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Outline 

• Iterative Mapreduce Programming Model 

• Interoperability 

• Reproducibility 
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July 26-30, 2010  NCSA Summer School Workshop 
http://salsahpc.indiana.edu/tutorial 

300+ Students learning about Twister & Hadoop  
MapReduce technologies, supported by FutureGrid. 





SALSA Intel’s Application Stack 
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– Simple programming model 

– Excellent fault tolerance 

– Moving computations to data 

– Works very well for data intensive pleasingly 
parallel applications 

Ideal for data intensive pleasingly parallel applications 

http://4.bp.blogspot.com/_Xu_KuovUZlw/TTDEfp51-ZI/AAAAAAAADdg/00wuEyCEFb4/s1600/hadoop.png
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MapReduce in Heterogeneous Environment    

MICROSOFT 



Iterative MapReduce Frameworks 
• Twister[1] 

– Map->Reduce->Combine->Broadcast 
– Long running map tasks (data in memory) 
– Centralized driver based, statically scheduled.  

• Daytona[3] 

– Iterative MapReduce on Azure using cloud services 
– Architecture similar to Twister 

• Haloop[4] 

– On disk caching, Map/reduce input caching, reduce output 
caching 

• Spark[5] 

– Distributed querying with working sets 

 



Others 
• Mate-EC2[6] 

– Local reduction object 

• Network Levitated Merge[7] 

– RDMA/infiniband based shuffle & merge 

• Asynchronous Algorithms in MapReduce[8] 

– Local & global reduce  

• MapReduce online[9] 

– online aggregation, and continuous queries 
– Push data from Map to Reduce 

• Orchestra[10] 

– Data transfer improvements for MR 

• iMapReduce[11] 

– Async iterations, One to one map & reduce mapping, automatically 
joins loop-variant and invariant data 

• CloudMapReduce[12] & Google AppEngine MapReduce[13] 

– MapReduce frameworks utilizing cloud infrastructure services 
 

 



Twister4Azure 

Azure Cloud Services 

• Highly-available and scalable 

• Utilize eventually-consistent , high-latency  cloud services effectively 

• Minimal maintenance and management overhead 
Decentralized 

• Avoids Single Point of Failure 

• Global queue based dynamic scheduling 

• Dynamically scale up/down 

MapReduce 

• Iterative MapReduce for Azure 

• Fault tolerance 



Applications of Twister4Azure 

• Implemented 
– Multi Dimensional Scaling 
– KMeans Clustering 
– PageRank 
– SmithWatermann-GOTOH sequence alignment 
– WordCount 
– Cap3 sequence assembly 
– Blast sequence search 
– GTM & MDS interpolation 

• Under Development 
– Latent Dirichlet Allocation 
– Descendent Query 



Twister4Azure – Iterative MapReduce 

• Extends MapReduce programming model 

• Decentralized iterative MR architecture for clouds 

– Utilize highly available and scalable Cloud services 

• Multi-level data caching  

– Cache aware hybrid scheduling 

• Multiple MR applications per job 

• Collective communication primitives 

–  Outperforms Hadoop in local cluster by 2 to 4 times 

• Sustain features 
– dynamic scheduling, load balancing, fault tolerance, monitoring, 

local testing/debugging 

http://salsahpc.indiana.edu/twister4azure/ 



Twister4Azure  Architecture 

Azure Queues for scheduling, Tables to store meta-data and monitoring data, Blobs for 
input/output/intermediate data storage. 



Data Intensive Iterative Applications 

• Growing class of applications 
– Clustering, data mining, machine learning & dimension 

reduction applications 

– Driven by data deluge & emerging computation fields 

Compute Communication Reduce/ barrier 

New Iteration 

Larger Loop-
Invariant Data 

Smaller Loop-
Variant Data 

Broadcast 



Iterative MapReduce for Azure Cloud 

Merge step 

http://salsahpc.indiana.edu/twister4azure 

Extensions to support 
broadcast data 

Multi-level caching 
of static data 

Hybrid intermediate 
data transfer 

Cache-aware 
Hybrid Task 
Scheduling 

Collective 
Communication 

Primitives 

Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure, Thilina Gunarathne, BingJing 
Zang, Tak-Lon Wu and Judy Qiu,  (UCC 2011) , Melbourne, Australia. 



