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bAlfréd Rényi Institute of Mathematics, POB 127, H-1364 Budapest, Hungary
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Abstract

We consider sequences of graphs (Gn) and define various notions of convergence related
to these sequences: “left convergence” defined in terms of the densities of homomorphisms
from small graphs into Gn; “right convergence” defined in terms of the densities of homo-
morphisms from Gn into small graphs; and convergence in a suitably defined metric.

In Part I of this series, we show that left convergence is equivalent to convergence in
metric, both for simple graphs Gn, and for graphs Gn with nodeweights and edgeweights.
One of the main steps here is the introduction of a cut-distance comparing graphs, not
necessarily of the same size. We also show how these notions of convergence provide natural
formulations of Szemerédi partitions, sampling and testing of large graphs.
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1 Introduction

In this and accompanying papers, we define a natural notion of convergence of a sequence of

graphs, and show that other useful notions of convergence are equivalent to it. We are motivated

by the fact that, in many subfields of mathematics, computer science and physics, one studies

properties of very large graphs, or properties of graph sequences that grow beyond all limits. Let

us give a few examples:

Random Networks: There is a large literature of graph models of the Internet, the WWW,

and other so-called ”scale-free” technological networks, first modeled in this context by Barabási

and Albert [7]. Among the technological networks that are modeled are the graph of computers

and physical links between them, the graph of so-called Autonomous Systems such as Internet

Service Providers, the graph of webpages with hyperlinks, etc. These graphs are often similar

to various graphs of social networks: acquaintances, co-publications, the spreading of certain

diseases, etc.

These networks are formed by random processes, but their properties are quite different from

the traditional Erdős–Rényi random graphs: their degree distribution has a “heavy tail”, they

tend to be clustered, the neighborhoods of their nodes are denser than the average edge density,

etc. Several models of random scale-free graphs have been proposed and studied. For rigorous

work, see [11, 13] for undirected models, [26] for “copying models”, [10] for a directed model,

[9] for the spread of viruses on these networks, and [12] for a survey of rigorous work with more

complete references.

Quasirandom Graphs: Quasirandom (also called pseudorandom) graphs were introduced by

Thomason [32] and Chung, Graham and Wilson [20]. These graph sequences can be deterministic,

but have many properties of true random graphs. A nice example is the sequence of Paley graphs

(quadratic residue graphs). These graphs are remarkably similar to a random graph with edge-

probability 1/2 on the same number of nodes in many ways. The most relevant for us is that they

contain (asymptotically) the same number of copies of each fixed graph F as the random graph—

this is one of the many equivalent ways to define quasirandom graphs. Many other questions in

graph theory, in particular in extremal graph theory, also involve asymptotic counting of small

graphs.

Property Testing of Large Graphs: Say we are given a large graph and we want to determine

certain numerical parameters, e.g., the edge density, of that graph by sampling a bounded number

of nodes. Or perhaps we want to determine whether the large graph has a given property,

e.g., is it 3-colorable? In particular, which parameters can be accurately estimated and which

properties can be tested with high probability by looking only at subgraphs on small randomly

chosen subsets of the nodes? A precise definition of property testing was given by Goldreich,

Goldwasser and Ron [24], who also proved several fundamental results about this problem.
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Statistical Mechanics: Many models in physics are described by a weighted coloring of some

large graph G. The graph G typically represents underlying geometric structure of the model

under consideration, e.g. a crystal lattice and its nearest neighbor structure, while the color

of a given node represents the local state. In the simplest case of two colors, the two colors

can represent quantities like the two possible orientations of a spin variable, or the presence or

absence of a molecule at a given position. The interactions between different local states can then

be described by a weighted “interaction graph” H, with smaller edgeweights corresponding to

weaker interactions, and larger edgeweights representing stronger interactions. In this context,

the weighted number of colorings represents the so-called partition function of the model.

Combinatorial Optimization: Many optimization problems can be described as weighted col-

oring problems. A simple example is the max-cut problem, where our task is to find the maximal

cut in a large graph G. If we consider a coloring of G with two colors, 1 and 2, and weight a

coloring by the number of edges with two differently colored endnodes, then the maximum cut

is just given by the maximum weight coloring.

In this and two accompanying papers we develop a theory of convergence of graph sequences,

which works best in two extreme cases: dense graphs (the subject of this paper and [16]) and

graphs with bounded degree (the subject of [17]). Convergence of graph sequences was defined

by Benjamini and Schramm [8] for graphs with bounded degree, and by the authors of this paper

[14] for dense graphs.

Our general setup will be the following. We have a “large” graph G with node set V (G)

and edge set E(G). There are (at least) two ways of studying G using homomorphisms. First,

we can count the number of copies of various “small” graphs F in G, more precisely, we count

the number of homomorphisms from F to G; this way of looking at G allows us to treat many

problems in, e.g., extremal graph theory. Second, we can count homomorphisms from G into

various small graphs H; this includes many models in statistical physics and many problems on

graph coloring.

These two notions of probing a large graph with a small graph lead to two different notions

of convergence of a sequence of graphs (Gn): convergence from the left, corresponding to graphs

which look more and more similar when probed with homomorphisms from small graphs into

Gn, and convergence from the right, corresponding to graph sequences whose elements look more

and more similar when probed with homomorphism from Gn into a small graphs.

This theory can also be viewed as a substantial generalization of the theory of quasirandom

graphs. In fact, most of the equivalent characterizations of quasirandom graphs are immediate

corollaries of the general theory developed here and in our companion paper [16].

In this paper we study convergence from the left, both for sequences of simple graphs and

sequences of weighted graphs, and its relations to sampling and testing. Since this paper focuses

on convergence from the left, we’ll often omit the phrase ”from the left”. We will also show that
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convergence from the left is equivalent to convergence in metric for a suitable notion of distance

between two weighted graphs. Finally, we will show that convergence from the left is equivalent to

the property that the graphs in the sequence have asymptotically the same Szemerédi partitions.

Convergence from the right will be the subject matter of the sequel of this paper [16].

Convergence in metric clearly allows for a completion by the usual abstract identification of

Cauchy sequences of distance zero. But it turns out (Lovász and Szegedy [27]) that the limit

object of a convergent graph sequence has a much more natural representation in terms of a

measurable symmetric function W : [0, 1]2 → R (we call these functions graphons). In fact, it is

often useful to represent a finite graph G in terms of a suitable function WG on [0, 1]2, defined

as step function with steps of length 1/|V (G)| and values 0 and 1, see below for the precise

definition. While the introduction of graphons requires some basic notions of measure theory, it

will simplify many proofs in this paper.

