall b . anon(Φ3) => υ
a | Φ0 | θ2 | Φ4 | (θ1 Γ), x : σ ` t : τ ↪→ T

Φ5 = (θ2 Φ2) ++ Φ4
ilet

a | Φ0 | (θ2 ◦ θ1)¹fv(Γ) | Φ5 | Γ `

let x = u in t : τ ↪→
let x = Λb . λnames(Φ4) . U in T

a | Φ0 | θ1 | Φ1 | Γ ` t : τ ↪→ T
〈Φ0 | a ∪ fv(θ1 Γ) ∪ fv(τ) | Φ1〉 .

c 〈θ2 | Φ2 | B〉
isimp

a | Φ0 | (θ2 ◦ θ1)¹fv(Γ) | Φ2 | Γ `

t : θ2 τ ↪→ letw B in T

Figure 12: λO type Inference (part 1 of 2)

Figures 12 and 13 present rules for deciding the type infer-
ence judgement a | Φ0 | θ | Φ | Γ ` t : τ ↪→ T . Here a
is a set of type variables, and Φ0 a constraint context, in-
troduced by the user-supplied type signatures in the scope
t . Φ is the inferred constraint context, and θ the inferred
substitution to apply to type variables in Γ. We intend Γ, τ
and T to be as in the type checking judgement.

For the most part, the rules for type inference mirror those
for type checking given in Figure 7.

Rule ilet uses the generalization function gen, defined
in Figure 14. This function is careful to generalize over
non-inheritable constraints, i.e., class constraints for local
classes, regardless of their free type variables. The reader
will notice that, unlike the work of Jones [15], λO makes no
attempt to exploit functional dependencies during general-
ization. This is because λO does not follow Haskell’s rule for
rejecting type schemes where any generalized type variables



σ = forall b . ξ => υ

a ∩ b = ∅ Ξ = named(ξ) x ∈ fv(t)

a ++ b ` Ξ constraint a ++ b ` υ type
gens(Ξ) = Ξ

a ++ b | inhs(Φ0) ++ Ξ | θ1 | Φ1 | Γ ` u : υ
′ ↪→ U

S = a ∪ b ∪ fv(θ1 Γ) ∪ fv(υ
′)

〈inhs(Φ0) ++ Ξ | S | υ
′ :=: υ,Φ1〉 .

c 〈θ2 | Φ2 | B〉
inhs(Φ2) = Φ2

∃c . θ2 ◦ θ1 a = c ∧ c distinct
∧ c ∩ (a ∪ fv(θ2 ◦ θ1 Γ) ∪ fv(Φ2)) = ∅

a | Φ0 | θ3 | Φ3 | θ2 ◦ θ1 Γ, x : σ ` t : τ ↪→ T
alet

a | Φ0 | (θ3 ◦ θ2 ◦ θ1)¹fv(Γ) | (θ3 Φ2) ++ Φ3 | Γ `

let x :: σ = u in t : τ ↪→
let x = (Λb . λnames(Ξ) . letw B in U ) in T

(class m φ′ => C c where υ′) ∈ decls

φ = forall b . ξ => C υ Ξ = named(ξ)

a ∩ b ∩ c = ∅
(Γ 6= ·) ∨ (inhs(Ξ) 6= Ξ) =⇒ local ∈ m

a ++ b ` Ξ constraint a ++ b ` υ type
w ,w ′ fresh gens(Ξ) = Ξ

a ++ b | inhs(Φ0) ++ Ξ | θ1 | Φ1 | Γ ` u : τ
′ ↪→ U

S = a ∪ b ∪ fv(θ1 Γ) ∪ fv(τ
′)

Ξ′ = (τ ′ :=: [c 7→ υ] υ′) ++ w ′ : [c 7→ υ] φ′

〈inhs(Φ0) ++ Ξ | S | Ξ
′ ++Φ1〉 .

c 〈θ2 | Φ2 | B〉
inhs(Φ2) = Φ2

∃c′ . θ2 ◦ θ1 a = c′ ∧ c′ distinct
∧ c′ ∩ (a ∪ fv(θ2 ◦ θ1 Γ) ∪ fv(Φ2)) = ∅
Φ4 = extend(Φ0 | w : φ) well-defined
a | Φ4 | θ3 | Φ3 | θ2 ◦ θ1 Γ ` t : τ ↪→ T

ainst
a | Φ0 | (θ3 ◦ θ2 ◦ θ1)¹fv(Γ) | (θ3 Φ2) ++ Φ3 | Γ `

instance b . ξ => C υ = u in t : τ ↪→
letw w = (Λb . λnames(Ξ) .

letw B in C w ′ U ) in T

Figure 13: λO type Inference (part 2 of 2)

gen(Γ | Φ | τ) = (Ξ1 | a | Ξ2)
where a = (fv(τ) ∪ fv(Φ)) \ fv(Γ)

Ξ1 =







w : ξ

∣

∣

∣

∣

∣

∣

(w : ξ) ∈ Φ,
fv(ξ) ∩ a = ∅,
inheritable(ξ)







Ξ2 =

{

w : ξ

∣

∣

∣

∣

(w : ξ) ∈ Φ,
fv(ξ) ∩ a 6= ∅ ∨ ¬inheritable(ξ)

}

Figure 14: The generalization function gen

appear only within the type scheme’s constraint. This syn-
tactic test for ambiguity is, strictly speaking, unnecessary,
since any program containing a truly ambiguous type scheme
shall be untypable in the constraint context true, and hence
shall be rejected at the top-level.

Rule iapp infers the type of an application by introducing
an equality constraint into the current constraint context. In
effect, this pushes the task of finding a most-general unifier of

two types onto the simplifier. This is marginally neater than
calling a most-general unifier function directly. However, our
real motivation for structuring type inference is this way is to
ease the introduction of subtype constraints in Section A.9.