Performance of Pleasingly Parallel Applications 
on Azure 
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MapReduce in the Clouds for Science, Thilina Gunarathne, et al. CloudCom 2010, Indianapolis, IN. 
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Speedup gained using data cache 

Scaling speedup Increasing number of iterations 

Number of Executing Map Task Histogram 

Strong Scaling with 128M Data Points 
Weak Scaling 

Task Execution Time Histogram 

First iteration performs the 
initial data fetch 

Overhead between iterations 

Scales better than Hadoop on 
bare metal  
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Weak Scaling Data Size Scaling 

Performance adjusted for sequential 
performance difference 
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New Iteration 

Scalable Parallel Scientific Computing Using Twister4Azure. Thilina Gunarathne, BingJing Zang, Tak-Lon Wu and Judy Qiu. 
Submitted to Journal of Future Generation Computer Systems. (Invited as one of the best 6 papers of UCC 2011) 





MDS projection of 100,000 protein sequences showing a few experimentally  

identified clusters in preliminary work with Seattle Children’s Research Institute 



Configuration Program to setup 
Twister environment automatically 
on a cluster 

Full mesh network of brokers for 
facilitating communication 

New messaging interface for 
reducing the message serialization 
overhead 

Memory Cache to share data between 
tasks and jobs 



 Broadcasting  

 Data could be large 

 Chain & MST 

 

 Map Collectives  

 Local merge 

 

 Reduce Collectives  

 Collect but no merge 

 

 Combine 

 Direct download or 
Gather 
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Improving Performance of Map Collectives 

Scatter and Allgather Full Mesh Broker Network  



Data Intensive Kmeans Clustering 
─ Image Classification: 1.5 TB; 1.5 TB; 500 features per image;10k clusters 
 1000 Map tasks; 1GB data transfer per Map task 
 



Polymorphic Scatter-Allgather in Twister 
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Twister Performance on Kmeans Clustering  
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Twister on InfiniBand 

• InfiniBand successes in HPC community 
– More than 42% of Top500 clusters use InfiniBand 
– Extremely high throughput and low latency 

• Up to 40Gb/s between servers and 1μsec latency 

– Reduce CPU overhead up to 90% 

• Cloud community can benefit from InfiniBand 
– Accelerated Hadoop (sc11) 
– HDFS benchmark tests 

• RDMA can make Twister faster 
– Accelerate static data distribution 
– Accelerate data shuffling between mappers and reducer 

• In collaboration with ORNL on a large InfiniBand cluster 



 

 

 

 

 

 

Bandwidth comparison of HDFS on 
various network technologies 

 



Using RDMA for Twister on InfiniBand 



Twister Broadcast Comparison: 
Ethernet vs. InfiniBand 
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InfiniBand Speed Up Chart – 1GB bcast 

Ethernet InfiniBand
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Building Virtual Clusters 
Towards Reproducible eScience in the Cloud 

Separation of concerns between two layers 
• Infrastructure Layer – interactions with the Cloud API 
• Software Layer – interactions with the running VM 
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Separation Leads to Reuse 
Infrastructure Layer = (*) Software Layer = (#)  

By separating layers, one can reuse software layer artifacts in separate clouds  
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Design and Implementation 

Equivalent machine images (MI) built in separate clouds 
• Common underpinning in separate clouds for software 

installations and configurations 

• Configuration management used for software automation 

Extend to Azure 
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Cloud Image Proliferation 
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Changes of Hadoop Versions 
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Implementation - Hadoop Cluster 

Hadoop cluster commands 
• knife hadoop launch {name} {slave count} 

• knife hadoop terminate {name} 
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Running CloudBurst on Hadoop 

Running CloudBurst on a 10 node Hadoop Cluster 
• knife hadoop launch cloudburst 9 

• echo ‘{"run list": "recipe[cloudburst]"}' > cloudburst.json 

• chef-client -j cloudburst.json 
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CloudBurst Sample Data Run-Time Results 

FilterAlignments

CloudBurst

CloudBurst on a 10, 20, and 50 node Hadoop Cluster 
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Implementation - Condor Pool 

Condor Pool commands 
• knife cluster launch {name} {exec. host count} 

• knife cluster terminate {name} 

• knife cluster node add {name} {node count} 



Implementation - Condor Pool 

40 

Ganglia screen shot of a Condor pool in Amazon EC2 

80 node – (320 core) at this point in time 
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