The organization of this paper is as follows: In the next section, we introduce our definitions:

in addition to left-convergence, we define a suitable distance between weighted graphs, and state

our main results for weighted graphs. In Section 3, we generalize these definitions and results

to graphons. The following section, Section 4, is devoted to sampling, and contains the proofs

of the main results of this paper, including the equivalence of left-convergence and convergence

in metric. Section 5 relates convergence in metric to an a priori weaker form of “convergence

in norm” and to Szemerédi partitions, and Section 6 proves our results on testing. We close

this paper with a section on miscellaneous results and an outlook on right-convergence. In the

appendix, we describe a few details of proofs which are omitted in the main body of the paper.

2 Weighted and Unweighted Graphs

2.1 Notation

We consider both unweighted, simple graphs and weighted graphs, where, as usual, a simple

graph G is a graph without loops or multiple edges. We denote the node and edge set of G by

V (G) and E(G), respectively.

A weighted graph G is a graph with a weight αi = αi(G) > 0 associated with each node and

a weight βij = βij(G) ∈ R associated with each edge ij, including possible loops with i = j. For

convenience, we set βij = 0 if ij /∈ E(G). We set

αG =
∑

i

αi(G), ‖G‖∞ = max
i,j

|βij(G)|, and ‖G‖2 =

(∑
i,j

αiαj

α2
G

β2
ij

)1/2

,

and for S, T ⊂ V (G), we define

eG(S, T ) =
∑
i∈S
j∈T

αi(G)αj(G)βij(G). (2.1)

5



A weighted graph G is called soft-core if it is a complete graph with loops at each node, and

every edgeweight is positive. An unweighted graph is a weighted graph where all the node- and

edgeweights are 1. Note that eG(S, T ) reduces to the number of edges in G with one endnode in

S and the other in T if G is unweighted.

Let G be a graph and k ≥ 1. The k-fold blow-up of G is the graph G[k] obtained from G by

replacing each node by k independent nodes, and connecting two new nodes if and only if their

originals were connected. If G is weighted, we define G[k] to be the graph on nk nodes labeled

by pairs iu, i ∈ V (G), u = 1, . . . , k, with edgeweights βiu,jv(G[k]) = βij(G) and nodeweights

αiu(G[k]) = αi(G). A related notion is the notion of splitting nodes. Here a node i with

nodeweight αi is replaced by k nodes i1, . . . , ik with nodeweights αi1 , . . . , αik adding up to αi,

with new edgeweights βiu,jv = βi,j. Up to a global rescaling of all nodeweights, blowing up a

graph by a factor k is thus the same as splitting all its nodes evenly into k nodes, so that the

new weights αit are equal to the old weights αi divided by k.

As usual, a function from the set of simple graphs into the reals is called a simple graph

parameter if it is invariant under relabeling of the nodes. Finally, we write G ∼= G′ if G and G′

are isomorphic, i.e., if G′ can be obtained from G by a relabeling of its nodes.

2.2 Homomorphism Numbers and Left Convergence

Let F and G be two simple graphs. We define hom(F,G) as the number of homomorphisms from

F to G, i.e., the number of adjacency preserving maps V (F ) → V (G), and the homomorphism

density of F in G as

t(F, G) =
1

|V (G)||V (F )|hom(F, G).

The homomorphism density t(F, G) is thus the probability that a random map from V (F ) to

V (G) is a homomorphism.

Alternatively, one might want to consider the probability tinj(F, G) that a random injective

map from V (F ) to V (G) is adjacency preserving, or the probability tind(F,G) that such a map

leads to an induced subgraph. Since most maps into a large graph G are injective, there is not

much of a difference between t(F, G) and tinj(F,G). As for tinj(·, G) and tind(·, G), they can be

quite different even for large graphs G, but by inclusion-exclusion, the information contained in

the two is strictly equivalent. We therefore incur no loss of generality if we restrict ourselves to

the densities t(·, G).

We extend the notion of homomorphism numbers to weighted graphs G by setting

hom(F,G) =
∑

φ:V (F )→V (G)

∏

i∈V (F )

αφ(i)(G)
∏

ij∈E(F )

βφ(i),φ(j)(G) (2.2)
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where the sum runs over all maps from V (F ) to V (G), and define

t(F,G) =
hom(F,G)

αk
G

, (2.3)

where k is the number of nodes in F .

It seems natural to think of two graphs G and G′ as similar if they have similar homomorphism

densities. This leads to the following definition.

Definition 2.1 Let (Gn) be a sequence of weighted graphs with uniformly bounded edgeweights.

We say that (Gn) is convergent from the left, or simply convergent, if t(F,Gn) converges for any

simple graph F .

In [18], the definition of convergence was restricted to sequences of graphs (Gn) with

|V (Gn)| → ∞. As long as we deal with simple graphs, this is reasonable, since there are only a

finite number of graphs with bounded size. But in this paper we also want to cover sequences of

weighted graphs on, say, the same set of nodes, but with the node- or edgeweights converging;

so we don’t assume that the number of nodes in convergent graph sequences tends to infinity.

A simple example of a convergent graph sequence is a sequence of random graphs (Gn,p), for

which t(F, Gn,p) is convergent with probability one, with t(F,Gn,p) → p|E(F )| as n → ∞. Other

examples are quasirandom graph sequences (Gn) for which t(F, Gn,p) → p|E(F )| by definition, and

the sequence of half-graphs (Hn,n), with Hn,n defined as the bipartite graph on [2n] with an edge

between i and j if j ≥ n + i (see Examples 3.1, 3.2 and 3.3 in Section 3.1).

2.3 Cut-Distance

We define a notion of distance between two graphs, which will play a central role throughout this

paper. Among other equivalences, convergence from the left will be equivalent to convergence in

this metric.

To illuminate the rather technical definition, we first define a distance of two graphs G and

G′ in a special case, and then extend it in two further steps. In all these definitions, it is not

hard to verify that the triangle inequality is satisfied.