Rule isimp allows the current constraint context to be simpli-
fied at any point during inference. Some simplifications are
possible when it is known that a particular type variable ap-
pears within the constraint only, and does not “escape” into
types or the type context. To support such simplifications,
the isimp rule passes the set of all escaped type variables to
the simplifier.

The two rules alet and ainst deal with annotated let-
expressions and instance declarations respectively. Much
of their complexity is for checking that the inferred type
matches the annotation. There are two aspects to this test.
Firstly, we must make sure that all the constraints arising
from type inference for the term are either entailed by the
supplied constraint, or may be inherited from the surround-
ing context. This is checked by calling the simplifier on
the inferred constraint context, and checking all residual
constraints do not contain any generalized type variables.
Secondly, we must make sure all generalized type variables
remain free (though possibly renamed) after inference. A
generalized type variable which becomes bound during sim-
plification signals that the annotated type scheme is more
polymorphic than the inferred type.

Notice that the simplifier must try “as hard as it can”
when considering the constraints given to it by rules alet

and ainst, otherwise the program could be rejected. This is
in contrast to the invocation of the simplifer in rule isimp, in
which simplification is “optional.” We have not attempted to
formalize the distinction between these two simplifer modes.

A.6 Constraint Simplification

This brings us to the heart of type inference: constraint sim-
plification. The simplifier attempts to rewrite a constraint
context to a smaller constraint context which entails the
original. At the same time, it attempts to reduce equal-
ity constraints down to a simple substitution. The simplifier
may rewrite a constraint to false should it discover the con-
straint is unsatisfiable, thus signaling a type error.

The simplifier consists of three layers. At the bottom-most
layer is the judgement 〈w | a | Φ〉 . 〈w ′ | θ | Φ′ | B〉, whose
rules are given in Figures 15 and 16. This judgement is true
when the constraint context Φ may be simplified in a single
step to the constraint Φ′. The set w contains the witness
names of constraints in Φ which derive from user-supplied
type annotations. The simplifier uses this set to bias some
steps. The set a contains all type variables in Φ which may
be subject to further constraints as type inference proceeds.
That is, a type variable in Φ which is not in a must appear
only in Φ. This shall be used to enable some more aggressive
simplification steps. The output set w ′ contains the witness
names for constraints in Φ′ which are a direct consequence
of user-supplied constraints in Φ. The substitution θ con-
tains any substitution arising from simplifying an equality
constraint, and B contains bindings for witness variables in
Φ which were simplified away.



〈w | a | Φ〉 . 〈w ′ | θ | Φ′ | B〉

Equality Constraints

s1
〈w | a | w : b :=: b,Φ〉 . 〈∅ | Id | Φ | ·〉

b 6∈ fv(τ)
s2

〈w | a | w : b :=: τ,Φ〉 . 〈∅ | [b 7→ τ ] | [b 7→ τ ] Φ | ·〉

s3
〈w | a | w : τ :=: b,Φ〉 . 〈∅ | Id | w : b :=: τ,Φ | ·〉

w ′ fresh S = if w ∈ w then w ′ else ∅
s4

〈w | a | w : (τ) :=: (υ),Φ〉 .
〈S | Id | w ′ : τ :=: υ ++Φ | ·〉

w ′ fresh S = if w ∈ w then w ′ else ∅
s5

〈w | a | w : (τ1 -> τ2) :=: (υ1 -> υ2),Φ〉 .
〈S | Id | w ′ : τ :=: υ ++Φ | ·〉

s6
〈w | a | w : A :=: A,Φ〉 . 〈∅ | Id | Φ | ·〉

s7
〈w | a | w : :=: ,Φ〉 . 〈∅ | Id | false | ·〉

Figure 15: Simplifier (part 1 of 3)

Rules s1–s7 simplify equality constraints in the obvious way.
The somewhat ugly calculation of S in rules s4 and s5 is ac-
tually unnecessary, since constraints appearing within user-
supplied type annotations would never contain equality con-
straints. However, including this calculation shall ease the
path to subtype constraints in Section A.9.

The remaining rules tackle class constraints. These make
use of the ancillary definitions given in Figure 18, which we
shall explain as required.

Rule s8 attempts to collapse identical class constraints, or
satisfy a class constraint by projection from another class
constraint. The function closesups calculates the closure
under superclass projection of all class constraints of its ar-
gument. For example, given the declaration:

class D a => C a where a

then the constraint context:

w : C Int,w ′ : D Int

may be simplified to w : C Int with the binding w ′ =
ProjC1 w .

This rule, in common with most of the rules for class con-
straints, uses the set w to avoid simplifying away a class
constraint originating from a user-supplied type annotation.
However, it is perfectly valid for inferred class constraints to
be satisfied by a class constraint or instance scheme origi-
nating from such an annotation.

