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ITEM 97 (Schroeppel) :

o L i

page 3¢

Simple proofs that certain continued fractions are v/7, /3, etc.
Proof for /2:

X = [1, 2, 2, 2, ooo]

(x'l)(x"'l) = [o, 2, 2, 2, S [2, 2, 2, 2, eee] =21

X2 -1 =1 :

X = /2 ’
Proof for /3:

Y = [1, 1, 2, 1, 2, 0"] :

(Y +« 1)(Y - ) = [2, 2, 2, 1,' 2, ...] * (o, 1, 2, conl

MRSl 42), 15 2, 1,0 DL <) vl A 1 8
Y2 -1 =2
Y = /3

Similar proofs exist for

ITEM 98 (Schroeppel):

The continued fraction expansion of the

Y5 and Y6;

1

but /7 is hairy.

of the factorial function (about;0.46) is

[0: 2:

ITEM 99 (Schroeppel):
The value of a continued
increasing in arithmetic

[A+D, A+2D, A+3b, ,..] =

where the I's are Bessel

A special case is [1, 2,

ITEM 100 (Perron):
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ITEM 101A (Gosper): page 37
On the theory that continued fractions are underused, probably
because of their unfamiliarity, 1 offer the following propaganda
session on the relative merits .of continued fractions versus
other numerical representations. For a good cram course in
continued fractions, seé Knuth, volume 2, page 316. (In what
follows, "regular' means that all numecrators are 1, and any radix
can be read in place of decimal.)

0) @ is 3. But not really 3, more like 3 + 1/7. But not réally
7, more like 7 + 1/15. But not xreally 15, ... . So the regular

continued fraction for T is written 3 7 151 292 11 ..¢

1) The continued fractions for rational numbers always come out
even, and rather quickly. Thus, the number of inches per meter
is exactly 100/2.54 or 39 2 12214. The corresponding decimal
fraction 39.3700787... has period 42, making it almost impossible
to tell if the number is rational., (But if our data are ALL
rational, the ordered pair 5000/127 is even moTe concise.)

2) Quadratic surds, which are of course inexpressible as
rationals, are generally unrecognizable in decimal., Theilr
continued fractions, on the other hand, are periodic. Nth roots
of e?, ratios of Bessel functions, and ratios of linear functions
of these all have regular continued fractions formed by
interleaving one or mnore arithmetic scquenceés. These special
propertics will show up regardless of number base. You might
recognize 5.436563... 2as 2e, but even Schroeppel might not notice
. 2/3 2/3
that 6.1102966796... Was (4 e - 2)/(e - 1) until he wrote
it as 6 9 15 21 27 33 .o o

The familiar transcendental functions of rational arguments also
have simple continued fractions, but these are generally not
regular and cannot be reconstructed fron numerical values by &
simple algorithm, since nonregular representations aren't unique.
The point is, however, that numbers like e, T, Y3, sin .S,

/7 arctan Y7, etc. can be expressed to unlimited precision by
simple programs which produce the terms on demand.

3) If we define a rational approximation to be “"best" if it

comes closer than any other rational with such a small
denominator, then continued fractions give the complete set of
best rational approximations to the value which they represent.
That is, if you truncate a (regular) continued fraction at any
point, then the resulting rational number is a best approximation.
Furthermore, this remains true if the last term of this
approximation 1is replaced by any smaller positive integer other
than 1. All best approximations can be generated in this manner,
in order of increasing denominators (or numerators). For example,
the approximants to T =3 7 151 292 ... are:



3: 171, 271, 3/1 ' page 38
7: (4/1), 7/2, 10/3, 13/4, 16/5, 19/6, 22/7
15: (25/8), 47/15, 69/22, 91/29, 113/36, ... 311/99, 333/106

1: 355/113 :

Note that they are all automatically in lowest terms. The size
of a denominator is greater than the product of the terms
involved and less than the product of the numbers 1 greater than
the terms. The approximations are low if the number of terms is
odd, high if it's even. (Note that if a 1 ends a continued
fraction, it should be added in to the previous term. Thus, to
"round off" a continued fraction after a certain term, add in the
next term iff it is *1, 1In the above, 4/1 and 25/8 correspond to
termination with a 1 and are not "best'"; 355/113 is "hest"
because the corresponding term really should be 1.) The error is
smaller than 1 over the product of the denominator squared and
the first neglected term, so that the total number of digits
(numerator and denominator) is usually slightly smaller than with
equally accurate decimal fractions. 355/113 is good to 7.5
places instead of 5.5, due to the unusually large term (292)
which follows.

