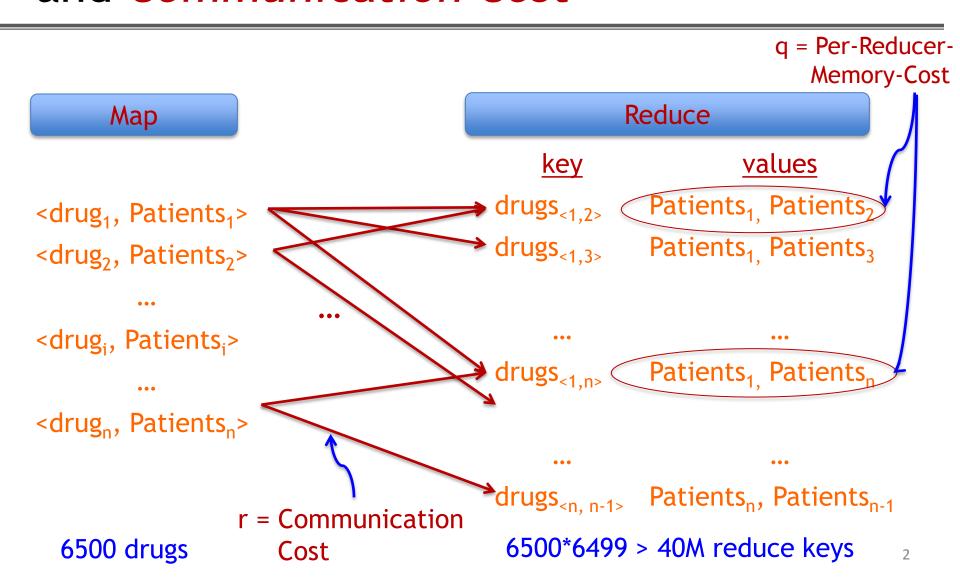
Towards an Understanding of the Limits of Map-Reduce Computation

Foto Afrati — National Technical University of Athens
Anish Das Sarma — Google Research

