
https://portal.futuregrid.org

Programming Models for
Technical Computing on Clouds
and Supercomputers (aka HPC)

May 7 2012

Cloud Futures 2012

May 7–8, 2012 , Berkeley, California, United States

 Geoffrey Fox
gcf@indiana.edu

Indiana University Bloomington

Dennis Gannon
Microsoft

https://portal.futuregrid.org/
mailto:gcf@indiana.edu

https://portal.futuregrid.org

Science Computing Environments
• Large Scale Supercomputers – Multicore nodes linked by high

performance low latency network

– Increasingly with GPU enhancement

– Suitable for highly parallel simulations

• High Throughput Systems such as European Grid Initiative EGI or
Open Science Grid OSG typically aimed at pleasingly parallel jobs

– Can use “cycle stealing”

– Classic example is LHC data analysis

• Grids federate resources as in EGI/OSG or enable convenient access
to multiple backend systems including supercomputers

– Portals make access convenient and

– Workflow integrates multiple processes into a single job

• Specialized visualization, shared memory parallelization etc.
machines

2

https://portal.futuregrid.org/

https://portal.futuregrid.org

Some Observations
• Distinguish HPC (Supercomputer) machines and HPC problems

• Classic HPC machines as MPI engines offer highest possible
performance on closely coupled problems

• Clouds offer from different points of view
• On-demand service (elastic)

• Economies of scale from sharing

• Powerful new software models such as MapReduce, which have advantages
over classic HPC environments

• Plenty of jobs making it attractive for students & curricula

• Security challenges

• HPC problems running well on clouds have above advantages

• Note 100% utilization of Supercomputers makes elasticity moot for
capability (very large) jobs and makes capacity (many modest) use
not be on-demand

• Need Cloud-HPC Interoperability

 3

https://portal.futuregrid.org/

https://portal.futuregrid.org

Clouds and Grids/HPC
• Synchronization/communication Performance

Grids > Clouds > Classic HPC Systems

• Clouds naturally execute effectively Grid workloads but
are less clear for closely coupled HPC applications

• Service Oriented Architectures and workflow appear to
work similarly in both grids and clouds

• May be for immediate future, science supported by a
mixture of
– Clouds – some practical differences between private and public

clouds – size and software

– High Throughput Systems (moving to clouds as convenient)

– Grids for distributed data and access

– Supercomputers (“MPI Engines”) going to exascale

https://portal.futuregrid.org/

https://portal.futuregrid.org

What Applications work in Clouds
• Pleasingly parallel applications of all sorts analyzing roughly

independent data or spawning independent simulations
– Long tail of science

– Integration of distributed sensors (Internet of Things)

• Science Gateways and portals

• Workflow federating clouds and classic HPC

• Commercial and Science Data analytics that can use MapReduce
(some of such apps) or its iterative variants (most other data
analytics apps)

• Which applications are using clouds?
– Many demonstrations – see today, Venus-C, OOI, HEP ….

– 50% of applications on FutureGrid are from Life Science but

– There is more computer science than total applications on FutureGrid

– Locally Lilly corporation is major commercial cloud user (for drug discovery)
but Biology department is not

5

https://portal.futuregrid.org/

https://portal.futuregrid.org

What is FutureGrid?
• The FutureGrid project mission is to enable experimental work

that advances:

a) Innovation and scientific understanding of distributed computing and

parallel computing paradigms,

b) The engineering science of middleware that enables these paradigms,

c) The use and drivers of these paradigms by important applications, and,

d) The education of a new generation of students and workforce on the

use of these paradigms and their applications.

