
FP7-257993

CumuloNimbo: Parallel-Distributed Transactional Processing

Ricardo Jiménez-Peris, Marta Patiño, Iván Brondino – Univ. Politecnica de

Madrid

José Pereira, Rui Oliveira, R. Vilaça, F. Cruz – Minho Univ.

Bettina Kemme, Yousuf Ahamad – McGill Univ.

Cloud Futures Workshop

Berkeley, California

May 8, 2012

FP7-257993

• CumuloNimbo aims at solving the lack of scalability of transactional

applications that represent a large fraction of existing applications.

• CumuloNimbo aims at conceiving, architecting and developing a

transactional, coherent, elastic and ultra scalable Platform as a Service.

• Goals:

– Ultra scalable and dependable -- able to scale from a few users to

many millions of users while at the same time providing continuous

availability;

– Support transparent migration of multi-tier applications (e.g. Java

EE applications, relational DB applications, etc.) to the cloud with

automatic scalability and elasticity.

– Avoid re-programming of applications and non-transparent

scalability techniques such as sharding.

– Support transactions for new data stores such as cloud data stores,

graph databases, etc.

Goals

2

FP7-257993

• Main Challenges:

– Update ultra-scalability (million update transactions per

second and as many read-only transactions as needed).

– Strong transactional consistency.

– Non-intrusive elasticity.

– Inexpensive high availability.

– Low latency.

• CumuloNimbo goes beyond the State of the Art by scaling

transparently transactional applications to very large rates

without sharding, the current practice in Today’s cloud.

Challenges

3

FP7-257993

4

Application Server (JBoss+Hibernate)

Object Cache

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Storage

Transactions

Concurrency
Controllers

Commit
Sequencer

Loggers

Load
Balancers

Monitors

Elastic
Manager

Transaction
Management

Platform
Management
Framework

Cloud
Deployer

Global Architecture

Local Txn Mngs

Snapshot
Server

FP7-257993

• Guarantees transactional coherence across all tiers:

application server, object cache and database.

• No constraints on applications, transactional processing

and data, no required a priori knowledge.

• Fully transparent:

– Syntactically: no changes required in the application.

– Semantically: equivalent behavior to a centralized system.

• Can be integrated with any other infrastructure requiring

transactional support (e.g. graph databases).

Ultra-Scalable Transactional Processing

5

FP7-257993

Ultra-Scalable Transactional Processing:

Approach

6

• Decomposition of transactional processing.

• No DB or transactional manager as a

single component.

• Atomicity, consistency, isolation and durability

are attained separately.

• Each component scaled independently but

in a composable manner.

• The first bottleneck is in a component able

to do million update transactions per

second.

• Transactions are committed in parallel.

• Based on snapshot isolation:

• Avoids read/write conflicts providing an

isolation very close to serializability.

• Serializability can be implemented on top

of it, if needed.

FP7-257993

• Serializability provides a fully atomic view of a transaction, reads and

writes happen atomically at a single point in time.

• Snapshot isolation splits atomicity in two points one at the beginning of

the transaction where all reads happen and one at the end of the

transaction where all writes happen.

Ultra-Scalable Transactional Processing:

Snapshot Isolation

7

Start End

Reads Writes

Reads & Writes

FP7-257993

Ultra-Scalable Transactional Processing:

Components and Txn Life Cycle

8

 Get start TS

Snapshot

Server

• The local txn mng

gets the “start

TS” from the

snapshot server.

Local Txn

Manager

FP7-257993

Ultra-Scalable Transactional Processing:

Components and Txn Life Cycle

9

Get start TS

Run on start
TS snapshot

Conflict

Manager

Local Txn

Manager

• The transaction will read the

state as of “start TS”.

• Write-write conflicts are

detected by the conflict

manager on the fly.

FP7-257993

Ultra-Scalable Transactional Processing:

Components and Txn Life Cycle

10

Get start TS

Run on start
TS snapshot

Commit

Local Txn

Manager

• The local transaction manager

orchestrates the commit.

FP7-257993

Ultra-Scalable Transactional Processing:

Components and Txn Life Cycle

11

Logger

Commit

Sequencer

Data Store
Snapshot

Server

Commit TS

writeset

writeset

Commit TS

Local Txn

Manager

FP7-257993

Ultra-Scalable Transactional Processing:

Snapshot Server

12

Snapshot Server • The Snapshot server keeps

track of the most recent snapshot

that is consistent:

• Its TS should such that there is

no previous commit TS that is not

yet durable and readable or it

has been discarded.

• That is, it keeps the longest

prefix of used/discarded TSs

such that there are no gaps.

• In this way transactions can commit

in parallel and consistency

preserved.

Keeps track of
and reports most
recent consistent

TS

Gets
reports of
discarded

TSs

Gets
reports of
durable &
readable

TSs

FP7-257993

• Each logger takes care of a fraction of the log records.

• Loggers log in parallel and are uncoordinated.

• Loggers can be replicated.

• If this is the case the durability can be configured as:

– To be in the memory of a majority of logger replicas

(replicated memory durability).

– To be in a persistent storage of a logger replica (1-safe

durability).

– To be in a persistent storage of a majority of logger replicas

(n-safe durability).

• The client gets the commit reply after the writeset is

durable (with respect the configured durability).