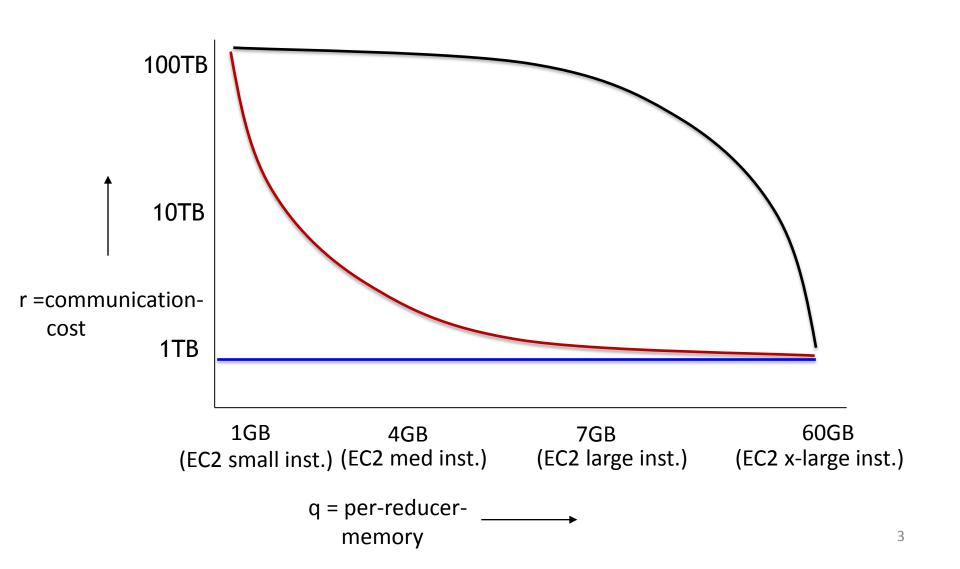
Semih Salihoglu — Stanford University

Jeff Ullman — Stanford University

Tradeoff Between *Per-Reducer-Memory* and *Communication Cost*



Possible Per-Reducer-Memory/ Communication Cost Tradeoffs



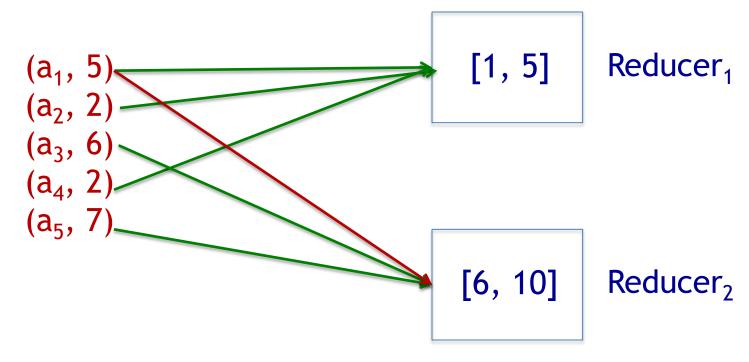
Example (1)

- Similarity Join
 - Input R(A, B), Domain(B) = [1, 10]
 - Compute <t, u> s.t |t[B]-u[B]| 1

Input Output A B a_1 5 a_2 2 a_3 6 a_4 2 a_5 7

Example (2)

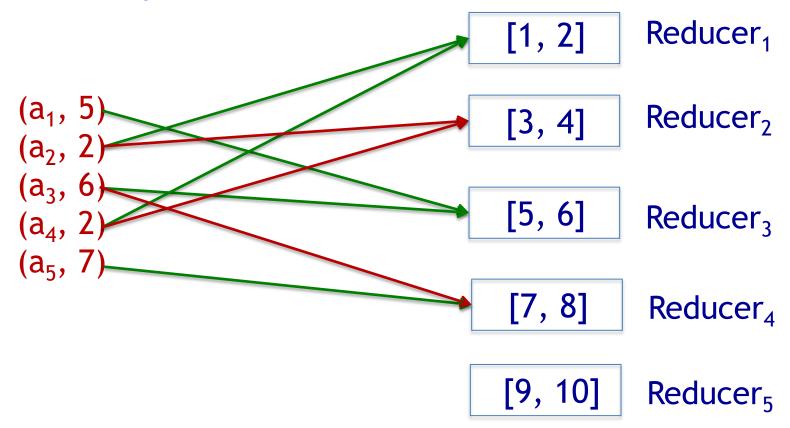
- Hashing Algorithm [ADMPU ICDE '12]
- Split Domain(B) into k ranges of values => (k reducers)
- k = 2



- Replicate tuples on the boundary (if t.B = 5)
- Per-Reducer-Memory Cost = 3, Communication Cost = 6 5

Example (3)

• k = 5 => Replicate if t.B = 2, 4, 6 or 8



Per-Reducer-Memory Cost = 2, Communication Cost = 8

Same Tradeoff in Other Algorithms

- Finding subgraphs ([SV] WWW '11, [AFU] Tech Report '12)
- Computing Minimum Spanning Tree (KSV SODA '10)
- Other similarity joins:
 - Set similarity joins ([VCL] SIGMOD '10)
 - Hamming Distance (ADMPU ICDE '12 and later in the talk)

Our Goals

- General framework for studying memory/communication tradeoff, applicable to a variety of problems
- Question 1: What is the minimum communication for any
 MR algorithm, if each reducer uses q memory?
- Question 2: Are there algorithms that achieve this lower bound?

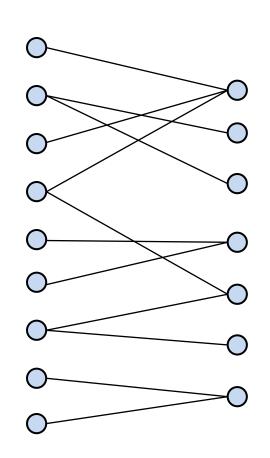
Remainder of Talk

- Input-Output Model
- Mapping Schemas & Replication Rate
- Hamming Distance 1
- Other Results