Class Constraints

w 6∈ w (W : C τ) ∈ closesups(Φ)
s8

〈w | a | w : C τ ,Φ〉 . 〈∅ | Id | Φ | w =W 〉

(class m ξ => C b where υ) ∈ decls
closed ∈ m w 6∈ w

improve(w | a | Φ | C τ) = false
s9

〈w | a | w : C τ ,Φ〉 . 〈∅ | Id | false | ·〉

(class m ξ => C b where υ) ∈ decls
closed ∈ m w 6∈ w

Ξ = improve(w | a | Φ | C τ) 6= false
s10

〈w | a | w : C τ ,Φ〉 . 〈∅ | Id | Ξ ++ (w : C τ ,Φ) | ·〉

(class m ξ′ => C a ′ where τ ′) ∈ decls
(closed ∈ m) ∨ (overlap 6∈ m) ∨ (fv(τ) = ∅) w 6∈ w

{w ′} = mininst(w | a | Φ | C τ)

(w ′ : forall b . ξ => C υ) ∈ Φ b ′ fresh

{θ} = mgus(fv(τ) | τ :=: [b 7→ b′] υ)

Ξ = named(θ ◦ [b 7→ b′] ξ)
s11

〈w | a | w : C τ ,Φ〉 .
〈∅ | Id | Ξ ++ Φ | w = w ′ θ b′ names(Ξ)〉

w 6∈ w fv(τ) = ∅
∅ = candidates(w | a | Φ | C τ)
(W : C τ) 6∈ closesups(Φ)

s12
〈w | a | w : C τ ,Φ〉 . 〈∅ | Id | false | ·〉

w 6∈ w (W : C υ) ∈ closesups(Φ)

(class m ξ => C a ′ where τ ′) ∈ decls

({b} -> {b′}) ∈ m c fresh
θ = [c 7→ τ ] ◦ [a ′ 7→ c] θ′ = [c 7→ υ] ◦ [a ′ 7→ c]

∀b′′ ∈ b . θ b′′ = θ′ b′′

Ξ = named({θ b′′ :=: θ′ b′′ | b′′ ∈ b′})
s13

〈w | a | w : C τ ,Φ〉 . 〈∅ | Id | Ξ ++ Φ | w =W 〉

w 6∈ w c fresh w ′ fresh

Ξ = named([b 7→ c] ξ)
Φ′ = {w ′′ : φ | (w ′′ : φ) ∈ Φ,w ′′ ∈ w}

〈w ++ names(Ξ) | a | w ′ : C [b 7→ c] υ, (Ξ ++ Φ′)〉 .∗

〈θ | Ξ ++ Φ′ | B〉
s14

〈w | a | w : forall b . ξ => C υ,Φ〉 .
〈∅ | θ | Φ | w = Λc . λnames(Ξ) . letw B in w ′〉

Figure 16: Simplifier (part 2 of 3)

Rules s9 and s10 both deal with improvement of a target
class constraint for a closed class. For example, given the
declaration:

class closed C a where a

and the constraint context:

Φ = w1 : C (Int, Bool),w2 : C (Int, Char),

w3 : C Int,w4 : C (a, b)



〈w | a | Φ〉 .∗ 〈w ′ | θ | Φ′ | B〉

sdone
〈w | a | Φ〉 .∗ 〈∅ | Id | Φ | ·〉

〈w | a | Φ〉 . 〈w ′ | θ | Φ′ | B〉
〈w ∪ w ′ | a ∪

⋃

a∈a
fv(θ a) | Φ′〉 .∗ 〈w ′′ | θ′ | Φ′′ | B ′〉

sstep
〈w | a | Φ〉 .∗ 〈w ′ ∪ w ′′ | θ′ ◦ θ | Φ′′ | B ′ ++ B〉

〈Φ0 | a | Φ1〉 .
c 〈θ | Φ2 | B〉

w = names(Φ0)
〈w | a | Φ0 ++Φ1〉 .

∗ 〈w ′ | θ | Φ3 | B〉
Φ4 = {w : ξ | (w : ξ) ∈ Φ3,w 6∈ w ∪ w ′}

simp
〈Φ0 | a | Φ1〉 .

c 〈θ | Φ4 | B〉

Figure 17: Simplifier (part 3 of 3)

where w1, w2 and w3 are in w , then improvement allows the
class constraint C (a, b) to be improved to C (Int, b). This
involves three steps.

Firstly, all of the candidate instance schemes which could
possibly satisfy C (a, b) are found, and their instantiations
collected using the function candidates, defined in Figure 18.
This function determines if a particular instance scheme may
match the target class constraint by recursively invoking the
simplifier and rejecting those instance schemes whose con-
straints may be simplifed to false. Notice that since the
simplifier is incomplete for unsatisfiable constraints the set
of candidate instance schemes may be approximated by a
larger set than necessary, but this is sound. For the ex-
ample, this yields the two candidates C (Int, Bool) and
C (Int, Char). Notice also that we need only look in Φ for
candidate instance schemes, and we need not consider the
instances schemes available by projection. This is because
no class may inherit from a closed class.

Secondly, the least-common generalization [16] of all the can-
didates is found using the function lcg , defined in Figure 19.
For the example, this yields C (Int, c), for fresh type vari-
able c.

(The careful reader will notice that lcg does not yield a least
generalization when types contain common subexpressions.
For example:

lcg({(Int, Int), (Bool, Bool)}) = (a, b)

instead of (a, a). Thus rule s9 won’t always improve a
constraint as much as possible. Thankfully, however, the
simplifier correctness depends only on the result being some
generalization, and not the least such.)

Finally, the least common generalization type is unified with
the target class constraint.

These three steps are brought together by the function
improve of Figure 18. This function either yields false if no
candidates were found (and thus the target class constraint
cannot be satisfied by any known instance schemes), or a set

closesup(W : C τ) =
closesups({ProjCi W : [a 7→ τ ] φi | 1 ≤ i ≤ n})

