Science In The Cloud

Joseph L. Hellerstein Computational Discovery Department

Google

Seattle, Washington USA May 7, 2012

Agenda

- Supercomputing in the cloud
 - Application to computational chemistry
- Computational discovery for brain science
 - Brain science 101
 - Simulating sleep-wake cycles
- Lessons learned, random musings

\$4,829-per-hour supercomputer built on Amazon cloud to fuel cancer research

By Jon Brodkin | Published 2 days ago

~50K cores ~6.7K EC2 instances \$4,828.85 per hour

Exacycle

1 billion core-hours of computational capacity for researchers

Posted by Dan Belov, Principal Engineer and David Konerding, Software Engineer

We're pleased to announce a new academic research grant program: Google Exacycle for Visiting Faculty. Through this program, we'll award up to 10 qualified researchers with at least 100 million core-hours each, for a total of 1 billion core-hours. The program is focused on large-scale, CPU-bound batch computations in research areas such as biomedicine, energy, finance, entertainment, and agriculture, amongst others. For example, projects developing large-scale genomic search and alignment, massively scaled Monte Carlo simulations, and sky survey image analysis could be an ideal fit.

G-Protein Coupled Receptors (GPCR)

- GPCRs enable the exchange of molecules between cells and their environment.
- 40% of pharmaceuticals target GPCRs.

Dynamics of GPCRs

Experience with GPCR Simulations

Brain Simulation Case Study

- Brain science 101
- Simulating sleep wake cycles in the cat brain.

	7 (11111)	Trodi ono(m)	per brain-g		
	Sea slug	0.01			
	Mouse	4	10		
	Cat	300	10		
الأعليين	Human	100,000	71.4	٧ı	
(trans	Terminals (mitters) chwann's ells hey make ne myelin) king Myelin (insulat	ode of anvier Sheath Ling fatty layer eeds transmission	Nucleu Nucleu Xon Hillock	Cell Body ©EnchantedLearning.com	
	ANOTHERINOCK				

Neuron-M

Animal

Neurons(M)

Figure 12-38 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Synapses Connect Neurons #synapses ~ 1,000 X #Neurons

Examples of High Level Brain Wirings

Mapping Function to Brain Anatomy

Phineas Gage: A Gruesome but True Story About Brain Science

by John Fleischman

Phineas Gage was truly a man with a hole in his head. A railroad construction foreman, Phineas was blasting rock near Cavendish, Vermont, in 1848 when a thirteen-pound iron rod was shot through his brain. Miraculously, he survived another eleven years and became a textbook case in brain science. But he was forever changed by the accident, and what happened inside his brain...more

Brodmann's Areas in the Human Brain

Primary somatosensory

Details of Sensory Motor Areas

Modeling Sleep and Wakefulness in the Thalamocortical Sy

Vertical

Sean Hill and Giulio Tononi

Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin

Submitted 1 September 2004; accepted in final form 26 October 2004

Can a brain simulation reproduce sleep-wake cycles?

- Model
 - Point model of 65K neurons
 - Statistical model of neural circuits
 - Calibrate from empirical data

Model Parameterizations

- Neurons (65K)
 - Ion channels, propagation delays, types
- Synapses (~65M)
 - Neurotransmitter, weights on neurons, connections

Hundreds of parameters!!!

Models of Neuron Firings

A dynamic threshold (θ) is defined for each cell that determines at which membrane potential the cell should fire

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -(\theta - \theta_{\mathrm{eq}})/\tau_{\theta}$$

The change in membrane potential V for each neuron is as follows

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \left[-g_{\mathrm{NaL}}(V - \mathrm{E_{\mathrm{Na}}}) - g_{\mathrm{KL}}(V - \mathrm{E_{\mathrm{K}}}) - I_{\mathrm{syn}} - I_{\mathrm{int}} \right] / \tau_{\mathrm{m}} - g_{\mathrm{spike}}(V - \mathrm{E_{\mathrm{K}}}) / \tau_{\mathrm{spike}}$$

where the conductances for the sodium leak $(g_{NaL} = 0.2)$ and potassium leak $(g_{KL} = 1.0-1.85)$ are the primary determinants of the resting membrane potential. Conductance units are dimensionless

Feedforward

Feedback

Study Summary

- Discovered simulation parameters that: (a) are consistent with empirical sleep-wake cycles and (b) satisfy a set of biological constraints.
- But...
 - Is the model over-fitted?
 - Very time-consuming to explore the parameter space to determine if there is a consistent parameter set.
 - Ad hoc methodology
 - How systematically build model?
 - How diagnose model errors (e.g., concept of diagnostics in statistics)?
 - Little engineering rigor
 - No concept of tests that relate simulation results to biology

Why Science in the Cloud?

- Burst capacity
 - Access to many thousands of cores
- Reproducibility
 - Investigators use the same computational tools and data
- Sharing
 - Build on the results of others
- Efficient use of scarce research dollars
 - Avoid investments in infrastructure with a short lifetime

System Challenges

- Fine grain parallelism on a commodity infrastructure
- Low friction scaling
 - Scientists should focus on science not programming distributed systems.
- Interactive exploratory analysis at scale.
- Introspective batch processing.
- Multi-cloud support
 - Data are big & distributed
 - Commercial science requires both public and private` clouds

Science Methodology Challenges

- Systematic model development that is calibrated with empirical data
- Testing methodology
- Integrate models at multiple levels of granularity
- Standardized schemas so can share data
 - But accommodate rapid evolution of knowledge
- Create a culture of software engineering among scientists
 - Software is the lab notebook for computational discovery