Input-Output Model

Input Data
Elements

I: {i₁, i₂, ..., i_n}



Output Elements
O: {o₁, o₂, ..., o_m}

Dependency = Provenance

Example 1: $R(A, B) \bowtie S(B, C)$

|Domain(A)| = 10 |Domain(B)| = 20 |Domain(C)| = 40

$$(a_{1}, b_{1})$$

$$(a_{1}, b_{20})$$

$$(a_{1}, b_{20})$$

$$(a_{1}, b_{20}, c_{40})$$

$$(a_{1}, b_{20}, c_{40})$$

$$(a_{1}, b_{20}, c_{40})$$

$$(a_{2}, b_{1}, c_{1})$$

$$(a_{2}, b_{20}, c_{40})$$

$$(a_{3}, b_{20}, c_{40})$$

$$(a_{4}, b_{20}, c_{40})$$

$$(a_{2}, b_{20}, c_{40})$$

$$(a_{3}, b_{20}, c_{40})$$

$$(a_{4}, b_{20}, c_{40})$$

$$(a_{2}, b_{20}, c_{40})$$

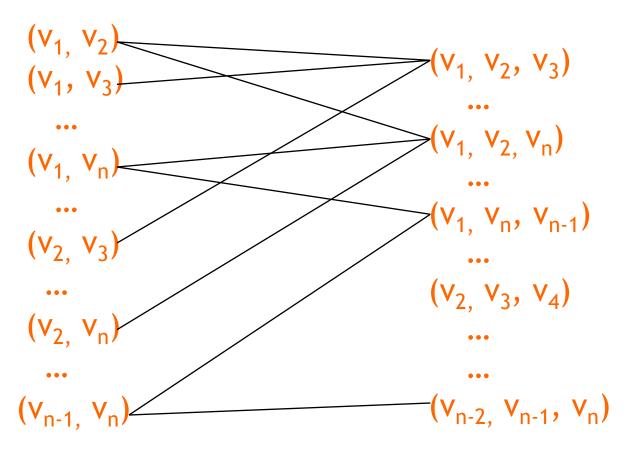
$$(a_{3}, b_{20}, c_{40})$$

$$(a_{4}, b_{20}, c_{40})$$

$$(a_{5}, b_{20}, c$$

Example 2: Finding Triangles

Graphs G(V, E) of n vertices {v₁, ..., v_n}



n-choose-2 input data elements

n-choose-3 output elements

Mapping Schema & Replication Rate

- p reducer: {R₁, R₂, ..., R_p}
- q max # inputs sent to any reducer R_i
- Def (Mapping Schema): $M: I \rightarrow \{R_1, R_2, ..., R_p\}$ s.t
 - R_i receives at most q_i q inputs
 - Every output is *covered* by some reducer:
- Def (Replication Rate):

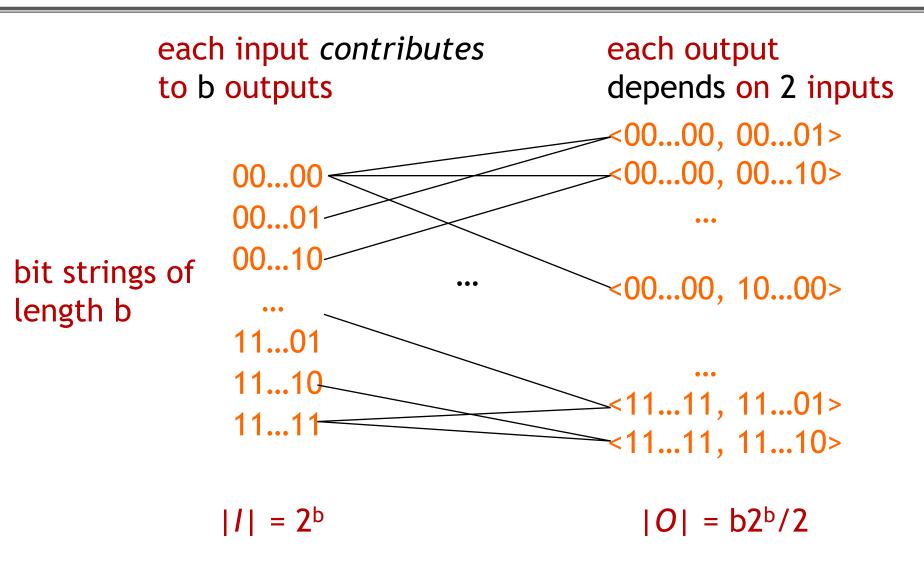
•
$$\mathbf{r} = \overset{p}{\underset{i=1}{\overset{p}{\circ}}} q_i / |I|$$

• q captures memory, r captures communication cost

Our Questions Again

- Question 1: What is the minimum replication rate of any mapping schema as a function of q (maximum # inputs sent to any reducer)?
- Question 2: Are there mapping schemas that match this lower bound?

