
Monte Carlo Service in Windows Azure

Rafael Nasser <rnasser@inf.puc-rio.br>

Karin Breitman <karin@inf.puc-rio.br>

Hélio Lopes <lopes@inf.puc-rio.br>

Cloud Futures 2012

Berkeley, California

May 2012

Agenda

• Introducing you to McCloud Service Framework, the easiest way to

develop Monte Carlo simulations in the cloud!

• Demonstrate two different implementations with McCloud;

• One in mathematical filed with simulations written in C#;

• And the other, in mechanical engineering area in Matlab

technology.

Monte Carlo

• MC is a statistical method to approximate solutions of problems;

• It is very useful in a wide range of fields;

• In reality MC simulations work out an experiment several times using

random numbers as input to describe the statistical behavior of a

problem;

• The higher the number of samples on MC, better is the

approximation;

• Subsequently, MC has a large demand on computational resources,

but on the other hand, it is easy to parallelize samples;

• Which makes it an excellent candidate to go to the cloud.

Service Framework

• Why a Framework?

• Why a Service?

Because each problem is particular in its own way. Given that our

aim is to allow you to easily and quickly implement the

simulation without cloud concerns.

Because we want Monte Carlo simulation alone to go to the

cloud with minimum changes in your application.

We proposed a framework to develop simulation services

Software as a Service
Monte Carlo Simulation Service implemented with McCloud

Conceptual Architecture

Platform as a Service
Cloud platform with all you need in your simulation

It is available in a friendly web page (complexity are hidden)

Application
Service Client which can be in any Technology

This solution has been structured in three layers

The framework methods are in green

The framework hotspots are in orange

Framework Workflow

In this demonstration...

They are available to framework clients.

They allow the developers to extend the framework.

Method

Hotspot

Service Node
SOA/WCF/WebService/XML

Run Silumation

1

Framework Workflow

Client Application

1. Let´s imagine an application requesting a simulation to proposed framework

Method

Hotspot

Service Node
SOA/WCF/WebService/XML

Run Silumation

Framework Workflow

Client Application

2. The arguments of this simulation are tested according to the “test” hotspot

3. And we estimated and got an optimal configuration to execute the

simulation according to the “optimization” hotspot, possible starting new

Azure worker nodes, running the “startup” hotspot to configuration each node

Test 2

Optimization / Startup 3

Method

Hotspot

Service Node
SOA/WCF/WebService/XML

Run Silumation

Framework Workflow

Client Application

4. The simulation has been split in tasks according to an ideal

number of tasks estimated. The tasks are saved in the queue

5. The arguments of this simulation are saved onto the table

Test

Optimization / Startup

Queue

Task Task Task...Split

4

Table

Save

5

Method

Hotspot

Service Node

Framework Workflow

Client Application

6. This part of workflow we called SPLIT STAGE

7. In the end of stage the client receive a key to identify this simulation

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

SPLIT STAGE
Key 7

6

Service Node

Framework Workflow

Client Application

8. In an asynchrony way, the worker nodes available

take tasks from the queue in order, one by one

9. The task is processed by the worker node which picked it

according to the implementation of “execute” hotspot

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

Key

Worker Node

Worker Node

Worker Node

...

Task

Task

Task

...

8

Execute 9

Service Node

Framework Workflow

Client Application

10. In the end of each process the

result is saved in a blob

11. This is the PROCESS STAGE

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

Key

Worker Node

Worker Node

Worker Node

...

Task

Task

Task

...

Execute

Blob
Save

10

PROCESS STAGE
11

Service Node

Framework Workflow

Client Application

12. The node that had processed

the last piece, which can be anyone,

will start the next stage

13. All the tasks result are rescued

14. This node aggregates all tasks result

and calculate the approximation

according to the “finish” hotspot

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

Key

Worker Node

Worker Node

Worker Role

...

Task

Task

Task

...

Execute

Blob
Save

Worker Node

14

Get

13

Finish 13

Service Node

Framework Workflow

Client Application

15. The result of approximation is saved in blob and the

simulation status is updated on the table

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

Key

Worker Node

Worker Node

Worker Role

...

Task

Task

Task

...

Execute

Blob
Save

Worker NodeGet

Finish
15

Save

MERGE STAGE
16

16. This is the

MERGE STAGE,

the last one.