(1) G and G′ are labeled graphs with the same set of unweighted nodes V . Several notions

of distance appear in the literature, but for our purpose the most useful is the cut or rectangle

distance introduced by Frieze and Kannan [22]:

d¤(G, G′) = max
S,T⊂V

1

|V |2
∣∣∣eG(S, T )− eG′(S, T )

∣∣∣. (2.4)

The cut distance between two labeled graphs thus measures how different two graphs are when

considering the size of various cuts. This definition can easily be generalized to weighted graphs
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G and G′ on the same set V , and with the same nodeweights αi = αi(G) = αi(G
′):

d¤(G,G′) = max
S,T⊂V

1

α2
G

∣∣∣eG(S, T )− eG′(S, T )
∣∣∣. (2.5)

As a motivation of this notion, consider two independent random graphs on n nodes with

edge density 1/2. If we measure their distance, say, by the number of edges we need to change to

get one from the other (edit distance), then their distance is very large (with large probability).

But the theory of random graphs teaches us that these two graphs are virtually indistinguishable,

which is reflected by the fact that their d¤ distance is only O(1/n) with large probability.

There are many other ways of defining or approximating the cut distance; see Section 7.1.

(2) G and G′ are unlabeled graphs with the same number of unweighted nodes. The cut-

metric d¤(G,G′) is not invariant under relabeling of the nodes of G and G′. For graphs without

nodeweights, this can easily be cured by defining a distance δ̂¤(G,G′) as the minimum over all

“overlays” of G and G′, i.e.,

δ̂¤(G,G′) = min
G̃∼=G

d¤(G̃, G′). (2.6)

(3) G and G′ are unlabeled graphs with different number of nodes or with weighted nodes.

The distance notion (2.6) does not extend in a natural way to graphs with nodeweights, since it

would not make much sense to overlay nodes with different nodeweights, and even less sense for

graphs with different number of nodes.

To motivate the definition that follows, consider two graphs G and G′, where G has three

nodes with nodeweights equal to 1/3, and G′ has two nodes and nodeweights 1/3 and 2/3. Here

a natural procedure would be the following: first split the second node into two nodes of weight

1/3 and then calculated the optimal overlay of the resulting two graphs on three nodes.

This idea naturally leads to the following notion of “fractional overlays” of two weighted

graphs G and G′ on n and n′ nodes, respectively. Let us first assume that both G and G′

have total nodeweight 1. Viewing α(G) and α(G′) as probability distributions, we then define a

fractional overlay to be a coupling between these two distributions. More explicitly, a fractional

overlay of G and G′ is defined to be a nonnegative n× n′ matrix X such that

n′∑
u=1

Xiu = αi(G) and
n∑

i=1

Xiu = αu(G
′).

We denote the set of all fractional overlays by X (G,G′).

Let X ∈ X (G,G′). Thinking of Xiu as the portion of node i that is mapped onto node u,

we introduce the following “ overlaid graphs” G[X] and G′[X>] on [n]× [n′]: in both G[X] and

G′[X>], the weight of a node (i, u) ∈ [n]× [n′] is Xiu; in G[X], the weight of an edge ((i, u), (j, v))

is βij, and in G′[X>], the weight of an edge ((i, u), (j, v)) is β′uv. Since G[X] and G′[X>] have

the same nodeset, the distance d¤(G[X], G′[X>]) is now well defined. Taking the minimum over

all fractional overlays, this gives:
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Definition 2.2 For two weighted graphs G,G′ with total nodeweight αG = αG′ = 1, we set

δ¤(G,G′) = min
X∈X (G,G′)

d¤(G[X], G′[X>]). (2.7)

If the total nodeweight of G or G′ is different from 1, we define the distance between G and G′

by the above formulas, applied to the graphs G̃ and G̃′ obtained from G and G′ by dividing all

nodeweights by αG and αG′ , respectively.

Fractional overlays can be understood as integer overlays of suitably blown up versions of G

and G′, at least if the entries of X are rational (otherwise, one has to take a limit of blowups).

This observation shows that for two graphs G and G′ with nodeweights one, we have

δ¤(G,G′) = lim
k,k′→∞

k/k′= n′/n

δ̂¤(G[k], G′[k′]). (2.8)

Note that δ¤(G,G′) can be 0 for nonisomorphic graphs G and G′; for example,

δ¤(G, G[k]) = 0 (2.9)

for all k ≥ 1. So δG is only a pre-metric; but we’ll call it, informally, a metric.

Of course, the definition of δ¤(G,G′) also applies if G and G′ have the same number of nodes,

and it may give a value different from δ̂¤(G,G′). The following theorem relates these two values.

Theorem 2.3 Let G1 and G2 be two weighted graphs with edgeweights in [−1, 1] and with the

same number of unweighted nodes. Then

δ¤(G1, G2) ≤ δ̂¤(G1, G2) ≤ 32δ¤(G1, G2)
1/67.

The first inequality is trivial, but the proof of the second is quite involved, and will be given

in Section 5.1.

2.4 Szemerédi Partitions of Graphs

The Regularity Lemma of Szemerédi is a fundamental tool in graph theory, which has a natural

formulation in our framework, as a result about approximating large graphs by small graphs.

Here we mostly use the so-called weak version due to Frieze and Kannan [22].

We need some notation: for a weighted graph G and a partition P = {V1, . . . , Vk} of V (G),

we define two weighted graphs G/P and GP as follows: Let αVi
=

∑
x∈Vi

αx(G). The quotient

graph G/P is a weighted graph on [k], with nodeweights αi(G/P) = αVi
/αG and edgeweights

βij(G/P) =
eG(Vi,Vj)

αVi
αVj

, while GP is a weighted graph on V (G), with nodeweights αx(GP) = αx(G)

and edgeweights βxy(GP) = βij(G/P) for x ∈ Vi and y ∈ Vj. These two graphs have different

number of nodes, but they are similar in the sense that δ¤(G/P , GP) = 0.

9



In our language, the Weak Regularity Lemma of Frieze and Kannan states that given a

weighted graph G, one can find a partition P such that the graph GP is near to the original

graph G in the distance d¤. We call the partition P weakly ε-regular if d¤(G, GP) ≤ ε. But for

many purposes, all that is needed is the quotient graph G/P . Since δ¤(G,GP) ≤ d¤(G,GP) and

δ¤(G,GP) = δ¤(G,G/P), the Weak Regularity Lemma also guarantees a good approximation of

the original graph by a small weighted graph, the graph H = G/P . We summarize these facts

in the following lemma, which is essentially a reformulation of the Weak Regularity Lemma of

[22] in the language developed in this paper.