Ultra-Scalable Transactional Processing:

Loggers

13

FP7-257993

Ultra-Scalable Transactional Processing:

Snapshot Server

14

Time

Sequence of timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server

11 15 12 14 13

11 11 12 12 15

FP7-257993

• The described approach so far is the original reactive
approach.

• It results in multiple messages per update transaction.

• The adopted approach is proactive:

– The local transaction managers report periodically about the
number of committed update transactions per second.

– The commit sequencer distributes batches of commit
timestamps to the local transaction managers.

– The snapshot server gets periodically batches of timestamps
(both used and discarded) from local transaction managers.

– The snapshot server reports periodically to local transaction
managers the most current consistent snapshot.

Ultra-Scalable Transactional Processing:

Increasing Efficiency

15

FP7-257993

• We exploit JBoss and Hibernate as application server
technology.

• We rely on their reflection capabilities (interceptors and hooks
respectively) to intercept:

– Transactional processing  Becomes ultra-scalable.

– Second level cache  Becomes a distributed elastic cache.

• No changes required in the application server/persistency
manager.

• The cache is multi-version aware guaranteeing full cache
transparency.

• Approach applicable to any transactional application server
either source code or with sufficient reflection capabilities.

• Support very large caches at both object and DB level enabling
in-memory databases/application servers.

Scalable Application Server and

Distributed Object Cache

16

FP7-257993

• SQL processing is performed at the SQL engine tier.

• A SQL engine instance:

– Transforms SQL code into a query plan.

– The query plan is optimized according the collected statistics

(e.g. cardinality of keys).

– Orchestrate the query plan execution on top of the

distributed data store.

– Returns the result of the SQL execution to the client.

– Maintains updated the statistics in the data store.

• The SQL engine has been implemented by modifying

Apache Derby, changing its transactional processing by

CumuloNimbo’s.

Scalable SQL processing: Query Engine

17

FP7-257993

• To scale the data store, we leverage a key-value data
store, Apache HBase.

• Relational tables are mapped to HBase tables.

• Secondary indexes are mapped to additional HBase tables
that translate secondary keys into primary keys.

• Traffic between the query engine and HBase instances is
minimized by:

– Exploiting HBase filters to implement scan operators.

• Reduces the cost of scans.

– Leveraging HBase co-processors to compute local statistics
on each region necessary.

• Reduces the cost of statistics necessary for query optimization.

Scalable SQL Processing: Data Store

18

FP7-257993

• One of the main goals is throughput efficiency, i.e., to

attain a particular required throughput with the minimal

number of resources.

• Both elasticity and dynamic load balancing contribute

towards this goal.

• But another aspect is related on how to deploy the multiple

instances of the multiple tiers to minimize the distribution

overhead.

• Collocation of tiers has been considered and actually

performed to diminish the number of distributed hops

required to process a transaction.

Efficient Deployment

Collocation of Instances across Tiers

19

FP7-257993

20

Efficient Deployment

Collocation of Instances across Tiers

Application Server instance

+ ORM instance

+ Local Txn Mng instance

+ Query engine instance

+ Key-Value Data Store Client

Distributed Cache instance

+

Conflict Manager instance

Key-Value Data Store

+ Parallel Distributed FS +

Storage Manager

FP7-257993

• Elasticity is controlled at each layer with customized elastic

rules.

– For instance, the object cache can provision nodes

either due to lack of memory or CPU saturation.

• Elasticity is combined with dynamic load balancing to

guarantee that provisioning is only triggered when needed.

• Non-intrusive reconfiguration:

– Focusing on maintaining throughput close to the peak

one during reconfiguration.

Ongoing work: Elasticity

21

FP7-257993

Ongoing work:

Fault Tolerance

22

• Replication is used for high availability and not for scaling.

– Low cost data fault tolerance

• Pushed down to the storage layer (distributed file system)

• Outside the transaction response time path.

– Fault tolerance for other components with a simple approach

• Configuration and vital data stored on a replicated data store

(Zookeeper).

• Single replicated server keeps track of configuration metadata

for all tiers and instances.

– Fault tolerance of critical components:

• Specialized replication that maximizes throughput and

minimizes latency.

• Commit server, snapshot server, loggers.

FP7-257993

• HBase+HDFS deployed on 5+1 dual-core nodes (12
cores).

• Distributed cache deployed on 5 dual-core nodes (10
cores).

• Transaction manager core components deployed on 2
dual-core nodes (4 cores).

• JBoss+Hibernate+Derby+HBase client deployed on 5 and
20 quad-core nodes (20 and 80 cores).

• Configuration manager deployed on a dual-core node (2
cores).

• Total cores: 28+20 to 80 (48 to 108 cores)

Evaluation Setup

23

FP7-257993

Scalability Results

24

0

50

100

150

200

250

300

350

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300 4600

T
h

ro
u

g
h

p
u

t
(w

ip
s
)

SPEC jEnterprise Benchmark

(80+20+10) cores

(20+20+10) cores

Linear scalability with 100+ cores

Currently exercising 300+ cores

FP7-257993

• Ricardo Jiménez-Peris

– Technical Coordinator.

– Univ. Politécnica de Madrid.

– rjimenez@fi.upm.es

• http://cumulonimbo.eu

Contact Information

25

mailto:rjimenez@fi.upm.es