• The implementation of mission includes

• Distributed flexible hardware with supported use

• Identified IaaS and PaaS “core” software with supported use

• Outreach

• ~4500 cores in 5 major sites

https://portal.futuregrid.org/

https://portal.futuregrid.org

Distribution of FutureGrid
Technologies and Areas

• 200 Projects

2.30%

4.00%

4.00%

4.60%

8.60%

8.60%

14.90%

15.50%

15.50%

15.50%

23.60%

32.80%

35.10%

44.80%

52.30%

56.90%

PAPI

Pegasus

Vampir

Globus

gLite

Unicore 6

Genesis II

OpenNebula

OpenStack

Twister

XSEDE Software Stack

MapReduce

Hadoop

HPC

Eucalyptus

Nimbus

Education
9%

Computer
Science

35% other
Domain
Science

14%

Life
Science

15%

Inter-
operability

3%

Technology
Evaluation

24%

https://portal.futuregrid.org/

https://portal.futuregrid.org

Recent
FutureGrid

Projects

8

https://portal.futuregrid.org/

https://portal.futuregrid.org

Parallelism over Users and Usages
• “Long tail of science” can be an important usage mode of clouds.

• In some areas like particle physics and astronomy, i.e. “big science”,
there are just a few major instruments generating now petascale
data driving discovery in a coordinated fashion.

• In other areas such as genomics and environmental science, there
are many “individual” researchers with distributed collection and
analysis of data whose total data and processing needs can match
the size of big science.

• Clouds can provide scaling convenient resources for this important
aspect of science.

• Can be map only use of MapReduce if different usages naturally
linked e.g. exploring docking of multiple chemicals or alignment of
multiple DNA sequences
– Collecting together or summarizing multiple “maps” is a simple Reduction

 9

https://portal.futuregrid.org/

https://portal.futuregrid.org

Internet of Things and the Cloud
• It is projected that there will soon be 50 billion devices on the

Internet. Most will be small sensors that send streams of information
into the cloud where it will be processed and integrated with other
streams and turned into knowledge that will help our lives in a
million small and big ways.

• It is not unreasonable for us to believe that we will each have our
own cloud-based personal agent that monitors all of the data about
our life and anticipates our needs 24x7.

• The cloud will become increasing important as a controller of and
resource provider for the Internet of Things.

• As well as today’s use for smart phone and gaming console support,
“smart homes” and “ubiquitous cities” build on this vision and we
could expect a growth in cloud supported/controlled robotics.

• Natural parallelism over “things”
10

https://portal.futuregrid.org/

https://portal.futuregrid.org

Internet of Things: Sensor Grids
A pleasingly parallel example on Clouds

 A sensor (“Thing”) is any source or sink of time series

In the thin client era, smart phones, Kindles, tablets, Kinects, web-cams are

sensors

Robots, distributed instruments such as environmental measures are sensors

Web pages, Googledocs, Office 365, WebEx are sensors

Ubiquitous Cities/Homes are full of sensors

They have IP address on Internet

Sensors – being intrinsically distributed are Grids

However natural implementation uses clouds to consolidate and

control and collaborate with sensors

Sensors are typically “small” and have pleasingly parallel cloud

implementations
11

https://portal.futuregrid.org/

https://portal.futuregrid.org

Sensors as a Service

Sensors as a Service

Sensor
Processing as

a Service
(could use

MapReduce)

A larger sensor ………

Output Sensor

https://portal.futuregrid.org/

https://portal.futuregrid.org

Portal/Gateway
• “Just a web role” supporting back end services

• Often used to support multiple users accessing a
relatively modest size computation

• So cloud suitable implementation

13

Workflow
• Loosely coupled orchestrated links of services

• Works well on Grids and Clouds as coarse grain (a
few large messages between largish tasks) and no
tight synchronization

https://portal.futuregrid.org/

https://portal.futuregrid.org

Classic Parallel Computing
• HPC: Typically SPMD (Single Program Multiple Data) “maps” typically

processing particles or mesh points interspersed with multitude of
low latency messages supported by specialized networks such as
Infiniband
– Often run large capability jobs with 100K cores on same job

– National DoE/NSF/NASA facilities run 100% utilization

– Fault fragile and cannot tolerate “outlier maps” taking longer than others

• Clouds: MapReduce has asynchronous maps typically processing data
points with results saved to disk. Final reduce phase integrates results
from different maps
– Fault tolerant and does not require map synchronization