Lemma 2.4 (Weak Regularity Lemma [22]) For every ε > 0, every weighted graph G has

a partition P into at most 41/ε2
classes such that

d¤(G,GP) ≤ ε‖G‖2, (2.10)

so, in particular,

δ¤(G, G/P) ≤ ε‖G‖2. (2.11)

In Lemma 2.4 we approximate the graph G by a small weighted graph H = G/P . If G is

simple, or more generally, has edgeweights in [0, 1], it is possible to strengthen this by requiring

simple graphs H. Indeed, starting from a standard strengthening of the Weak Regularity Lemma

(Corollary 3.4 (ii) below) to obtain a weighted graph H with nodeweights one, and then applying

a simple randomization procedure (Lemma 4.3 below) to the edges of H to convert this graph

into a simple graph, one gets the following lemma, see appendix for details.

Lemma 2.5 Let ε > 0, let q ≥ 220/ε2
, and let G be a weighted graph with edgeweights in [0, 1].

Then there exists a simple graph H on q nodes such that δ¤(G,H) ≤ ε.

2.5 Main Results

2.5.1 Left Convergence Versus Convergence in Metric

Here we state one of the main results of this paper, namely, that convergence from the left is

equivalent to convergence in the metric δ¤.

Theorem 2.6 Let (Gn) be a sequence of weighted graphs with uniformly bounded edgeweights.

Then (Gn) is left convergent if and only if it is a Cauchy sequence in the metric δ¤.

In fact, we have the following quantitative version. To simplify our notation, we only give this

quantitative version for graphs with edgeweights in [−1, 1]; the general case follows by simply

scaling all edgeweights appropriately.
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Theorem 2.7 Let G1, G2 be weighted graphs with edgeweights in [−1, 1].

(a) Let F be a simple graph, then

|t(F, G1)− t(F, G2)| ≤ 4|E(F )|δ¤(G1, G2).

(b) Let k ≥ 1, and assume that |t(F,G1) − t(F, G2)| ≤ 3−k2
for every simple graph F on k

nodes. Then

δ¤(G1, G2) ≤ 22√
log2 k

.

The first part of this theorem is closely related to the “Counting Lemma” in the theory of

Szemerédi partitions. Theorems 2.6 and 2.7 will follow from the analogous facts for graphons,

Theorems 3.8 and 3.7, see Section 3.5.

2.5.2 Szemerédi Partitions for Graph Sequences

Convergent graph sequences can also be characterized by the fact that (for any fixed error) they

have Szemerédi partitions which become more and more similar.

Theorem 2.8 Let (Gn) be a sequence of weighted graphs with nodeweights 1, edgeweights in

[−1, 1], and |V (Gn)| → ∞ as n →∞. Then (Gn) is left-convergent if and only if for every ε > 0

we can find an integer q ≤ 210/ε2
, and a sequence of partitions, (Pn) such that the following two

conditions hold.

(i) If |V (Gn)| ≥ q, then Pn is a weakly ε-regular partition of Gn into q classes.

(ii) As n →∞, the quotient graphs Gn/Pn converge to a weighted graph Hε on q nodes.

Note that the graphs in (ii) have the same node set [q], so their convergence to Hε means

simply that corresponding nodeweights and edgeweights converge.

Let Gn be a convergent sequence of weighted graphs obeying the assumptions of this theorem.

For n sufficiently large, the quotient graphs Gn/Pn are then near to both the original graph Gn

and the graph Hε, implying that δ¤(Gn, Hε) ≤ 2ε whenever n is large enough. Since Gn is

convergent, this implies by Theorem 2.6 that the graphs Hε form a convergent sequence as

ε → 0.

The theorem can be generalized in several directions. First, using the results of Section 5.2,

we can relax the condition on the nodeweights of Gn to require only that Gn has no dominant

nodeweights in the sense that the maximum nodeweight of Gn divided by the total nodeweight

αGn goes to zero. Second, we can strengthen the statement, to obtain a sequence of partitions

which satisfy the stronger regularity conditions of the original Szemerédi Regularity Lemma [31].

We leave the details to the interested reader, who will easily see how to modify the proof in

Section 5.3 to obtain these generalizations.

11



2.5.3 Sampling

Our above versions of Szemerédi’s lemma (Lemmas 2.4 and 2.5) state that any graph G can be

well approximated by a small graph H in the δ¤ distance. While the proofs are constructive, it

will be very useful to know that such a small graph can obtained by straightforward sampling.

For simplicity, we state the results for graphs with edgeweights in [−1, 1]. For a graph G and

positive integer n, let G(n,G) denote the (random) induced subgraph G[S], where S is chosen

uniformly from all subsets of V (G) of size n.

Theorem 2.9 Let G be a weighted graph with nodeweights 1 and edgeweights in [−1, 1]. Let

k ≤ |V (G)|. Then

δ¤(G,G(k,G)) ≤ 10√
log2 k

. (2.12)

with probability at least 1− e−k2/(2 log2 k).

In order to prove this theorem, we will need a theorem which allows us to compare samples

from two weighted graphs on the same set of nodes. This extends a result by Alon, Fernandez de

la Vega, Kannan and Karpinski [3, 4]; in particular, our result concerns two graphs at arbitrary

distance d¤(G1, G2), and also gives an improvement in the error bound.

Theorem 2.10 Let G1 and G2 be weighted graphs on a common vertex set V , with nodeweights

one and edgeweights in [−1, 1]. Let k ≤ |V |. If S is chosen uniformly from all subsets of V of

size k, then ∣∣∣d¤(G1[S], G2[S])− d¤(G1, G2)
∣∣∣ ≤ 20

k1/4
(2.13)

with probability at least 1− 2e−
√

k/8.

2.5.4 Testing

The above theorem allows us to prove several results for testing graph parameters and graph

properties in a straightforward way.

In this paper, we only consider parameter testing. We may want to determine some parameter

of G. For example, what is the edge density? Or how large is the density of the maximum cut?

Of course, we’ll not be able to determine the exact value of the parameter; the best we can

hope for is that if we take a sufficiently large sample, we can find the approximate value of the

parameter with large probability.

Definition 2.11 A graph parameter f is testable if for every ε > 0 there is a positive integer k

such that if G is a graph with at least k nodes, then from the random subgraph G(k, G) we can

compute an estimate f̃ of f such that

Pr(|f(G)− f̃ | > ε) ≤ ε.
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It is an easy observation that we can always use f̃ = f(G(k,G)).

Testability is related to our framework through the following observation:

Proposition 2.12 (a) A simple graph parameter f is testable if and only if f(Gn) converges for

every convergent graph sequence (Gn) with |V (Gn)| → ∞.