Hamming Distance = 1



Lower Bound on Replication Rate

(HD=1)

- Key is upper bound g(q): max outputs a reducer can cover with q inputs
- Claim: $g(q) = \frac{q}{2} \log_2(q)$ (proof by induction on b)
- All outputs must be covered:

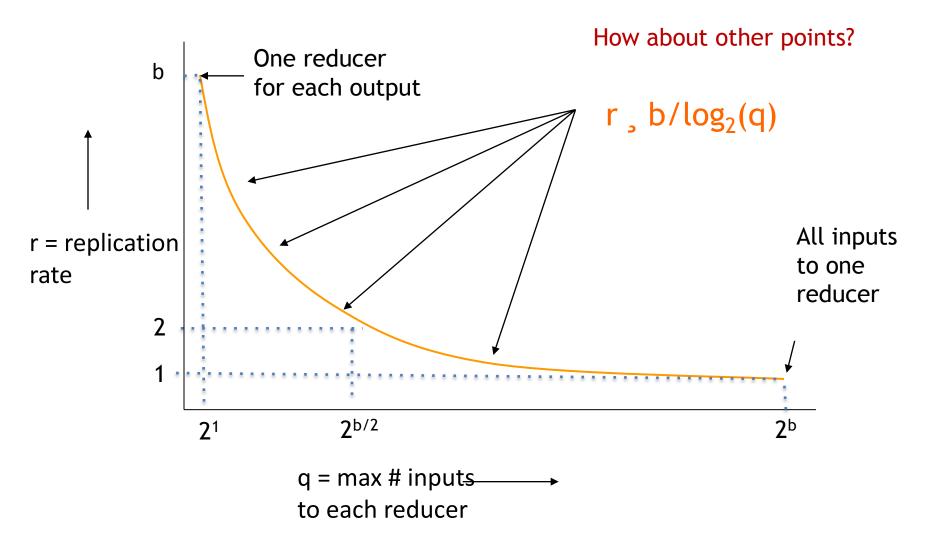
$$\mathring{a}_{i=1}^{p} g(q_{i})^{3} |O| \longrightarrow \mathring{a}_{i=1}^{p} \frac{q_{i}}{2} \log_{2} q_{i}^{3} \frac{b}{2} 2^{b} \longrightarrow \mathring{a}_{i=1}^{p} \frac{q_{i}}{2} \log_{2} q^{3} \frac{b}{2} 2^{b}$$

• Recall:
$$r = \mathop{\mathring{a}}_{i=1}^{p} q_i / |I| \longrightarrow r = \mathop{\mathring{a}}_{i=1}^{p} q_i / 2^b$$