4) Numerical comparison of continued fractions is slightly harder
than in decimal, but much casier than with rationals -- just
invert the decision as to which is larger whenever the first
discrepant terms are even-numbered. Contrast this with the
problem of comparing the rationals 113/36 and 355/113.

5) Regular continued fractions are in 1 to 1 correspondence with
the real numbers, unlike decimal (.5 = .49999,..) or rationals
(2/3 = 6/9, Y6 = ?). Even infinity has a continued fraction,
namely, the empty one! (Minus and plus infinity are the same in
continued fraction notation.)

6) Each representation favors certain operations,

Lecimal favors multiplication by powers of 10. Rationals favor
reciprocation, as do continued fractions. To reciprocate a
regular continued fraction, add (or if possible, delete) an
initial 0 term. To negate, necgate all the terms, optionally
observing that -a, -b, -c, -d ... = -a-1, 1, b-1, ¢, d ... .

7) The strongest argument for positional (e.g., decimal or
floating) representation for non-integers is that arithmetic is
easy. Rational number arithmetic often loses because numecrators
and denominators grow so large as to rcquire icky multiprecision.
Algorithms for arithmetic on continued fractions seem generally
unknown. The next items describe how to arithmetically combine
continued fractions to produce new ones, one term at a time,



page 39
Unfortunately, the effort required to perform these operations
manually 1is several times that for decimal, but the rewards for
machine implementation arc considerable (which can also be said
of floating point). Spccifically, these rewards will be scen
to be: unlimited significance arithmetic without multiprecision
multiplication or division, built in error analysis, immorally
easy computation of algebraic functions, no unnecessary
computations, no discarding of information (as with roundoff and
truncation), reversibility of computations, and the terms of the
answer start to come out right away and continue tO do so until
shut off.

ITEM 101B (Gosper):
Continued Fraction Arithmetic

Continued fractions jet us perform numerical calculations a
little at a time without ever introducing any erroT, such as
roundoff or truncation. As 1f this weren't enough, the
calculations provide automatic erroTl analysis, and obviate most
forms of successive approximation. This means wWe can start with
an arithmetic cxpression like y3/i2 "+ e / (tanh YT - sin 69)

and immediately begin toO produce the value as a sequence of
continued fraction terms (or even decimal digits, if we should be
SO reactionary), limited only by time and storagec. 1f there are
quantities in the expression which are known only approximately,
the calculation can provide crroTf bounds on the answer as well as
jdentify the quantity that limited the significance.

All this is possible because each operation (+, /» =» Y™y in the
arithmetic expression requests terms from the continued fractions
of its operands only when necessaTy, and consequently produces
terms of its owWn value as soon as possible. Numbers like T and e
and functions like sin and tanh have continued fraction terms 1in
simple sequences which can be produced by short programs.
Imprecise quantities can also be programs which deliver terms
until they run out of confidence, whereupon they jnitiate special
action. BY then, the last guaranteeable term of the overall
cxpression will have already been produced.

We sce then that no calculation is performed unnecessarily,

so that, for example, 2 subexpression which happened to be
multiplied by zero would never be evaluated. Also, am operation
detecting a deficiency in two oT more of its operands provides a
natural mechanism for allocating multiprocessor resoTrces, should
you have some.
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Where dgain g Continyey fractjop and the .. nd qrg are
integers. We shalj call (p q) bair 4 "terpn °f the Continyeq

fraction for . Often, only the P's are mentioned, in which case
the qrs are implieitly aly j, and x jgq Called , "regular"

0
itsejf into X', Similarly, let y pe 4Nother procedurally
Teépresenteq COntinyey fractjop r + g /yr', Our Problep Will pe

Solved jf We cap Write Such subroutines for Z2(x,y) = X+y, X-y,
XY, and x/y. When Called upon ¢o Output , term of Z, the

»
next lme, Unfortunately, when ye t © do thj » ou
expreSSions qQuick:? omplicate. L Preempe this complication

y computing instead € more £eneraj} unctj Qt

(or (a b ¢ d) /(e fg h) for short) where 4 through h are integer
Variabpjleg whose initial Valueg We are free to choose. Various
Choices €Xpress

addltion. X+y = (o 1 O)/(O 0 o 1),
subtraction: X-y = (0 1 . 0)/(o 0 o 1),
multiplication: XY = (1 0 o 0)/(o 0 o 1), ang

division: X/y = (0 ;3 -0 0)/¢0 o 1 .