(b) A sequence (Gn) of simple graphs with |V (Gn)| → ∞ is convergent if and only if f(Gn)

converges for every testable simple graph parameter f .

Using the notions and results concerning graph distance and convergence above, we can give

several characterizations of testable parameters, see Section 6.

Property testing, mentioned in the introduction, is related to parameter testing in many

ways. For example, Fischer and Newman [23] proved that the edit distance (see Section 4.3)

from the set of graphs exhibiting a testable property P is a testable parameter. See also [1] for

a characterization of testable graph properties.

3 Graphons

In [27], Lovász and Szegedy introduced graphons as limits of left-convergent graph sequences.

Here we will first study the space of graphons in its own right, defining in particular a general-

ization of the distance δ¤ to graphons, and state the analogue of Theorem 2.7 for graphons. The

discussion of graphons as limit objects of left-convergent graph sequences will be postponed to

the last subsection of this section.

3.1 Homomorphism Densities

LetW denote the space of all bounded measurable functions W : [0, 1]2 → R that are symmetric,

i.e., W (x, y) = W (y, x) for all x, y ∈ [0, 1]. Let W[0,1] be the set of functions W ∈ W with

0 ≤ W (x, y) ≤ 1. More generally, for a bounded interval I ⊂ R, let WI be the set of all functions

W ∈ W with W (x, y) ∈ I. Given a function W ∈ W , we can think of the interval [0, 1] as the

set of nodes, and of the value W (x, y) as the weight of the edge xy. We call the functions in W
graphons.

We call a partition P of [0, 1] measurable if all the partition classes are (Lebesgue) measurable.

The partition is an equipartition if all of its classes have the same Lebesgue measure. A step

function is a function W ∈ W for which there is a partition of [0, 1] into a finite number of

measurable sets V1, . . . , Vk so that W is constant on every product set Vi × Vj. We call the sets

Vi the steps of the step function. Often, but not always, we consider step functions whose steps

are intervals; we call these interval step functions. If all steps of a step function have the same

measure 1/k, we say that it has equal steps.
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Every graphon W defines a simple graph parameter as follows [27]: If F is a simple graph

with V (F ) = {1, . . . , k}, then let

t(F, W ) =

∫

[0,1]k

∏

ij∈E(F )

W (xi, xj) dx. (3.1)

Every weighted graph G with nodes labeled 1, . . . , n defines an interval step function WG

such that t(F, G) = t(F, WG): We scale the nodeweights of G to sum to 1. Let I1 = [0, α1(G)],

I2 = (α1(G), α1(G) + α2(G)], . . . , and In = [α1(G) + · · ·+ αn−1(G), 1]. We then set

WG(x, y) = βv(x)v(y)(G)

where v(x) = i whenever x ∈ Ii. (Informally, we consider the adjacency matrix of G, and replace

each entry (i, j) by a square of size αi × αj with the constant function βij on this square.) If G

is unweighted, then the corresponding interval step function is a 0-1-function with equal steps.

With this definition, we clearly have WG ∈ W , and

t(F, G) = t(F, WG) (3.2)

for every finite graph F . The definition (3.1) therefore gives a natural generalization of the

homomorphism densities defined in (2.2) and (2.3).

Using this notation, we can state the main result of [27]:

Theorem 3.1 For every left-convergent sequence (Gn) of simple graphs there is a graphon W

with values in [0, 1] such that

t(F, Gn) → t(F, W )

for every simple graph F . Moreover, for every graphon W with values in [0, 1] there is a left-

convergent sequence of graphs satisfying this relation.

3.2 The Cut Norm for Graphons

The distance d¤ of two graphs introduced in Section 2.3 was extended to graphons by Frieze and

Kannan [22]. It will be given in terms of a norm on the space W , the rectangle or cut norm

‖W‖¤ = sup
S,T⊆[0,1]

∣∣∣∣
∫

S×T

W (x, y) dxdy

∣∣∣∣ = sup
f,g: [0,1]→[0,1]

∣∣∣∣
∫

W (x, y)f(x)g(y) dx dy

∣∣∣∣ (3.3)

where the suprema go over all pairs of measurable subsets and functions, respectively. The cut

norm is closely related to L∞ → L1 norm of W , considered as an operator on L2([0, 1]):

‖W‖∞→1 = sup
f,g: [0,1]→[−1,1]

∫

[0,1]2
W (x, y)f(x)g(y) dx dy. (3.4)
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Indeed, the two norms are equivalent:

1

4
‖W‖∞→1 ≤ ‖W‖¤ ≤ ‖W‖∞→1. (3.5)

See section 7.1 for more on connections between the cut norm and other norms.

It is not hard to see that for any two weighted graphs G and G′ on the same set of nodes and

with the same nodeweights,

d¤(G,G′) = ‖WG −WG′‖¤, (3.6)

where WG denotes the step function introduced in Section 3.1. The cut-norm therefore extends

the distance d¤ from weighted graphs to graphons.

We will also need the usual norms of W as a function from [0, 1]2 → R; we denote the

corresponding L1 and L2 norms (with respect to the Lebesgue measure) by ‖W‖1 and ‖W‖2.

The norm ‖.‖2 defines a Hilbert space, with inner product

〈U,W 〉 =

∫

[0,1]2
U(x, y)W (y, x) dx dy.

3.3 Approximation by Step Functions

We need to extend two averaging operations from graphs to graphons. For W ∈ W and every

partition P = (V1, . . . , Vq) of [0, 1] into measurable sets, we define a weighted graph on q nodes,

denoted by W/P , and called the quotient of W and P , by setting αi(W/P) = λ(Vi) (where λ

denotes the Lebesgue measure) and

βij(W/P) =
1

λ(Vi)λ(Vj)

∫

Vi×Vj

W (x, y) dx dy. (3.7)

In addition to the quotient W/P , we also consider the graphon WP defined by

WP(x, y) = βij(W/P) whenever x ∈ Vi and y ∈ Vj. (3.8)

It is not hard to check that the averaging operation W 7→ WP is contractive with respect to

the norms introduced above:

‖WP‖¤ ≤ ‖W‖¤, ‖WP‖1 ≤ ‖W‖1 and ‖WP‖2 ≤ ‖W‖2. (3.9)

The graphon WP is an approximation of W by a step function with steps P . Indeed, it is the

best such approximation, at least in the L2-norm:

‖W −WP‖2 = min
UP

‖W − UP‖2 (3.10)

where the minimum runs over all step functions with steps P (this bound can easily be verified

by varying the height of the steps in UP). While it is not true that WP is the best approximation
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of W with step in P in the cut-norm, it is not off by more than a factor of two, as observed in

[3]:

‖W −WP‖¤ ≤ 2 min
UP

‖W − UP‖¤ (3.11)

where the minimum runs over all step functions with steps P . Indeed, combining the triangle

inequality with the second bound in (3.9) and the fact that (UP)P = UP , we conclude that

‖W −WP‖¤ ≤ ‖W − UP‖¤ + ‖UP −WP‖¤ ≤ ‖W − UP‖¤ + ‖UP −W‖¤, as required.