∪ {W : C τ}
where (class m φ => C a where υ) ∈ decls

closesup(W : φ) = {W : φ}

closesups(Φ) =
⋃

{closesup(W : φ) | (W : φ) ∈ Φ}

candidates(w | a | Φ | C τ) =






















(w | θ τ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(w : forall a . ξ => C υ) ∈ Φ,
w ∈ w ,

b fresh,

Ξ = named([a 7→ b] ξ) ++ τ :=: [a 7→ b] υ,
〈w | a | Φ++ Ξ〉 6 .∗〈 | | false | 〉























improve(w | a | Φ | C τ) =
let S = candidates(w | a | Φ | C τ)
in if S = ∅ then false

else let (υ′) = lcg({(υ) | ( | υ) ∈ S})
in τ :=: υ′

leqinst(Φ | w | w ′)⇐⇒
〈{w ′} | fv(ξ′) ∪ fv(ξ) | w : ξ,w ′ : ξ′〉 .∗ 〈 | | w ′ : ξ′ | 〉

where (w : ξ) ∈ Φ and (w ′ : ξ′) ∈ Φ

mininst(w | a | Φ | C τ) =














w

∣

∣

∣

∣

∣

∣

∣

∣

S = candidates(w | a | Φ | C τ),
(w | ) ∈ S ,
∀w ′ ∈ S . leqinst(Φ | w ′ | w) =⇒
leqinst(Φ | w | w ′)















Figure 18: Ancillary functions for constraint simplification

of equality constraints to effect the third step given above.
Rule s9 applies in the former case, and rule s10 in the latter.

Rule s11 eliminates a class constraint for a closed class when
the set of candidate instance schemes has a least element.
The ordering amongst instance schemes is decided by the
function leqinst of Figure 18. The order relation induced
by leqinst is a subset of that used by Rule oinst2 of Fig-
ure 11. Instead of invoking the entailment judgement, leqinst
recursively invokes the simplifier to check if the smaller in-
stance scheme may be simplified away using the larger in-
stance scheme. (As in type inference rules alet and ainst,
we assume the simplier trys as hard as it can with these
constraints, otherwise a least instance may never be found.)
The function mininst uses candidates and leqinst to find all
the minimal instance schemes applicable to the target class
constraint. Rule s11 then only applies when mininst yields
a singleton set.

One subtlety with rule s11 remains. To illustrate, consider
the type declaration:

class closed C a where a

and the constraint context:

Φ = w1 : forall a . C a,w2 : C Int,w3 : C b

where w1 and w2 are in w . Notice that w2 : C Int is the



lcg({τ}) = τ

lcg({A,A} ∪ S) = lcg({A} ∪ S)
lcg({a, a} ∪ S) = lcg({a} ∪ S)

lcg({(τ), (υ)} ∪ S) = lcg({(lcg({τ, υ}))} ∪ S)
lcg({(τ -> υ), (τ ′ -> υ′)} ∪ S) =

lcg({lcg({τ, τ ′}) -> lcg({υ, υ′})} ∪ S)
lcg( ) = a where a fresh

Figure 19: The least-common-generalisation function lcg

unique minimal instance scheme satisfying C b, suggesting b
should be bound to Int, and w3 bound to w2. However, b
may later be constrained to some type other than Int, in
which case the instance scheme forall a . C a would be the
only way to satisfy C b.

To prevent such a premature commitment to a least instance
scheme, rule s11 is only applicable when the target class con-
straint is subsumed by the least matching instance scheme.
This test is implemented using the function mgus, already
defined in Figure 9. Rule s11 invokes mgus with all of the
free type variables of the target class constraint as skolemised
variables, which effectively prevents their substitution. In
the above example, the rule would find

mgus({b} | b :=: Int) = ∅

and thus the unsound simplification would not occur.

Conveniently, rule s11 subsumes the traditional Haskell rule
for simplifying class constraints for non-closed and non-
overlapping classes. In this case, the invocation of candidates
within mininst yields either the empty set or a singleton set,
which is trivially ordered. Furthermore, rule s11 is also ap-
propriate for monomorphic class constraints of overlapping
classes.

Rules s12 signals failure if there is no way of eliminating
a monomorphic class constraint, either by projection from
another constraint, or by using an instance scheme. Though
this rule mimics Haskell’s treatment of monomorphic class
constraints, it is not entirely consistent with the view that
non-closed classes may have their instance schemes scattered
arbitrarily across modules. Nevertheless, this rule is vital to
the success of our encoding of subtyping constraints within
λO.

Rule s13 exploits any functional dependency annotations to
merge two class constraints which agree on their functional
argument types. The rule simply unifies their functional
result types.

Finally, rule s14 simplifies a higher-order constraint
forall b . ξ => C υ by extending the current constraint
context by ξ and C υ (suitably named), and attempting to
(recursively) simplify away C υ. If this succeeds, the appro-
priate witness function may be constructed by abstracting
over the witness names assigned to ξ. Care must be taken
to ensure that C υ is the only “simplifiable” constraint, i.e.,
that all other constraints in the recursive invocation of the
simplifier are marked as user-supplied constraints.

Of course, in a practical implementation of the simplifier,
it is impossible to predict whether the recursive invocation

of the simplifier needed by rule s14 would succeed. Hence
the implementation must support backtracking. Since this
is potentially costly, rule s14 should only be applied when
absolutely necessary, i.e., when the type inference rules alet

and ainst would otherwise fail.

Two more judgements are necessary to complete the ma-
chinery for constraint simplification. The judgement 〈w |
a | Φ〉 .∗ 〈w ′ | θ | Φ′ | B〉, is true when Φ may be
simplified to Φ′ by any sequence of single-step simplifica-
tions. Its two rules appear in Figure 17. The judgement
〈Φ0 | a | Φ1〉 .

c 〈θ | Φ2 | B〉 is true when Φ1 may be simpli-
fied to Φ2, assuming the user-supplied constraints in Φ0. Its
single rule, also in Figure 17, simply collapses Φ0 and Φ1, in-
vokes the above judgement, and extracts from the result all
constraints which are not a consequence of any user-supplied
constraints.

A.7 Incompleteness of Simplification

The simplifier is incomplete with respect to the notion of
constraint entailment in a number of ways.