Method

Hotspot

Service Node

Framework Workflow

Client Application

17. At any time the client can check the status of simulation

with “Check” method using the simulation key;

Test

Optimization / Startup

Queue

Task Task Task...Split

Table

Save

Worker Node

Worker Node

Worker Role

...

Task

Task

Task

...

Execute

Blob
Save

Worker NodeGet

Finish

Save

Check

17

[Key]

18. When the simulation is

over, the client can

download the results

with “Result” method.

Result

18

Framework Methods
The three methods available in the framework are

The main framework hotspots are implemented extending the class McHotspot.

Framework Hotspots
With this framework you must implement hotspots only

and the framework looks after everything else for you

Framework Hotspots

The last hotspot, startup, is different...

• It needs to be implemented writing the Windows command line file

startup.cmd and updating files to onstart container.

• The framework runs this commands and copies the files in this

container when each node starts.

• Therefore you can download and install everything you need to

implement the other hotspots supporting any other technology in

simulations!

Framework Hotspots

It´s easy to notice that π can be represented

by a division of circle area by square area,

if one is exactly inside the other.

2.r

Classic Example
The approximation of π number with Monte Carlo

It´s also easy to see that you can approximate

the square and circle area generating many

random points inside that.

Consequentially, π

can be approximated by:

4 x Total of red points

Total points generated

Source Code Comparison
With McCloud we implemented a service to run a C#

textual code received in codein and codeout of Run method

We use Mono CSharp, a free

compiler runtime of C#, to run

this codes in hotspots.

Traditional Algorithm codein

codeout

We have done minimal changes to the code!

Bear in mind that you must control the seed!

Performance Comparison

Amount

of Points

Decimal

Precision

Duration

in 1 Computer

100 1 0,016 s.

1.000 1 0,109 s.

10.000 2 0,375 s.

100.000 3 0,641 s.

1.000.000 3 1,719 s.

10.000.000 3 11,531 s.

100.000.000 3 109,438 s.

1.000.000.000 4 20,57 min.

10.000.000.000 5 2,74 hours

100.000.000.000 5 1,14 days

1.000.000.000.000 5 11,2 days

Worker

Nodes

Duration

McCloud

USD$

McCloud

16 10,26 s. 2,19

16 5,23 s. 2,19

16 18,59 s. 2,19

16 13,75 s. 2,19

16 8,07 s. 2,19

19 13,51 s. 2,55

19 13,08 s. 2,55

19 36,72 s. 2,55

19 3,06 min. 2,55

19 28,46 min. 2,55

99 5,71 min. 12,15

99 54,64 min. 12,15

Working with small

amount of points

the McCloud isn´t
a good solution.

300 speedup

But, if you want a

better precision,

McCloud speedup

results with

insignificant costs

Case Study
We apply the framework in a real problem of

Mechanical Engineering, the approximation of bar displacement

Thanks to PUC-Rio Mechanical Department.

D.Sc. Rubens Sampaio and M.Sc. Americo Cunha .

They model equations and program this systems in Matlab executable.

System 3System 1 System 2

linear spring + no-linear spring + mass + damping fluid

Implementation

With McCloud we implement a service to run

MATLAB executables uploaded in onstart container.

Besides, on startup.cmd we download and install

the Matlab Compiler Runtime in all nodes

to support this technology in Azure.

Contrasting π example, in this case we can´t run this executable

with many samples, because MatLab do an overflow memory.

To solve this, we split it in two pieces, one to generate samples

and the other to aggregate samples and calculate the approximation.

Similar to what we did in π with codein/codeout.

Therefore, we can run more samples...

Performance

1. With 64 nodes we see a great speedup in all system with low cost;

2. I´d like to stress the researchers have never succeed in executing more 1.024

samples (we performed 262.144);

3. As pointed out on this case we have big-data inside the cloud but small

outside data transfer.

Results

1.024 262.144
The yellow region

on right, with more

samples, fits better

the mean in blue.

It represents the

more precision of

standard deviation.

Also, the graphic

on the right with

more density,

better represents

the statistical

behavior of the

problem.

Graphics of System 3 with 1.024 (left) and 262.144 (right) samples

McCloud allow scientists to scale up their

experiments in the cloud, with minimal changes

to the code they are used to, with very low cost.

Conclusion

http://mccloud.codeplex.com

Hotspots (C# Textual Code)

Hotspots (Matlab)

Hotspots (Matlab)

Matlab Example

PHP Client Example

C# Client Example

Thank you!
http://mccloud.codeplex.com