The definition of WP raises the question on how well WP approximates W . One answer to this

question is provided by following lemma, which shows that W can be approximated arbitrarily

well (pointwise almost everywhere) by interval step functions with equal steps. (The lemma is

an immediate consequence of the almost everywhere differentiability of the integral function, see

e.g. Theorem 7.10 of [30].)

Lemma 3.2 For a positive integer n, let Pn be the partition of [0, 1] into consecutive intervals

of length 1/n. For any W ∈ W, we have WPn → W almost everywhere.

While the previous lemma gives the strong notion of almost everywhere convergence, it does

not give any bounds on the rate of convergence. In this respect, the following lemma extending

the weak Regularity Lemma from graphs to graphons, is much better. In particular, it gives a

bound on the convergence rate which is independent of the graphon W .

Lemma 3.3 ([22]) For every graphon W and every ε > 0, there exists a partition P of [0, 1]

into measurable sets with at most 41/ε2
classes such that

‖W −WP‖¤ ≤ ε‖W‖2.

With a slightly weaker bound for the number of classes, the lemma follows from Theorem 12

of [22] and the bound (3.11), or the results of [29]. As stated, it follows from Lemma 7.3 in Sec-

tion 7.2, which generalizes both Lemma 3.3 and the analogous statement for graphs, Lemma 2.4.

The Szemerédi Regularity Lemma [31] also extends to graphons in a straightforward way. See

[29] for this and further extensions.

At the cost of increasing the bound on the number of classes, Lemmas 2.4 and 3.3 can be

strengthened in several directions. In this paper, we need the following form, which immediately

follows from Lemmas 2.4 and 3.3 by standard arguments, see appendix for the details.

Corollary 3.4 Let ε > 0, and q ≥ 220/ε2
. Then the following holds:

(i) For all graphons W , there is an equipartition P of [0, 1] into q measurable sets such that

‖W −WP‖¤ ≤ ε‖W‖2.
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If we impose the additional constraint that P refines a given equipartition P̃ of [0, 1] into k

measurable sets, it is possible to achieve this bound provided q is an integer multiple of k and

q/k ≥ 220/ε2
.

(ii) For all weighted graphs G on at least q nodes there exists a partition P = (V1, . . . , Vq) of

V (G) such that

d¤(G,GP) ≤ ε‖G‖2

and ∣∣∣
∑
u∈Vi

αu(G)− αG

q

∣∣∣ < αmax(G) for all i = 1, . . . , q. (3.12)

3.4 The Metric Space of Graphons

We now generalize the definition of the cut-distance (2.7) from graphs to graphons.

Let M denote the set of couplings of the uniform distribution on [0, 1] with itself, i.e., the

set of probability measures on [0, 1]2 for which both marginals are the Lebesgue measure. (This

is the natural generalization of overlays from graphs to graphons). We then define:

δ¤(W,W ′) = inf
µ∈M

sup
S,T⊆[0,1]2

∣∣∣
∫

(x,u)∈S
(y,v)∈T

(
W (x, y)−W ′(u, v)

)
dµ(x, u) dµ(y, v)

∣∣∣.

For two step functions, finding the optimal “overlay” can be described by specifying what

fraction of each step of one function goes onto each step of the other function, which amounts to

fractional overlay of the corresponding graphs. Hence the distances of two unlabeled weighted

graphs and the corresponding interval step functions are the same:

δ¤(G,G′) = δ¤(WG, WG′). (3.13)

It will be convenient to use the hybrid notation δ¤(U,G) = δ¤(U,WG).

The next lemma gives an alternate representation of the distance δ¤(W,W ′), in which “over-

lay” is interpreted in terms of measure-preserving maps rather than couplings. We need some

definitions. Recall that a map φ : [0, 1] → [0, 1] is measure-preserving, if the pre-image φ−1(X) is

measurable for every measurable set X, and λ(φ−1(X)) = λ(X). A measure-preserving bijection

is a measure-preserving map whose inverse map exists and is also measurable (and then also

measure-preserving). Finally, we consider certain very special measure-preserving maps defined

as follows: Let us consider the partition Pn = (V1, . . . , Vn) of [0, 1] into consecutive intervals of

length 1/n, and let π be a permutation of [n]. Let us map each Vi onto Vπ(i) by translation, to

obtain a piecewise linear measure-preserving map π̃ : [0, 1] → [0, 1]. We call π̃ an n-step interval

permutation.

For W ∈ W and φ : [0, 1] → [0, 1], we define W φ by W φ(x, y) = W (φ(x), φ(y)).
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Lemma 3.5 Let U,W ∈ W. Then

δ¤(U,W ) = inf
φ,ψ
‖Uφ −Wψ‖¤ (3.14)

(where the infimum is over all measure-preserving maps φ, ψ : [0, 1] → [0, 1])

= inf
ψ
‖U −Wψ‖¤ (3.15)

(where the infimum is over all measure-preserving bijections ψ : [0, 1] → [0, 1])

= lim
n→∞

min
π
‖U −W π̃‖¤ (3.16)

(where the minimum is over all permutations π of [n].)

The proof of the lemma is somewhat tedious, but straightforward, see appendix for details.

Note that, for W ∈ W , for an n-step interval permutation π̃, and for the partition Pn of

[0, 1] into consecutive intervals of lengths 1/n, the graph W π̃/Pn is obtained from W/Pn by a

permutation of the nodes of W/Pn. As a consequence, the identity (3.16) is equivalent to the

following analogue of (2.8) for graphons:

δ¤(U,W ) = lim
n→∞

δ̂¤(U/Pn,W/Pn). (3.17)

Using Lemma 3.5, it is easy to verify that δ¤ satisfies the triangle inequality. Strictly speaking,

the function δ¤ is just a pre-metric, and not a metric: Formula (3.15) implies that δ¤(W,W ′) = 0

whenever W = W φ for some measure preserving transformation φ : [0, 1] → [0, 1]. Nevertheless,

for the sake of linguistic simplicity, we will often refer to it as a distance or metric, taking the

implicit identification of graphs or graphons with distance zero for granted. Note that the fact

that there are graphons W,W ′ ∈ W which are different but have “distance” zero is not just a

peculiarity of the limit: for simple graphs δ¤(G,G′) is zero if, e.g., G′ is a blow-up of G (cf.