Firstly, to keep the complexity of constraint simplification
manageable, the simplifier only considers closed class con-
straints in isolation. To see how this effects type inference,
consider the program:

class closed C a where a

class closed D a where a

instance C (Int -> Int) = ... in

instance C (Bool -> Int) = ... in

instance D (Int -> Int) = ... in -- (*)

instance D (Char -> Int) = ... in

let f x = C x + D x in

f 1

Even though f is well-typed with type Int -> Int, type in-
ference only manages to assign f the type scheme:

forall a . (C (a -> Int), D (a -> Int)) => a -> Int

The simplifier could only discover that

w1 : C (a -> Int),w2 : D (a -> Int)

entails that a must be Int if it were to systematically enu-
merate all combinations of instance schemes for C and D.

As a slight variation, consider the above program with the
line marked (*) replaced by:

instance D (String -> Int) = ... in

Now f is ill-typed, but type inference continues to assign f

the above type scheme. The program shall be rejected as
ill-typed only when the application of f to 1 is considered.

The second source of incompleteness arises as a consequence
of the first. When constructing a set of candidate instances,
those instances which would lead to an unsatisfiable con-
straint context should be ignored. However, since we use
the simplifier itself to test for unsatisfiability, and the sim-
plifier is incomplete, the set of candidate instance schemes
may be larger than necessary. This, in turn, may prevent
the improvement or elimination of a class constraint.



A.8 Finiteness and Termination

For this workshop paper we won’t present any complexity
results for deciding entailment or simplification. However,
we shall at least briefly consider their decidability.

As presented so far, λO has adopted a somewhat laisser faire
attitude to instance schemes. We have said nothing to reject
instance schemes such as forall a . C a => C a, or pairs such
as forall a . D a => C a and forall a . C a => D a. How-
ever, as mentioned in Section 5.5, it’s easy to see such
schemes could lead to infinite derivations within the `c

judgement, or infinite loops within the simplifier.

To avoid this we require that in an instance scheme
forall a . ξ => C τ , at least one τi must be of the form
F υ for some type constructor F , and that each ξi is of the
form D b. Though draconian, these restrictions are easy to
enforce and easy to motivate.

Alas, for closed classes even this restriction is not strong
enough to prevent the simplifier from looping. For example,
assume the type declaration:

class closed C a where a -> a

and the term:

instance a . C a => C [a] = map C

in \x . C x

Type inference shall construct a constraint context contain-
ing

w : forall a . C a => C [a]

(arising from the instance declaration), and

w ′ : C b

(arising from the application of C). Notice that the instance
scheme is legal by the rules given above.

Now consider the action of the simplifier on this constraint
context. Since C is closed, the constraint C b may be im-
proved to C [b’] for fresh b’ using rule s10. This constraint
may then be eliminated using rule s11 to yield the new con-
straint context:

w : forall a . C a => C [a],w ′′ : C b’

Hence the simplifier loops.

The culprit is improvement: even though applying any in-
stance scheme would lead to a constraint context contain-
ing smaller types, improvement may causes some types to
grow again. In order to prevent such loops, we must impose
a much stronger restriction on instance schemes for closed
classes: we disallow any instance scheme which mentions a
closed class in its context.

Thankfully, this restriction does not effect the encoding of
member constraints.

A.9 Adding Subtype Constraints

In this section we’ll augment λO with subtyping constraints.
Though not strictly necessary for encoding the methods of
.NET classes, subtyping constraints make it possible to en-
code covariant methods and some aspects of generic classes.

Atoms r , s ::= a | A
Type decls decl ::= newtype A :<: B | . . .
Prim constraints φ, ξ ::= τ :=: υ | τ :<: υ | . . .

Witness terms W ::= True Trivial witness
| . . .

Figure 20: Changes to λO source and run-time syntax for
subtyping constraints

Figure 20 presents the augmented syntax. Atoms, ranged
over by r and s, are type variables or newtype names.
Though they do not appear within the source syntax, they
shall be necessary when we consider entailment for subtype
constraints.

Newtype declarations now take the form newtype A :<: B .
This declares A to be a newtype which is a subtype of each
of Bi , and is intended to capture the subtyping hierarchy
between classes A and each Bi . We shall assume all the
newtype declarations of a program form a partially ordered
set. This rules out cyclic definitions such as:

newtype A :<: B

newtype B :<: A

However, we do not require this poset to be a lattice, nor
even an upper semi-lattice. In particular, we do not assume
any two pairs of newtypes have a lub or glb, nor assume there
is a least or greatest newtype. This is a weaker assumption
than typically adopted in the literature (for example [10]),
but is necessary to support class hierarchies.

Primitive constraints are augmented by equality constraints
(τ :=: υ) and subtype constraints (τ :<: υ). Subtype con-
straints have the usual meaning, and equality constraints
are convenient shorthand for pairs of subtype constraints.

Equality and subtype constraints are witnessed by the trivial
witness True. Of course, no such witness is required at run-
time, and we shall elide these witnesses wherever possible.

Figure 21 refines the definitions of inheritable and
generalizable to include the new primitive constraint forms.
This figure also defines helper functions for encoding and
querying the subtype hierarchy as a poset.

The largest addition to λO is two new entailment relations:
Φ `s τ :<:υ for deciding subtype entailment, and Φ `q τ :=:υ

for deciding equality entailment. As is standard [22], these
entailment relations assume Φ is a conjuction of atomic sub-
type constraints. Thus, deciding subtype entailment for an
arbitrary constraint Φ requires all the equality and non-
atomic constraints in Φ to be “normalized.” Figure 23 de-
fines the function normeqsubs which, given an arbitrary con-
straint Φ, calculates the most general matching substitution
for Φ (see [22] for details), applies this substitution, and ex-
tracts the remaining atomic subtype constraints. Most of
the work is done by the functions match and mgus (already
defined in Figure 9).