– Map only useful special case

• HPC+Clouds: Iterative MapReduce caches results between
“MapReduce” steps and supports SPMD parallel computing with
large messages as seen in parallel linear algebra need in clustering
and other data mining

14

https://portal.futuregrid.org/

https://portal.futuregrid.org

Commercial “Web 2.0” Cloud Applications

• Internet search, Social networking, e-commerce,
cloud storage

• These are larger systems than used in HPC with
huge levels of parallelism coming from

– Processing of lots of users or

– An intrinsically parallel Tweet or Web search

• MapReduce is suitable (although Page Rank
component of search is parallel linear algebra)

• Data Intensive

• Do not need microsecond messaging latency
15

https://portal.futuregrid.org/

https://portal.futuregrid.org

4 Forms of MapReduce

16

(a) Map Only
(d) Loosely

Synchronous

(c) Iterative

MapReduce

(b) Classic

MapReduce

Input

map

reduce

Input

map

 reduce

Iterations
Input

Output

map

Pij

BLAST Analysis

Parametric sweep

Pleasingly Parallel

High Energy Physics

(HEP) Histograms

Distributed search

Classic MPI

PDE Solvers and

particle dynamics

Domain of MapReduce and Iterative Extensions MPI

Expectation maximization

Clustering e.g. Kmeans

Linear Algebra, Page Rank

https://portal.futuregrid.org/

https://portal.futuregrid.org

Data Intensive Iterative Applications I

• Important class of (Data analytics) applications
– Data mining, machine learning – often with linear

algebra at core

– Expectation maximization

– Driven by data deluge & emerging fields

k ← 0;
MAX ← maximum iterations
δ[0] ← initial delta value

while (k< MAX_ITER || f(δ[k], δ[k-1]))
 foreach datum in data
 β[datum] ← process (datum, δ[k])
 end foreach

 δ[k+1] ← combine(β[])
 k ← k+1

end while

https://portal.futuregrid.org/

https://portal.futuregrid.org

Data Intensive Iterative Applications II

• Structure from (Iterative) MapReduce point of
view

Compute Communication Reduce/ barrier

New Iteration

Larger Loop-
Invariant Data

Smaller Loop-
Variant Data

Broadcast

https://portal.futuregrid.org/

https://portal.futuregrid.org

Performance with/without
 data caching

Speedup gained using data cache

Scaling speedup Increasing number of iterations

Number of Executing Map Task Histogram

Strong Scaling with 128M Data Points

Weak Scaling

Task Execution Time Histogram

First iteration performs the
initial data fetch

Overhead between iterations

Scales better than Hadoop on
bare metal

https://portal.futuregrid.org/

https://portal.futuregrid.org

Summary: Usage modes of Clouds
• Large Scale internally parallel

– Internet Search or large BLAST problem

• Pleasingly parallel over users

– E-commerce or Long Tail of Science

• Pleasing parallel over usages (perhaps for same user)

– Internet of Things or parameter searches

• Iterative parallel algorithms with large messages

– Data mining

• Workflow

– Orchestrate multiple services

• Portals

– Web interface to the above modes

20

https://portal.futuregrid.org/

https://portal.futuregrid.org

What to use in Clouds
• HDFS style file system to collocate data and computing

• Queues to manage multiple tasks

• Tables to track job information

• MapReduce and Iterative MapReduce to support
parallelism

• Services for everything

• Portals as User Interface

• Appliances and Roles as customized images

• Software environments/tools like Google App Engine,
memcached

• Workflow to link multiple services (functions)

 21

https://portal.futuregrid.org/

https://portal.futuregrid.org

What to use in Grids and Supercomputers?
• Portals and Workflow as in clouds

• MPI and GPU/multicore threaded parallelism

• Services in Grids

• Wonderful libraries supporting parallel linear
algebra, particle evolution, partial differential
equation solution

