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Agenda

e Supercomputing in the cloud
* Application to computational chemistry
» Computational discovery for brain science

* Brain science 101
» Simulating sleep-wake cycles
e Lessons learned, random musings



$4,829-per-hour supercomputer built on Amazon cloud to fuel
cancer research

By Jon Brodkin | Published 2 days ago

Simulated images of compounds studied in pharmaceutical research

~50K cores
~6.7K EC2 instances
$4,828.85 per hour



Exacycle

1 billion core-hours of computational capacity for researchers

Fosted by Dan Belov, Principal Engineer and David Konerding, Software Engineer

We're pleased 10 announce a new academic research grant program: zoogle Exacycle for Visiting Faculty. Through this
program, we'll award up to 10 qualified researchers with at least 100 million core-hours each, for a total of 1 billion core-
hours. The program is focused on large-scale, CPU-bound batch computations in research areas such as biomedicine,
energy, finance, entertainment, and agriculture, amongst others. For example, projects developing large-scale genomic
search and alignment, massively scaled Monte Carlo simulations, and sky survey image analysis could be an ideal fit.



G-Protein Coupled Receptors (GPCR)
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« GPCRs enable the exchange of molecules between cells and
their environment.

* 40% of pharmaceuticals target GPCRs.



Dynamics of GPCRs
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Progress (microseconds)

Experience with GPCR Simulations
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Brain Simulation Case Study

e Brain science 101
« Simulating sleep wake cycles in the cat brain.

Bram. ventral. cat Cerebral hemisphere, right
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Animal Neurons(M) Neuron-M

per brain-g
Sea slug 0.01
Mouse 4 10
Cat 300 10
Human 100,000 71.4
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Figura12-38 Essential Cell Biology, 2/e. (© 2004 Garland Science)
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Synapses Connect Neurons
#synapses ~ 1,000 X #Neurons
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Examples of High Level Brain Wirings
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Mapping Function to Brain Anatomy

Phineas Gage: A Gruesome but True Story

About Brain Science
by John Fleischman

Phineas Gage was truly a man with a hole in his head. A railroad
construction foreman, Phineas was blasting rock near Cavendish,
Vermont, in 1848 when a thirteen-pound iron rod was shot through his
brain. Miraculously, he survived another eleven years and became a
textbook case in brain science. But he was forever changed by the
accident, and what happened inside his brain.. more
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Brodmann's Areas in the Human Brain
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Details of Sensory Motor Areas
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J Neurophysiol 93: 1671-1698, 2005.
First published November 10, 2004; doi:10.1152/jn.00915.2004.

Modeling Sleep and Wakefulness in the Thalamocortical Sy Vertical

Sean Hill and Giulio Tononi
Department of Psychiatry, University of Wisconsin—Madison, Madison, Wisconsin

Submitted | September 2004; accepted in final form 26 October 2004

» Can a brain simulation reproduce sleep-wake cycles?

* Model
* Point model of 65K neurons | |
« Statistical model of neural circuits o=

» Calibrate from empirical data
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Model Parameterizations

* Neurons (65K)

* |lon channels, propagation delays, types
* Synapses (~65M)

* Neurotransmitter, weights on neurons, connections

Hundreds of parameters!!!
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Models of Neuron Firings

A dynamic threshold (é) is defined for each cell that determines at
which membrane potential the cell should fire

de
=~ (0= 0./,

The change in membrane potential V for each neuron is as follows

dV
. [ _ gNdL(V _ ENa) - gKL(V - EK) _ Isyn - Iint]"me - gspika(V - EKJfTspike

dt

where the conductances for the sodium leak (g, = 0.2) and
potassium leak (gg; = 1.0-1.85) are the primary determinants of the
resting membrane potential. Conductance units are dimensionless
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Feedforward Feedback
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Study Summary

* Discovered simulation parameters that: (a) are
consistent with empirical sleep-wake cycles and (b)
satisfy a set of biological constraints.

 But...

e |s the model over-fitted?

* Very time-consuming to explore the parameter space to
determine if there is a consistent parameter set.
* Ad hoc methodology

- How systematically build model?
- How diagnose model errors (e.g., concept of diagnostics
in statistics)?
 Little engineering rigor
- No concept of tests that relate simulation results to
biology
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Why Science in the Cloud?

Burst capacity
» Access to many thousands of cores
Reproducibility

* |nvestigators use the same computational tools and
data

Sharing
 Build on the results of others
Efficient use of scarce research dollars

 Avoid investments in infrastructure with a short lifetime
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System Challenges

Fine grain parallelism on a commodity infrastructure
Low friction scaling

« Scientists should focus on science not programming
distributed systems.

Interactive exploratory analysis at scale.
Introspective batch processing.

Multi-cloud support
e Data are big & distributed

« Commercial science requires both public and private

clouds
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Science Methodology Challenges

Systematic model development that is calibrated with
empirical data

Testing methodology
Integrate models at multiple levels of granularity
Standardized schemas so can share data

 But accommodate rapid evolution of knowledge

Create a culture of software engineering among
scientists

» Software is the lab notebook for computational
discovery
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