The entailment relation itself is fairly standard [10]. We
do not test for unsatisfiability of Φ, hence given the type
declaration:



eqs(Φ) = {w : τ :=: υ | (w : τ :=: υ) ∈ Φ}
subs(Φ) = {w : τ :<: υ | (w : τ :<: υ) ∈ Φ}

eqsubs(Φ) = eqs(Φ) ∪ subs(Φ)

inheritable(τ :=: υ)⇐⇒ tt

inheritable(τ :<: υ)⇐⇒ tt

generalizable(τ :=: υ)⇐⇒ tt

generalizable(τ :<: υ)⇐⇒ tt

newtypes = {A | (newtype A :<: B) ∈ decls}

A ≤ B ⇔ (A,B) ∈ tranrefclosure(G)

where G =

{

(A,B ′)

∣

∣

∣

∣

(newtype A :<: B) ∈ decls,

B ′ ∈ B

}

lub(A) = B
where ∀i . Ai ≤ B
and ∀B ′ ∈ newtypes . (∀i . Ai ≤ B ′) =⇒ B ≤ B ′

glb(A) = B
where ∀i . B ≤ Ai

and ∀B ′ ∈ newtypes . (∀i . B ′ ≤ Ai) =⇒ B ′ ≤ B

maximals =

{

A ∈ newtypes

∣

∣

∣

∣

∀B ∈ newtypes .
A ≤ B =⇒ B ≤ A

}

minimals =

{

A ∈ newtypes

∣

∣

∣

∣

∀B ∈ newtypes .
B ≤ A =⇒ A ≤ B

}

Figure 21: Additional ancillary definitions for subtype con-
straints

newtype A :<: B

the entailment:

a :<: A, B :<: a `s
() :<: ((), ())

is not provable. Furthermore, since we do not assume that
the primitive subtype relation ≤ is a lattice, some rules must
be careful to check that lubs and glbs of types actually exist.

We may now augment the class entailment judgement Φ `c

φ ↪→ W with two additional rules for when φ is a subtype
or equality constraint. Rules csub and ceq, defined in Fig-
ure 24, first collect all equality and subtype constraints avail-
able either directly or by projection from Φ. They then nor-
malize these constraints, and invoke the appropriate primi-
tive entailment judgement.

The witness order must also be augmented to include the
new witness True.

One particularly troublesome consequence of introducing
general subtype constraints is that testing for equality of
types, which so far has been syntactic, must now be done
by testing for entailment of an equality constraint. Thus,
we must now take care to replace all of the implicit tests for
equality in λO with explicit tests. Such a test occurs in the
entailment rule cinst: Figure 24 contains the refined rule.
The type checking rules app and inst must be similarly re-
fined: these are given in Figure 25.

All that remains is to refine the simplifier to deal with sub-

Φ `s τ :<: υ

A ≤ B
staut

Φ `s A :<: B

sref
Φ `s

τ :<: τ

Φ `s r :<: r ′ Φ `s r ′ :<: s
stran

Φ `s r :<: s

(r :<: s) ∈ Φ
sid

Φ `s r :<: s

Φ `s
τ :<: υ

stuple
Φ `s

(τ) :<: (υ)

Φ `s
τ
′ :<: τ Φ `s

υ :<: υ
′

sfunc
Φ `s (τ -> υ) :<: (τ ′ -> υ′)

Φ `s A1 :<: a Φ `s A2 :<: a
B = lub({A1,A2}) well-defined

slub
Φ `s B :<: a

Φ `s a :<: A1 Φ `s a :<: A2
B = glb({A1,A2}) well-defined

sglb
Φ `s a :<: B

Φ `q τ :=: υ

Φ `s A :<: a A ∈ maximals
emax

Φ `q a :=: A

Φ `s a :<: A A ∈ minimals
emin

Φ `q a :=: A

Φ `s
τ :<: υ Φ `s

υ :<: τ
eeq

Φ `q
τ :=: υ

Figure 22: Atomic subtype and equality entailment. Φ
contains only atomic subtype constraints.

type constraints. The additional rule for single-step simpli-
fications are given in Figures 26 and 27.

Rules s15–s21 implement simplifications for structural sub-
typing and matching, and eliminate trivial subtype con-
straints.

Rule s22 eliminates subtype constraints which are a conse-
quence of the transitive closure of other subtype constraints.

Rule s23 detects cycles, replacing the cyclic subtype con-
straints with equality constraints. To illustrate, assume the
type definition:

newtype A :<: B



match(true) = true

match(a :<: (τ),Φ) = a :=: (b),match(b :<: τ ++Φ)

where a 6∈ fv((τ)) and b fresh

match((τ) :<: a,Φ) = a :=: (b),match(τ :<: b ++Φ)

where a 6∈ fv((τ)) and b fresh
match(a :<: (τ -> υ),Φ) =

a :=: (b -> b′),match(τ :<: b, b′ :<: υ,Φ)
where a 6∈ fv(τ -> υ) and b, b ′ fresh

match((τ -> υ) :<: a,Φ) =
a :=: (b -> b′),match(b :<: τ, υ :<: b′,Φ)
where a 6∈ fv(τ -> υ) and b, b ′ fresh

match(τ :<: τ,Φ) = match(Φ)
match((τ) :<: (υ),Φ) = match(τ :<: υ ++Φ)
match((τ -> υ) :<: (τ ′ -> υ′),Φ) =

match(τ ′ :<: τ, υ :<: υ′,Φ)
match(r :<: s,Φ) = r :<: s,match(Φ)

normeqsubs(θ | Φ) =
case mgus(∅ | eqs(Φ)) of
∅ → (Id | false)
{θ′} → let Φ′ = match(θ′ subs(Φ))

in if Φ′ = Φ then (θ | Φ)
else normeqsubs(θ′ ◦ θ | θ′ Φ′)

Figure 23: The function normeqsubs

Then the unsatisfiable constraint:

a :<: A, B :<: a

which appears to the simplifier (because of the revised defi-
nition of .c , see below) as:

a :<: A, A :<: B, B :<: a

may be rewritten by this rule to:

a :=: A, A :=: B

This constraint may in turn be rewritten by the rules for
equality constraints to false.