• Parallel I/O for high performance in an application

• Wide area File System (e.g. Lustre) supporting file
sharing

• This is a rather different style of PaaS from clouds –
should we unify? 22

https://portal.futuregrid.org/

https://portal.futuregrid.org

Is PaaS a good idea?
• If you have existing code, PaaS may not be very

relevant immediately
– Just need IaaS to put code on clouds

• But surely it must be good to offer high level tools?
• For example, Twister4Azure (see tomorrow’s talk)

built on top of Azure tables, queues, storage
• Historically HPCC 1990-2000 built MPI, libraries,

(parallel) compilers ..
• Grids 2000-2010 built federation, scheduling,

portals and workflow
• Clouds 2010-…. have an exciting interest in

powerful programming models

23

https://portal.futuregrid.org/

https://portal.futuregrid.org

How to use Clouds I
1) Build the application as a service. Because you are deploying

one or more full virtual machines and because clouds are
designed to host web services, you want your application to
support multiple users or, at least, a sequence of multiple
executions.
• If you are not using the application, scale down the number of servers and

scale up with demand.

• Attempting to deploy 100 VMs to run a program that executes for 10
minutes is a waste of resources because the deployment may take more
than 10 minutes.

• To minimize start up time one needs to have services running continuously
ready to process the incoming demand.

2) Build on existing cloud deployments. For example use an
existing MapReduce deployment such as Hadoop or existing
Roles and Appliances (Images)

24

https://portal.futuregrid.org/

https://portal.futuregrid.org

How to use Clouds II
3) Use PaaS if possible. For platform-as-a-service clouds like Azure

use the tools that are provided such as queues, web and worker
roles and blob, table and SQL storage.
3) Note HPC systems don’t offer much in PaaS area

4) Design for failure. Applications that are services that run forever
will experience failures. The cloud has mechanisms that
automatically recover lost resources, but the application needs to
be designed to be fault tolerant.
• In particular, environments like MapReduce (Hadoop, Daytona,

Twister4Azure) will automatically recover many explicit failures and adopt
scheduling strategies that recover performance "failures" from for example
delayed tasks.

• One expects an increasing number of such Platform features to be offered by
clouds and users will still need to program in a fashion that allows task
failures but be rewarded by environments that transparently cope with these
failures. (Need to build more such robust environments)

25

https://portal.futuregrid.org/

https://portal.futuregrid.org

How to use Clouds III
5) Use as a Service where possible. Capabilities such as SQLaaS

(database as a service or a database appliance) provide a
friendlier approach than the traditional non-cloud approach
exemplified by installing MySQL on the local disk.
• Suggest that many prepackaged aaS capabilities such as Workflow as

a Service for eScience will be developed and simplify the development
of sophisticated applications.

6) Moving Data is a challenge. The general rule is that one
should move computation to the data, but if the only
computational resource available is a the cloud, you are stuck
if the data is not also there.
• Persuade Cloud Vendor to host your data free in cloud

• Persuade Internet2 to provide good link to Cloud

• Decide on Object Store v. HDFS style (or v. Lustre WAFS on HPC)

26

https://portal.futuregrid.org/

https://portal.futuregrid.org

Private Clouds
• Define as non commercial cloud used to support science

• What does it take to make private cloud platforms competitive
with commercial systems?

• Plenty of work at VM management level with Eucalyptus, Nimbus,
OpenNebula, OpenStack
– Only now maturing

– Nimbus and OpenNebula pretty solid but not widely adopted in USA

– OpenStack and Eucalyptus recent major improvements

• Open source PaaS tools like Hadoop, Hbase, Cassandra, Zookeeper
but not integrated into platform

• Need dynamic resource management in a “not really elastic”
environment as limited size

• Federation of distributed components (as in grids) to make a
decent size system

 27

https://portal.futuregrid.org/

https://portal.futuregrid.org

Templated Dynamic Provisioning

28

• Abstract Specification of image mapped to various
HPC and Cloud environments

Essex replaces Cactus
Current Eucalyptus 3
commercial while
version 2 Open Source