As we shayl) See, the PTrocesg of inputting ternps of x and y ang
outputting terms of Z wi)j] Teduce ¢, replacing the cight integers
a through h with linegy combinations °of eacp Other,
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1f x was rational and has run out of terms, page 41
it has in effect become infinite:

z2(=,y) = (0 0 a b)/(0 0 e £)

If instead we input a term of y by substituting
r + s/y' for every occurrence of y:

2(x,y"') = (ra+b sa rc+d sc)/(re+f se rg+h sg)s
1f y runs out of terms:
s(x,@) = (08 0 ¢)/(0e0E)

To output the term (t u), so that z = t ¢+ u/z!
(i.e., z' = u/(z-t)):

z'(x,y) = (ue uf ug uh)/(a-te b-tf c-tg d-th).
Thus this basic eight variable form is prescrved by all
three operations, which can be performed in any order

since they represent independent substitutions.

For simplicity, let us assume that z will output in standard

form, that is, every u = 1 (regular) and every output term

t > 1 except perhaps the first. This means that z' will always
exceed 1 and thus 0 < u/z' < 1, so that the integer t = 2 = u/z'!
must = [z], the greatest integer < z.

$ince z generally varies with x and ¥, it should not output

unless [z] is comstant for the range of possible x and y. We can
casily compute the range of z given the ranges of x and y if we
reprcsent cach range by the endpoints of an interval (in either
order), along with a bit indicating Inside or Qutside. Thus if 2
is in standard form, we can say that 2z will always be (Inside 1 o)
(or (Outside - 1)) after the first term. If z were to always
output its nearest integer instead of its greatest, then none of
the terms after the first would be 1, although they would
probably vary in sign. In this case, ‘2 would be (Outside -2 2).

Now hold y fixed and examine the behavior of z with x. If x is
(Inside a b) then 2z is (Inside z(a) z(b)) unless the denominatoT
of z changes sign between a and b (i.e., Z has its pole in this
jnterval), whereupon 2 is (Outside z(a) z(b))- Symmetrically,
when x is (Outside a b) then z is (Outside z(a) z(b)) unless the
signs of the denominators of z(2) and z(b) differ, whereupon z is
(Inside z(a) z(b)). This argument still holds with x and VY
interchanged.
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Now SUppose that With y fixey at one of jts endp01nts X
Cons Tains , (Insige » and 4 ! Other Xt me, z2(x) jis
(Out51de 0 . Uppos Urther hat ;¢ the ty, Xtremeg of x
z(y) is ( nside and (Outside 0 2y, Then , »Y) is
Utside ), the Ulion ¢of the fo Tange (Out51de 2) is
the Widest, 1nd1cat1ng that , will Probay); mor nformation
Tom 4 term of Y thanp ternp X. Pology ja ker shoujgq
Tecognj,e this Inside. Utside Nonsense rdinary INterva)g in

Due ¢4 the basjc 11y fonotonj, behaV1or of 2z, We cap guarantee
that € actug] ange Will pe h Union thes rangcs,
and thae i Tange W1ll pe Inside or Outsige som 1nterval.

If j¢ is (Inside 2) and z1] = [z2 > 2 OUtput the terp

t = 1], Otheryj Z must 1nput 5 ™™ from y, whichever
was assoc1ated Y1th the Wldest f the ou Nges

(Uut51de drrowneg ) is Wider ¢ an ( Utside denesg 1S widep

2 wWil] ¢ 1 p P in o Puting the rap € of g, NCtiop z
€Specia] Y if , E€ts sty k trying to Outpyt he ; St terp of 4 &
Tationaj Numbe €sulcej g fron irr tionaj Yo (T €re jg o

wWay ¢ 8Uarantee that Y wop eVentually devjga e, wherCUpon

Z woulg egest gigantic ter )

2 cap Produce ;4 as decimg; digjtg by multiplying
: t =

[z]:

the terms 7 1 when 1t shoujy ave Produceg 6 9, Soon 35
permitted, t 11 sip ly Tecanpe With 1 . and €ontinye With
the cory Ction _j . S€quence » ) 0 -1 .5 _
equivalent to 6 ¢ becays b o ¢ 15 the ane 4 b+e N ordey to
Undo thes computations, 2z violates th Onditjo ( tside -1 1)
¥hen j. 0 T .., This condjt; n.is obeyeg y Nearjy all
c NVergent Continyeq frace s after their ¢ Tst » and jtg
v101ation Y111l vepr Probap] Cause furep Tetrace; ns aMmong the
Unctiopg depende Upo
his ¢, Putatjg, Teversg] 1ck jis , S0 h ndy fop hanizing and
denot 2 lmprecige quantities. Insteagq f 9979 =+00000 we
ave 19 . mcaning between 2 1 481 and 1 483, Similarly
137 26 Teplaceg 137.03735 4 0006,
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Successive approximations methods bencfit considerably from not
requesting terms until nceded. Consider Newton's method for
algebraic roots. We expect successive approximations to have
about twice as many correct terms cach time. Since the
production of these terms cannot be aided by rcading incorrect
terms, the additional correct terms must be produced before the
bad ones of the previous approximation are used. But this means
that there is no need to read in the bad ones at all. BY feeding
back the output terms in place of the approximation, we get the
correct answer directly! (69% of the credit for this goes to
schroeppel.)