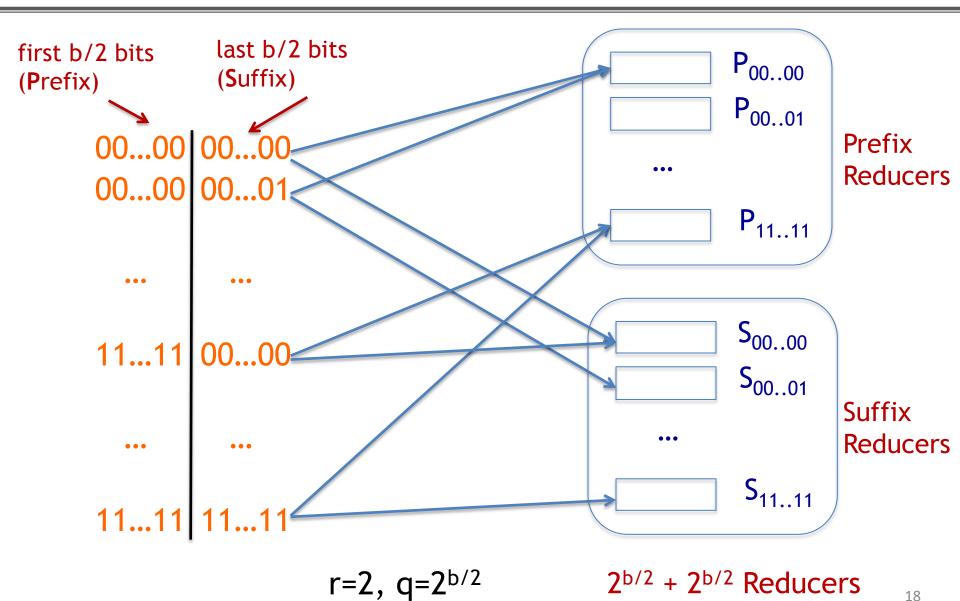
 $r_{s} b/log_{2}(q)$

Memory/Communication Cost Tradeoff

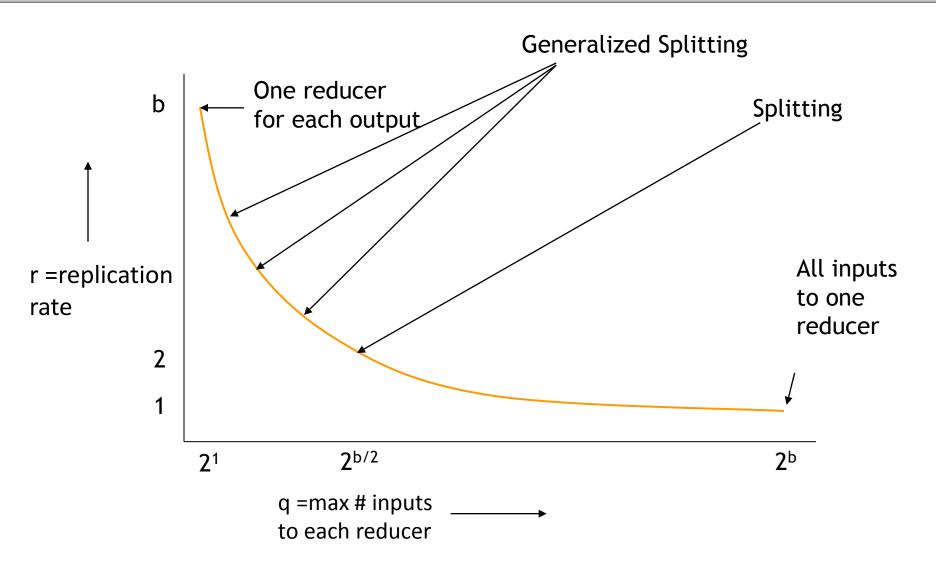
(HD=1)



Splitting Algorithm for HD 1 ($q=2^{b/2}$)



Where we stand for HD = 1



General Method for Using Our Framework

- 1. Represent problem *P* in terms of *I*, *O*, and dependencies
- 2. Lower bound for r as function of q:
 - i. Upper bound on g(q): max outputs covered by q inputs
 - ii. All outputs must be covered: $\overset{p}{\otimes} g(q_i)^3 |O|$
 - iii. Manipulate (ii) to get $r = \mathop{a}_{j}^{p} q_{j} / |I|$ as a function of q
- 3. Demonstrate algorithms/mapping schemas that match the lower bound

Other Results

- Finding Triangles in G(V, E) with n vertices:
 - Lower bound: r, $\frac{n}{\sqrt{2q}}$ Algorithms: $O(\frac{n}{\sqrt{2q}})$
- Multiway Self Joins:
 - $R(A_{11},...,A_{1k})$ $R(A_{21},...,A_{2k})$ $R(A_{t1},...,A_{tk})$
 - k # columns, $n = |A_i|$, join t times on i columns
 - Lower bound & Algorithms: $O(q^{1-t(k-i)/k}n^{t(k-i)-k})$
- · Hamming distance · d
 - Algorithms: r d + 1

Related Work

- Efficient Parallel Set Similarity Joins Using MapReduce (Vernica, Carey, Li in SIGMOD '10)
- Processing Theta Joins Using MapReduce (Okcan, Riedewald in SIGMOD '11)
- Fuzzy Joins Using MapReduce (Afrati, Das Sarma, Menestrina, Parameswaran, Ullman in ICDE '12)
- Optimizing Joins in a MapReduce Environment (Afrati, Ullman in EDBT '10)
- Counting Triangles and the Curse of the Last Reducer (Suri, Vassilvitskii WWW '11)
- Enumerating Subgraph Instances Using MapReduce (Afrati, Fotakis, Ullman as Techreport 2011)
- A Model of Computation for MapReduce (Karloff, Suri, Vassilvitskii in SODA '10)

Future Work

- Derive lower bounds on replication rate and match this lower bound with algorithms for many different problems.
- Relate structure of input-output dependency graph to replication rate.
 - How does min-cut size relate to replication rate?
 - How does expansion rate relate to replication rate?