OpenNebula
Parallel provisioning
now supported

Moab/xCAT HPC – high as need
reboot before use

https://portal.futuregrid.org/

https://portal.futuregrid.org

Some Research Challenges – I
• Design algorithms that can exploit/tolerate cloud features

– Elastic access to resources

– Use few large messages – not lots of small ones

– Fault tolerant

– Use library of roles and appliances

– Exploit platforms (queues, tables) and XaaS

• Classify and measure performance of these
algorithms/applications

• Improve performance of clouds

• Many security issues

• Understand needed standards Helped by Manish Parashar

https://portal.futuregrid.org/

https://portal.futuregrid.org

Some Research(&D) Challenges – II
• Improve MapReduce so it

– Offers HPC Cloud interoperability

– Polymorphic reductions (collectives) exploiting all types of networks

– Supports scientific data and algorithms

• Develop storage model to support cloud computing enhanced data
repositories

• Understand federation of multiple clouds and support of hybrid
algorithms split across clouds (e.g. for security or geographical
reason)
– Private clouds are not likely to be on huge scale of public clouds

– Cloud bursting important federated system (private + public)

• Bring commercial cloud PaaS to HPC and academic clouds

• Fault tolerance, high availability, energy efficiency (green clouds)

• Train people for the 14 million cloud jobs expected by 2015

30 Helped by Manish Parashar

https://portal.futuregrid.org/

https://portal.futuregrid.org

Architecture of Data Repositories?
• Traditionally governments set up repositories for

data associated with particular missions

– For example EOSDIS (Earth Observation), GenBank
(Genomics), NSIDC (Polar science), IPAC (Infrared
astronomy)

– LHC/OSG computing grids for particle physics

• This is complicated by volume of data deluge,
distributed instruments as in gene sequencers
(maybe centralize?) and need for intense
computing like Blast

– i.e. repositories need lots of computing?

31

https://portal.futuregrid.org/

https://portal.futuregrid.org

Clouds as Support for Data Repositories?
• The data deluge needs cost effective computing

– Clouds are by definition cheapest

– Need data and computing co-located

• Shared resources essential (to be cost effective and large)

– Can’t have every scientists downloading petabytes to personal
cluster

• Need to reconcile distributed (initial source of) data with shared
analysis

– Can move data to (discipline specific) clouds

– How do you deal with multi-disciplinary studies

• Data repositories of future will have cheap data and elastic cloud
analysis support?

– Hosted free if data can be used commercially?

32

https://portal.futuregrid.org/

https://portal.futuregrid.org

Outreach
• Papers are Programming Paradigms for Technical Computing on

Clouds and Supercomputers (Fox and Gannon)
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud%20Progra
mming%20Paradigms_for__Futures.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud%20Progra
mming%20Paradigms.pdf

• Science Cloud Summer School July 30-August 3 offered virtually
– Aiming at computer science and application students

– Lab sessions on commercial clouds or FutureGrid

• Would like volunteers interested in talking or attending!

33

https://portal.futuregrid.org/
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms_for__Futures.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms_for__Futures.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms_for__Futures.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Cloud Programming Paradigms.pdf

https://portal.futuregrid.org

Using Clouds in a Nutshell
• High Throughput Computing; pleasingly parallel; grid applications

• Multiple users (long tail of science) and usages (parameter searches)

• Internet of Things (Sensor nets) as in cloud support of smart phones

• (Iterative) MapReduce including “most” data analysis

• Exploiting elasticity and platforms (HDFS, Queues ..)

• Use services, portals (gateways) and workflow

• Good Strategies:
– Build the application as a service;

– Build on existing cloud deployments such as Hadoop;

– Use PaaS if possible;

– Design for failure;

– Use as a Service (e.g. SQLaaS) where possible;

– Address Challenge of Moving Data

34

https://portal.futuregrid.org/