(2.9)). We’ll say more about graphons with distance 0 in the next section.

It was proved in [29] that the metric space (W[0,1], δ¤) is compact. Since WI and W[0,1] are

linear images of each other, this immediately implies the following proposition.

Proposition 3.6 Let I be a finite interval, and let WI be the set of graphons with values in I.

After identifying graphons with δ¤ distance zero, the metric space (WI , δ¤) is compact.

3.5 Left Versus Metric Convergence

We are now ready to state the analogue of Theorems 2.6 and 2.7. for graphons. We start with

the analogue of Theorem 2.7.

Theorem 3.7 Let W,W ′ ∈ W, let C = max{1, ‖W‖∞, ‖W ′‖∞}, and let k ≥ 1.

(a) If F is a simple graph with m edges, then

|t(F,W )− t(F, W ′)| ≤ 4mCm−1δ¤(W,W ′). (3.18)
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(b) If |t(F, W )− t(F, W ′)| ≤ 3−k2
for every simple graph F on k nodes, then

δ¤(W,W ′) ≤ 22C√
log2 k

.

The first statement of this theorem is closely related to the “Counting Lemma” in the theory

of Szemerédi partitions, and gives an extension of a similar result of [27] for functions in W[0,1] to

general graphons. It shows that for any simple graph F , the function W 7→ t(F, W ) is Lipschitz-

continuous in the metric δ¤, and is reasonably easy to prove. By contrast, the proof of the second

one is more involved and relies on our results on sampling.

In particular, we will need an analogue of Theorems 2.9 and 2.10 to sampling from graphons.

These theorems are stated and proved in Section 4.5 (Theorem 4.7 and 4.6). Using Theorem 4.7,

we then prove Theorem 3.7 in Section 4.6.

Theorem 3.7 immediately implies the analogue of Theorem 2.6 for graphons:

Theorem 3.8 Let I be a finite interval and let (Wn) be a sequence of graphons in WI . Then

the following are equivalent:

(a) t(F,Wn) converges for all finite simple graphs F ;

(b) Wn is a Cauchy sequence in the δ¤ metric;

(c) there exists a W ∈ WI such that t(F, Wn) → t(F,W ) for all finite simple graphs F .

Furthermore, t(F, Wn) → t(F,W ) for all finite simple graphs F for some W ∈ W if and only

if δ¤(Wn,W ) → 0.

Note that by equations (3.2) and (3.13), Theorems 2.6 and 2.7 immediately follow from

Theorems 3.8 and 3.7. Together with Theorem 3.1, these results imply that after identifying

graphons with distance zero, the set of graphons W[0,1] is the completion of the metric space of

simple graphs. Proposition 3.6, equation (3.13) and Lemma 3.2 easily imply that the existence

of the limit object (Theorem 3.1) can be extended to convergent sequences of weighted graphs:

Corollary 3.9 For any convergent sequence (Gn) of weighted graphs with uniformly bounded

edgeweights there exists a graphon W such that δ¤(WGn , W ) → 0. Conversely, any graphon W

can be obtained as the limit of a sequence of weighted graphs with uniformly bounded edgeweights.

The limit of a convergent graph sequence is essentially unique: If Gn → W , then also Gn → W ′

for precisely those graphons W ′ for which δ¤(W,W ′) = 0.

As another consequence of Theorem 3.8, we get a characterization of graphons of distance 0:

Corollary 3.10 For two graphons W and W ′ we have δ¤(W,W ′) = 0 if and only if t(F,W ) =

t(F,W ′) for every simple graph F .
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Another characterization of such pairs is given in [19]: δ¤(W,W ′) = 0 if and only if there

exists a third graphon U such that W = Uφ and W ′ = Uψ for two measure-preserving functions

φ, ψ : [0, 1] → [0, 1] (in other words, the infimum in (3.14) is a minimum if the distance is 0).

3.6 Examples

Example 3.1 (Random graphs) Let G(n, p) be a random graph on n nodes with edge density

0 ≤ p ≤ 1; then it is not hard to prove (using high concentration results) that the sequence

(G(n, p), n = 1, 2, . . . ) is convergent with probability 1. In fact, t(F,G(n, p)) converges to p|E(F )|

with probability 1, and so (with probability 1) G(n, p) converges to the constant function W = p.

Example 3.2 (Quasirandom graphs) A graph sequence is quasirandom with density p if and

only if it converges to the constant function p. Quasirandom graph sequences have many other

interesting characterizations in terms of edge densities of cuts, subgraphs, etc. [20]. In the second

part of this paper we’ll discuss how most of these characterizations extend to convergent graphs

sequences.

Example 3.3 (Half-graphs) Let Hn,n denote the bipartite graph on 2n nodes

{1, . . . , n, 1′, . . . , n′}, where i is connected to j′ if and only if i ≤ j. It is easy to see

that this sequence is convergent, and its limit is the function

W (x, y) =

{
1, if |x− y| ≥ 1/2,

0, otherwise.

Example 3.4 (Uniform attachment) Various sequences of growing graphs, motivated by

(but different from) internet models, are also convergent. We define a (dense) uniform attach-

ment graph sequence as follows: if we have a current graph Gn with n nodes, then we create a

new isolated node, and then for every pair of previously nonadjacent nodes, we connect them

with probability 1/n.

One can prove that with probability 1, the sequence (Gn) has a limit, which is the function

W (x, y) = min(x, y). From this, it is easy to calculate that with probability 1, the edge density

of Gn tends to
∫

W = 1/3. More generally, the density of copies of any fixed graph F in G(n)

tends (with probability 1) to t(F,W ), which can be evaluated by a simple integration.

4 Sampling

4.1 Injective and Induced Homomorphisms

In order to discuss sampling, we will consider not only the number of homomorphisms defined

earlier, but also the number of injective and induced homomorphisms between two simple graphs
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F and G. We use inj(F,G) to denote the number of injective homomorphisms from F to G,

and ind(F, G) to denote the number of those injective homomorphisms that also preserve non-

adjacency (equivalently, the number of embeddings of F into G as an induced subgraph).

