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• CumuloNimbo aims at solving the lack of scalability of transactional 

applications that represent a large fraction of existing applications. 

• CumuloNimbo aims at conceiving, architecting and developing a 

transactional, coherent, elastic and ultra scalable Platform as a Service.  

• Goals: 

– Ultra scalable and dependable -- able to scale from a few users to 

many millions of users while at the same time providing continuous 

availability; 

– Support transparent migration of multi-tier applications (e.g. Java 

EE applications, relational DB applications, etc.) to the cloud with 

automatic scalability and elasticity. 

– Avoid re-programming of applications and non-transparent 

scalability techniques such as sharding. 

– Support transactions for new data stores such as cloud data stores, 

graph databases, etc. 

 

Goals 
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• Main Challenges: 

– Update ultra-scalability (million update transactions per 

second and as many read-only transactions as needed). 

– Strong transactional consistency. 

– Non-intrusive elasticity. 

– Inexpensive high availability. 

– Low latency. 

• CumuloNimbo goes beyond the State of the Art by scaling 

transparently transactional applications to very large rates 

without sharding, the current practice in Today’s cloud. 

 

Challenges 
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• Guarantees transactional coherence across all tiers: 

application server, object cache and database. 

• No constraints on applications, transactional processing 

and data, no required a priori knowledge. 

• Fully transparent: 

– Syntactically: no changes required in the application. 

– Semantically: equivalent behavior to a centralized system. 

• Can be integrated with any other infrastructure requiring 

transactional support (e.g. graph databases). 

 

Ultra-Scalable Transactional Processing 
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Ultra-Scalable Transactional Processing: 

Approach 
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• Decomposition of transactional processing. 

• No DB or transactional manager as a 

single component. 

• Atomicity, consistency, isolation and durability 

are attained separately. 

• Each component scaled independently but 

in a composable manner. 

• The first bottleneck is in a component able 

to do million update transactions per 

second. 

• Transactions are committed in parallel. 

• Based on snapshot isolation: 

• Avoids read/write conflicts providing an 

isolation very close to serializability. 

• Serializability can be implemented on top 

of it, if needed. 
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• Serializability provides a fully atomic view of a transaction, reads and 

writes happen atomically at a single point in time. 

 

 

 

 

• Snapshot isolation splits atomicity in two points one at the beginning of 

the transaction where all reads happen and one at the end of the 

transaction where all writes happen. 

 

Ultra-Scalable Transactional Processing: 

Snapshot Isolation 
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Ultra-Scalable Transactional Processing: 

Components and Txn Life Cycle 
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Ultra-Scalable Transactional Processing: 

Components and Txn Life Cycle 
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• The transaction will read the 

state as of  “start TS”. 

• Write-write conflicts are 

detected by the conflict 

manager on the fly. 
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Ultra-Scalable Transactional Processing: 

Components and Txn Life Cycle 
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orchestrates the commit. 
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Ultra-Scalable Transactional Processing: 

Components and Txn Life Cycle 
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Ultra-Scalable Transactional Processing: 

Snapshot Server 
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Snapshot Server • The Snapshot server keeps 

track of the most recent snapshot 

that is consistent: 

• Its TS should such that there is 

no previous commit TS that is not  

yet durable and readable or it  

has been discarded. 

• That is, it keeps the longest 

prefix of used/discarded TSs 

such that there are no gaps. 

• In this way transactions can commit 

in parallel and consistency 

preserved. 
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• Each logger takes care of a fraction of the log records. 

• Loggers log in parallel and are uncoordinated. 

• Loggers can be replicated. 

• If this is the case the durability can be configured as: 

– To be in the memory of a majority of logger replicas 

(replicated memory durability). 

– To be in a persistent storage of a logger replica (1-safe 

durability). 

– To be in a persistent storage of a majority of logger replicas 

(n-safe durability). 

• The client gets the commit reply after the writeset is 

durable (with respect the configured durability). 

Ultra-Scalable Transactional Processing: 

Loggers 
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Ultra-Scalable Transactional Processing: 

Snapshot Server 
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Time 
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• The described approach so far is the original reactive 
approach. 

• It results in multiple messages per update transaction. 

• The adopted approach is proactive: 

– The local transaction managers report periodically about the 
number of committed update transactions per second. 

– The commit sequencer distributes batches of commit 
timestamps to the local transaction managers. 