Rule s24 detects subtype constraints which cannot be sup-
ported by the primitive subtype relation. For example, as-
suming the declarations:

newtype A

newtype B

then the constraint:

w1 : A :<: a,w2 : a :<: B

cannot be supported, and is simplified to false.

Rule s25 and s26 exploit the lub and maximality proper-
ties of the primitive subtype poset. Notice that there are
no analogous rules for glb and minimality, since the primi-
tive subtype relation may always be extended downwards by
additional newtype declarations.

Rules s27 and s28 eliminate subtype constraints involving a
unique type variable. Similarly, rule s29 takes the transitive
closure of a set of subtype constraints whenever this would

Φ `W ≤W ′

Φ ` True ≤ True

Φ `c φ ↪→W

Φ′ = {ξ | (Φ `p ξ ↪→W )}
(θ | Ξ) = normeqsubs(eqsubs(Φ′))

Ξ `s θ τ :<: θ υ
csub

Φ `c
τ :<: υ ↪→ True

Φ′ = {ξ | (Φ `p ξ ↪→W )}
(θ | Ξ) = normeqsubs(eqsubs(Φ′))

Ξ `q θ τ :=: θ υ
ceq

Φ `c
τ :=: υ ↪→ True

Φ `p forall a . φ => C υ ↪→W

Φ `c [a 7→ υ′] φ ↪→W ′

Φ `c [a 7→ υ′] υ :=: τ
cinst

Φ `c C τ ↪→W υ′ W ′

Figure 24: Changes to witness ordering and class entail-
ment for subtype constraints

∆ | Φ | Γ ` t : τ ↪→ T

∆ | Φ | Γ ` t : υ ↪→ T
∆ | Φ | Γ ` u : υ′ ↪→ U
Φ `e υ :=: (υ′ -> τ)

app
∆ | Φ | Γ ` t u : τ ↪→ T U

(class m ξ′ => C c where υ′) ∈ decls

C ∈ fcv(t) a ∩ b ∩ c = ∅ w fresh

Ξ = named(ξ) a ++ b ` Ξ constraint a ++ b ` υ type

φ = forall b . ξ => C υ gens(Ξ) = Ξ
(Γ 6= ·) ∨ (inhs(Ξ) 6= Ξ) =⇒ local ∈ m

inhs(Φ) ++ Ξ `e [c 7→ υ] ξ′ ↪→W

a ++ b | inhs(Φ) ++ Ξ | Γ ` u : τ ′ ↪→ U
Φ `e τ ′ :=: [c 7→ υ] υ′

Φ′ = extend(Φ | w : φ) well-defined
a | Φ′ | Γ ` t : τ ↪→ T

inst
a | Φ | Γ `
instance b . ξ => C υ = u in t : τ ↪→

letw w = Λb . λnames(Ξ) . C W U in T

Figure 25: Changes to well-typing rules for subtype con-
straints

eliminate a type variable which otherwise cannot be subject
to further constraints.

Finally, rule s30 adds to the current constraint context any
equality and subtype constraints available by projection.
Clearly this rule must be used with care, as it grows the
size of the current constraint context arbitrarily.



Simple Subtype Constraints

s15
〈w | a | w : r :<: r ,Φ〉 . 〈∅ | Id | Φ | ·〉

b′ 6∈ fv((τ)) b fresh w ′ fresh
S = if w ∈ w then {w ′} else ∅

s16
〈w | a | w : b′ :<: (τ),Φ〉 .
〈S | Id | w ′ : b′ :=: (b),w : b′ :<: (τ),Φ | ·〉

b′ 6∈ fv((τ)) b fresh w ′ fresh
S = if w ∈ w then {w ′} else ∅

s17
〈w | a | w : (τ) :<: b′,Φ〉 .
〈S | Id | w ′ : b′ :=: (b),w : (τ) :<: b′,Φ | ·〉

b′ 6∈ fv(τ1 -> τ2) b fresh w ′ fresh
S = if w ∈ w then {w ′} else ∅

s18
〈w | a | w : b′ :<: (τ1 -> τn),Φ〉 .
〈S | Id | w ′ : b′ :=: b1 -> b2,w : b

′ :<: (τ1 -> τn),Φ | ·〉

b′ 6∈ fv(τ1 -> τ2) b fresh w ′ fresh
S = if w ∈ w then {w ′} else ∅

s19
〈w | a | w : (τ1 -> τ2) :<: b

′,Φ〉 .
〈S | Id | w ′ : b′ :=: b1 -> b2,w : (τ1 -> τ2) :<: b

′,Φ | ·〉

w ′ fresh S = if w ∈ w then w ′ else ∅
s20

〈w | a | w : (τ) :<: (υ),Φ〉 .
〈S | Id | w ′ : τ :<: υ ++Φ | ·〉

w ′ fresh S = if w ∈ w then w ′ else ∅
s21

〈w | a | w : (τ1 -> τ2) :<: (υ1 -> υ2),Φ〉 .
〈S | Id | w ′ : υ :<: τ ++Φ | ·〉

Figure 26: Additional simplifier rules for subtype con-
straints (part 1 of 2)

Figures 26 and 27 are also interesting for the rules they ex-
clude. Applicative languages with subtyping typically allow
a type coercion at every function application. For exam-
ple, if B ≤ A and f :: A -> B then f may be applied to an
argument of type B by default. As a result, a function of
type:

forall a :<: A, B :<: b => a -> b

may be applied exactly where a function of type:

A -> B

may be applied, so the former type is simply more verbose
than the later. Simplifiers for “subtyping everywhere” lan-
guages exploit this situation by including rules to minimize
covariant type variables, and maximize contravariant vari-
ables. Indeed, these rules form a cornerstone of the simpli-
fier.

