

Cloud-based Exploration of Complex Ecosystems for Science, Education and Entertainment

Ilmi Yoon^{1,2}, Sangyuk (Paul) Yoon¹, Gary Ng², Hunvil Rodrigues², Sonal Mahajan², and Neo D. Martinez¹

¹Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, California, USA

²Computer Science Department, San Francisco State University, San Francisco, California, USA

Ecosystems: Complex Ecological Networks Little Rock Lake Food Web: 92 Species (S) & 997 Links (L) Connectance (C) = L / S^2

Martinez 1991 Ecological Monographs

Niche Model: S & C inputs

- Rule 1: Each of S species gets uniformly random n_i • 0 < n_i < 1
- Rule 2: Each S gets assigned a Random feeding range r_i
 - $o \le r_i \le i$; beta function mean of 2*C* multiplied by n_i
- Rule 3: Range is placed: uniformly random center: c_i • $r_i/2 < c_i < n_i$

Williams and Martinez 2000 Nature

Paleofoodwebs

S = 85, L = 559, C = 0.077TL = 2.99, MaxTL = 5.15

S = 33, L = 99, C = 0.091TL = 2.84, MaxTL = 4.36 S = 142, L = 771, C = 0.038TL = 2.42, MaxTL = 3.78

Compilation and **Network Analyses** of Cambrian Food Webs Dunne, Williams, Martinez, Wood & Erwin et al. 2008 PLoS Biology

S = 48, L = 249, C = 0.108TL = 2.72, MaxTL = 3.78

Niche Model

- Generates Realistic Network Architectures
 - Effects of *S* and *C* on network structure
- Provides a Benchmark
- Scaffolding for Network Dynamics

Time evolution of species' biomasses in a food web result from:

- Basal species grow via a carrying capacity, resource competition, or Tilman/Huisman models
- Other species grow according to feeding rates and assimilation efficiencies (e_{ii})
- \bullet All species lose energy due to metabolism (x_i) and consumption
- Functional responses determine how consumption rates vary
- Rates of production and metabolism (x_i) scale with body size
- Metabolism specific maximum consumption rate (y_{ij}) scales with body type

Yodzis & Innes (1992) Body size and consumer-resource dynamics. *Amer. Nat.* Williams & Martinez (2004) Stabilization of chaotic and non-permanent food web dynamics. *Eur. Phys. J. B*

2009 PNAS 106:187-191

SAV

Application: Species loss

Simple prediction of interaction strengths in complex food webs

Eric L. Berlow^{a,b,c,1,2}, Jennifer A. Dunne^{c,d}, Neo D. Martinez^c, Philip B. Stark^e, Richard J. Williams^{c,f}, and Ulrich Brose^{b,c,2}

^aUniversity of California, Merced, Sierra Nevada Research Institute, Wawona Station, Yosemite National Park, CA 95389; ^bDarmstadt University of Technology, Department of Biology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany: Pacific Ecoinformatics and Computational Ecology Lab, 1604 McGee Ave., Berkeley, CA 94703; ^dSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; ^eUniversity of California Berkeley, Department of Statistics, Berkeley, CA 94703; ^dSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; ^eUniversity of California Berkeley, Department of Statistics, Berkeley, CA 9470-3860; and ^fMicrosoft Research Ltd, 7 J. J. Thomson Avenue, Cambridge CB30FB United Kingdom

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved November 10, 2008 (received for review July 15, 2008)

Application: Dynamics of a Specific System

Lake Constance

Germany, Austria, Switzerland

Rich empirical data:

S = 24

Trophic network data Weekly biomass & productivity data, 10-20 yrs Metabolic data & body size

Run generic to specific versions of the ATN model and compare output to biomass time series data

(i.e., idealized system, generalized lake pelagic system, highly constrained system)

Boit, Martinez, Williams & Gaedke (2012) Mechanistic Theory and Modeling of Lack Constance. Ecology Letters

Lake Constance

• 24 Species, 104 Links, Conectance = 0.18

Biomass relative LC

Average Year

Lake Constance Biomass: Model-Data Similarity = 0.82

Ecological Forecasting

- Parameterize Network Model for System of Interest
 - Network Structure
 - Body Size and Type
- Tune Parameters to Historical Record
- Update Model with Realtime Data
- Continue machine learning

Forecasting Example: Humans

- Coupled Human-Natural Networks
- Aleuts on the Sanak Archipeligo

Forecasting Example: Fisheries

- $\dot{E} = \mu (pqB_i c_o) E$
 - *E* is fishing effort for species *I*
 - *p* is the price per unit catch
 - *q* is the "catchability coefficient",
 - *B_i* is the biomass density of exploited species *i*,
 - *c*_o is the cost per unit effort,
 - *μ* is market openness
 - *E* increases with profit
 - *E* decreases with loss

Forecasting Example: Fisheries

Forecasting Example: Fisheries

Cyberinfrastructure: Network3D

File Network Model/Analysis Dynamics View My Networks Help

Cyberinfrastructure for Ecological Networks

- Application as a Service
- Ease
 - Network3D written in C#
- Scalable
 - Azure Cloud
- Accessible
 - Web Services
 - Browser Client
 - Data
 - Game (WoB)

Network3D on Azure

 Additional opportunities
for parallel computing
within Azure

Index No.	Food web	Node No.	Link No.
1	St.Martin Island	44	218
2	Coachella	30	290
3	Glass	75	113
4	Bridge Brook Lake	75	553
5	Flack	48	702
6	Hawkins	87	126
7	Seregenti	86	547
8	Everglades	65	652
9	Elverde	156	1510

WoB: World of Balance

WoB: World of Balance

<u>World of Balance YouTube Clip</u>

Games and Research Simulations
Easy to conduct
Results Stored and Accessible
Computer Science

Integration with other Data
Empirical Observations (e.g., L. Constance, Fisheries)
Other simulations (e.g., Matlab)
Realtime observations (e.g., light and rain measures)

Solutions Obtained

- Behavior, Stability and Robustness of Ecological Networks Understanding and management of Human-Natural Networks
- Social Networks/Public Appreciation of Ecosystems
 - Ecological and Economic Interdependence
 - One's own "place in the world"

Games and Research Simulations

Easy to conduct Results Stored and Accessible Computer Science

Integration with other Data

Empirical Observations (e.g., L. Constance, Fisheries) Other simulations (e.g., Matlab) Realtime observations (e.g., light and rain measures)

Solutions Obtained

Behavior, Stability and Robustness of Ecological Networks Understanding and management of Human-Natural Networks Social Networks/Public Appreciation of Ecosystems Ecological and Economic Interdependence/ One's "place in the world"