– The snapshot server gets periodically batches of timestamps 
(both used and discarded) from local transaction managers. 

– The snapshot server reports periodically to local transaction 
managers the most current consistent snapshot. 

Ultra-Scalable Transactional Processing: 

Increasing Efficiency 
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• We exploit JBoss and Hibernate as application server 
technology. 

• We rely on their reflection capabilities (interceptors and hooks 
respectively) to intercept: 

– Transactional processing  Becomes ultra-scalable. 

– Second level cache  Becomes a distributed elastic cache. 

• No changes required in the application server/persistency 
manager. 

• The cache is multi-version aware guaranteeing full cache 
transparency. 

• Approach applicable to any transactional application server 
either source code or with sufficient reflection capabilities. 

• Support very large caches at both object and DB level enabling 
in-memory databases/application servers. 

Scalable Application Server and  

Distributed Object Cache 
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• SQL processing is performed at the SQL engine tier. 

• A SQL engine instance: 

– Transforms SQL code into a query plan. 

– The query plan is optimized according the collected statistics 

(e.g. cardinality of keys). 

– Orchestrate the query plan execution on top of the 

distributed data store. 

– Returns the result of the SQL execution to the client. 

– Maintains updated the statistics in the data store. 

• The SQL engine has been implemented by modifying 

Apache Derby, changing its transactional processing by 

CumuloNimbo’s. 

Scalable SQL processing: Query Engine 
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• To scale the data store, we leverage a key-value data 
store, Apache HBase. 

• Relational tables are mapped to HBase tables. 

• Secondary indexes are mapped to additional HBase tables 
that translate secondary keys into primary keys. 

• Traffic between the query engine and HBase instances is 
minimized by: 

– Exploiting HBase filters to implement scan operators. 

• Reduces the cost of scans. 

– Leveraging HBase co-processors to compute local statistics 
on each region necessary. 

• Reduces the cost of statistics necessary for query optimization. 

Scalable SQL Processing: Data Store 
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• One of the main goals is throughput efficiency, i.e., to 

attain a particular required throughput with the minimal 

number of resources. 

• Both elasticity and dynamic load balancing contribute 

towards this goal. 

• But another aspect is related on how to deploy the multiple 

instances of the multiple tiers to minimize the distribution 

overhead. 

• Collocation of tiers has been considered and actually 

performed to diminish the number of distributed hops 

required to process a transaction. 

Efficient Deployment 

Collocation of Instances across Tiers 
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Efficient Deployment 

Collocation of Instances across Tiers 
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• Elasticity is controlled at each layer with customized elastic 

rules. 

– For instance, the object cache can provision nodes 

either due to lack of memory or CPU saturation. 

• Elasticity is combined with dynamic load balancing to 

guarantee that provisioning is only triggered when needed. 

• Non-intrusive reconfiguration: 

– Focusing on maintaining throughput close to the peak 

one during reconfiguration. 

 

Ongoing work: Elasticity 
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Ongoing work:  

Fault Tolerance 

22 

• Replication is used for high availability and not for scaling. 

– Low cost data fault tolerance 

• Pushed down to the storage layer (distributed file system)  

• Outside the transaction response time path. 

– Fault tolerance for other components with a simple approach 

• Configuration and vital data stored on a replicated data store 

(Zookeeper). 

• Single replicated server keeps track of  configuration metadata 

for all tiers and instances. 

– Fault tolerance of critical components: 

• Specialized replication that maximizes throughput and 

minimizes latency. 

• Commit server, snapshot server, loggers. 
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• HBase+HDFS deployed on 5+1 dual-core nodes (12 
cores). 

• Distributed cache deployed on 5 dual-core nodes (10 
cores). 

• Transaction manager core components deployed on 2 
dual-core nodes (4 cores). 

• JBoss+Hibernate+Derby+HBase client deployed on 5 and 
20 quad-core nodes (20 and 80 cores). 

• Configuration manager deployed on a dual-core node (2 
cores). 

• Total cores: 28+20 to 80 (48 to 108 cores) 

Evaluation Setup 
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Scalability Results 
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• Ricardo Jiménez-Peris 

– Technical Coordinator. 

– Univ. Politécnica de Madrid. 

– rjimenez@fi.upm.es  

• http://cumulonimbo.eu 
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