However, λO is not a “subtyping everywhere” language: the
type checking rule app requires argument types to match

Advanced Subtype Constraints

1 ≤ n wn 6∈ w
s22

〈w | a | w1 : r1 :<: r2, . . . ,wn−1 : rn−1 :<: rn ,
wn : r1 :<: rn ,Φ〉 .

〈∅ | Id | w1 : r1 :<: r2, . . . ,
wn−1 : rn−1 :<: rn ,Φ | ·〉

2 ≤ n
s23

〈w | a | w1 : r1 :<: r2, . . . ,wn : rn :<: r1,Φ〉 .
〈∅ | Id | w1 : r1 :=: r2, . . . ,

wn−1 : rn−1 :=: rn ,Φ | ·〉

0 ≤ n A 6≤ B
s24

〈w | a | w1 : A :<: r1, . . . ,wn : rn :<: B ,Φ〉 .
〈∅ | Id | false | ·〉

n > 1 B = lub(A) exists w ′′ fresh
S = if w ′ ⊆ w then {w ′′} else ∅

s25
〈w | a | w ′

1 : A1 :<: b, . . . ,w
′
n : An :<: b,Φ〉 .

〈S | Id | w ′′ : B :<: b,Φ | ·〉

A ∈ maximals
s26

〈w | a | w : A :<: b,Φ〉 . 〈∅ | Id | w : A :=: b,Φ | ·〉

b 6∈ a ∪ fv(Φ)
s27

〈w | a | w : r :<: b,Φ〉 . 〈∅ | Id | Φ | ·〉

b 6∈ a ∪ fv(Φ)
s28

〈w | a | w : b :<: r ,Φ〉 . 〈∅ | Id | Φ | ·〉

b 6∈ a ∪ fv(Φ) 0 < m,n w ′′ fresh
S = if w ′ ⊆ w then w ′′ else ∅

s29
〈w | a | w ′

1 : r1 :<: b, . . . ,w
′
m : rm :<: b,

w ′
m+1 : b :<: s1, . . . ,w

′
m+n : b :<: sn ,Φ〉 .

〈S | Id | (++i,j (w
′′
i,j : ri :<: sj )) ++ Φ | ·〉

Ξ = named(anon(eqsubs(closesup(w : C τ))))
s30

〈w | a | w : C τ ,Φ〉 .
〈names(Ξ) | Id | w : C τ , (Φ ++ Ξ) | ·〉

Figure 27: Additional simplifier rules for subtype con-
straints (part 2 of 2)

Φ2 = named(

{

A :<: B ′

∣

∣

∣

∣

(newtype A :<: B) ∈ decls,

B ′ ∈ B

}

)

w = names(Φ0 ++Φ2)
〈w | a | Φ0 ++Φ2 ++Φ1〉 .

∗ 〈w ′ | θ | Φ3 | B〉
Φ4 = {w : ξ | (w : ξ) ∈ Φ3,w 6∈ w ∪ w ′}

simp
〈Φ0 | a | Φ1〉 .

c 〈θ | Φ4 | B〉

Figure 28: Changes to simplifer rules for subtype con-
straints



function types, and Figures 7 and 25 don’t include any non-
syntax directed rule for coercion. As a result, the above two
function types are not equivalent, and our simplifier should
not, in general, minimize or maximize type variables.

These single-step simplifier rules assume the primitive sub-
type relation has been internalized within the constraint con-
text being simplified. Figure 28 refines the definition of the
top-level simplifier judgement to include these constraints
upon each invocation of the simplifier.

A.10 Weak Completeness

We’re still pondering how to formulate a suitably weak no-
tion of completeness of type inference with respect to type
checking for λO. Particularly troublesome is capturing the
notion of closed classes.

For example, consider the program:

class closed C a where a

instance C Int = 1 in

let f x = C + 1 in

f 1

This program has two well-typing derivations, each assigning
a different type scheme to f:

f :: forall a . (C a, Num a) => a -> a -- (1)

f :: Int -> Int -- (2)

The program also has two type inference derivations, as-
signing the same two type schemes to f. At first glance this
seems wrong: surely type (1) is a principal type for f, and

thus inferring type (2) shows inference is incomplete?

However, what’s at fault here are not the rules of type infer-
ence, but rather the notion of principal type: The instantia-
tion ordering amongst type schemes must be relative to the
available instances of closed classes. That is to say, closed
classes impose the invariant:

“The set of instances of closed class C available
at the point of definition of f is equal to the set
available at each occurrence of f.”

Hence, the instantiation ordering must be chosen so as to
quotient the type schemes of f appropriately. In our exam-
ple, we should find that, relative to the constraint C Int, the
two type schemes for f are equivalent under the instantiation
ordering.

Using this machinery, we hope to be able to show that type
inference is weakly complete: If inference succeeds, the in-
ferred type is principal under the refined instantiation or-
dering.

Of course, we have already seen in Section 5.7 that type in-
ference is not strongly complete: Type inference may reject
programs which have valid well-typing derivations. However,
we feel this deficiency, which is already present in Haskell,
is easier to live with. Given sufficiently informative type
errors, the programmer always has recourse to type annota-
tions in order to encourage a recalcitrant complier to accept
her program.