The basic eight variable form exemplified above by z(x,Y) is not
the only form preserved by continued fraction term transactions.
We need only four variables and a single interval check to
compute z(x) = (ax+b)/(cx+d), the homographic function of one
argument., On the other hand, z(w,x,y) (linear in all three
arguments) requires sixteen variables and a twelve way interval
check. Each of these forms can be solved for x in terms of

2 etc. to get a function of the same form. This .is not true€ of

t-

z(x) = (axz+bx+c)/(dx2+ex+f),

for example, even though this form is also preserved. This form
is not guaranteed monotone, thus theoretically snvalidating the
interval check algorithm, but jt hardly ever errs. Even if it
did, it would quickly correct itself anyway. This form is not
cnly more economical than z(x,x), it is essential for the success
of the Newton's method feedback trick, which must know when two
variables are really the same one.

8y choosing the eight coefficients a through h properly,

it should be possible to rewrite arithmetic expressions as
compositions of considerably fewerT of these forms than omne for
each +, =, %, and /. The reader is jnvited to jnvestigate the
problem of trying to find minimal representations. Depending on
the metric for minimality, the question can be complicated by
allowing higher powerTs of x and y. [If the highest powers of

X, Yo 29 o= in an invariant form are i, J» ks eeen then the
number of integer vyariables required for the coefficients (mostly
because of all of the cross terms) is 2(i+1)(j+1)(k+1)... .

1t is awkward in this system to evaluate transcendental functions
of irrational arguments. The problem is that you may need any
number of continued fraction (or series) teIms which, instead of
being numbers, are symbalic functions of x, some infinite
continued fraction, MX suggestion is to represent each symbolic
term of the function by a subroutine which is a function of x and
the next term, with this next term really a dummy until actually
called upon for output, whereupon it replaces itself with a full
fledged term subroutine which in turn refers to x and a new dummy .

e e —— = e ————— b e T PR ———
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Sad to say, the integer variables in these algorithms do not
usually shrink on outputs as much as they grow on inputs,
Fortunately, the operations for input and output only require
(besides addition) multiplication by terms which are almost
invariably small. (I have not seen a term exceed 20776 except
in specially constructed numbers.) It is fairly safe, then, to
declare any function which has gotten (Outside -233 255) to be
infinite, thus terminating its continued fraction. Better still,
note that the term 20776 is equivalent to the terms
20000 0 700 0 70 0 6, i.e., a very large term can be transmitted
piecewise. Although this is just thinly disguised multiprecision
multiplication, that first piece of the term will probably
satisfy its recipient for quite some time.

In some special cases, the integer variables will become periodic
rather than large, especially when all but one of the arguments
to a function have terminated,. Then, we have the form

z(x) = (ax+b)/(cx+d), known as a homographic function. If ad-be
is *1, then a, b, c, d will eventually become 1, 0, 0, 1,
whereupon z will output the terms of x unmodified, Periodicity
will also occur when x is a Hurwitz number, i.e., when the terms
of x are the values of one or more polynomials evaluated on
consecutive integers and then interleaved. Coth 1/69, Y105, and
e are Hurwitz numbers whose polynomials are linear or constant.
ilurwitzness is preserved by homographic functions. 1If one can
show that T is not a llurwitz number, one confirms the long
standing conjectures that e*T, e+m, e/W, etc. are all irrational,

If z, x, and y are all regular, then it generally won't bhe
possible to reduce z by finding a GCD of a through h which is > 1,
llowever, it has been determined empirically that much reduction

is often possible in other cases. This reduction is almost

always by a divisor of an input or:output term numerator (or 10
if output is decimal digits) and can be facilitated by keeping
cetain of the integer variables around modulo these quantities,

ITEM 101C (Gosper):

Problem: Given an interval, find in it the rational

number with smallest numerator and denominator,

Solution: Express the endpoints as continued fractions. Find
the first term where they differ and add 1 to the lesser term,
unless it's last., Discard the terms to the right. VWhat's left
is the continued fraction for the "smallest" rational in the
interval., (If one fraction terminates but matches the other as
far as it goes, append an infinity and proceed as above.)
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