We will need to generalize these notions to the case where G is a weighted graph with

nodeweights one and edgeweights βij(G) ∈ R, where we define

inj(F,G) =
∑

φ∈Inj(F,G)

∏

uv∈E(F )

βφ(u),φ(v)(G) (4.1)

and

ind(F, G) =
∑

φ∈Inj(F,G)

∏

uv∈E(F )

βφ(u),φ(v)(G)
∏

uv∈E(F )

(
1− βφ(u),φ(v)(G)

)
. (4.2)

Here Inj(F,G) denotes the set of injective maps from V (F ) to V (G), and E(F ) consists of all

pairs {u, v} of distinct nodes such that uv /∈ E(F ). We also introduce the densities

tinj(F,G) =
inj(F, G)

(|V (G)|)|V (F )|
and tind(F,G) =

ind(F,G)

(|V (G)|)|V (F )|
(4.3)

where (n)k = n(n− 1) · · · (n− k + 1).

The quantities t(F,G), tinj(F, G) and tind(F,G) are closely related. It is easy to see that

tinj(F,G) =
∑

F ′⊃F

tind(F
′, G) and tind(F, G) =

∑

F ′⊃F

(−1)|E(F ′)\E(F )|tinj(F
′, G) (4.4)

whenever F is simple and G is a weighted graph with nodeweights αi(G) = 1. The quantity

t(F,G) is not expressible as a function of the values tinj(F,G) (or tind(F, G)), but for large graphs,

they are essentially the same. Indeed, bounding the number of non-injective homomorphisms

from V (F ) to V (G) by
(|V (F )|

2

)|V (G)||V (F )|−1, one easily proves that

|t(F,G)− tinj(F,G)| < 2

|V (G)|
(|V (F )|

2

)
‖G‖|E(F )|

∞ . (4.5)

If all edgeweights of G lie in the interval [0, 1], this bound can be strengthened to

|t(F, G)− tinj(F, G)| < 1

|V (G)|
(|V (F )|

2

)
; (4.6)

see [27] for a proof.

4.2 Sampling Concentration

We will repeatedly use the following consequences of Azuma’s Inequality:
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Lemma 4.1 Let (Ω,A, P) be a probability space, let k be a positive integer, and let C > 0.

(i) Let Z = (Z1, . . . , Zk), where Z1, . . . , Zk are independent random variables, and Zi takes

values in some measure space (Ωi,Ai). Let f : Ω1 × · · · × Ωk → R be a measurable function.

Suppose that |f(x)− f(y)| ≤ C whenever x = (x1, . . . , xk) and y = (y1, . . . , yk) differ only in one

coordinate. Then

P
(
f(Z) > E[f(Z)] + λC

)
< e−λ2/2k and P

(∣∣f(Z)− E[f(Z)]
∣∣ > λC

)
< 2e−λ2/2k. (4.7)

(ii) The bounds (4.7) also hold if Z1, . . . , Zk are chosen uniformly without replacement from

some finite set V and |f(x) − f(y)| ≤ C for all x and y which either differ in at most one

component, or can be obtained from each other by permuting two components.

Proof. Let Mj = E[ f(Z) | Z1, . . . , Zj]. Then M0, . . . , Mk is a martingale with bounded

martingale differences (for the case (ii) this requires a little calculation which we leave to the

reader). The statement now follows from Azuma’s inequality for bounded martingales. ¤

4.3 Randomizing Weighted Graphs

Given a weighted graph H with nodeweights 1 and edgeweights in [0, 1], let G(H) denote the

random simple graph with V (G) = V (H) obtained by joining nodes i and j with probability

βij(H) (making an independent decision for every pair ij, and ignoring the loops in H).

We need two simple properties of this well known construction. To state the first, we define

the edit distance d1 of two weighted graphs with the same node set [n] and nodeweights 1 as

d1(H1, H2) =
1

n2

n∑
i,j=1

|βij(H1)− βij(H2)|.

Lemma 4.2 Let H1 and H2 be two weighted graphs on the same set of nodes with nodeweights

1 and with edgeweights in [0, 1]. Then G(H1) and G(H2) can be coupled so that

E(d1(G(H1),G(H2))) = d1(H1, H2).

Proof. For every edge ij, we couple the decisions about the edge so that in both graphs

this edge is inserted with probability min(βij(H1), βij(H2)) and missing with probability 1 −
max(βij(H1), βij(H2)). So the probability that the edge is present in exactly one of G(H1) and

G(H2) is |βij(H1)− βij(H2)|, which proves the lemma. ¤

Lemma 4.3 Let H be a weighted graph on n nodes with nodeweights 1 and with edgeweights in

[0, 1]. Then

Pr

(
d¤(H,G(H)) <

4√
n

)
> 1− 2−n.
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Proof. Let V (H) = V (G(H)) = V , let µ = 3/
√

n, and let H̃ be the graph obtained from H

by deleting all diagonal entries in β(H). Fix two sets S, T ⊆ V . For i 6= j ∈ V , let

Xij =

{
1 if ij ∈ E(G(H)),

0 otherwise.

Observe that the expectation of eG(H)(S, T ) is eH̃(S, T ). Since eG(H)(S, T ) is a function of the
n(n−1)

2
independent random variables (Xij)i<j that changes by at most 2 if we change one of these

variables, we may apply Lemma 4.1 to conclude that

Pr
(∣∣eG(H)(S, T )− eH̃(S, T )

∣∣ ≥ µn2
)
) ≤ 2 exp

(
− µ2n4

4n(n− 1)

)
< exp

(
−µ2n2

4

)
.

(Here we used that e−µ2n/4 < 1/2 in the last step). Taking into account that the number of pairs

(S, T ) is 4n, we concluded that the probability that d¤(H̃,G(H)) < µ = 3/
√

n is larger than

1− 4ne−µ2n2/4 ≥ 1− 2−n. Since d¤(H̃,H) ≤ 1/n ≤ 1/
√

n, this completes the proof. ¤

4.4 W -random Graphs

Given a graphon W ∈ W and a subset S ⊆ [0, 1], we define the weighted graph W [S] on node set

S, all nodes with weight 1, in which βxy(W [S]) = W (x, y). If W ∈ W[0,1], then we can construct

a random simple graph Ŵ [S] on S by connecting nodes Xi and Xj with probability W (Xi, Xj)

(making an independent decision for every pair).

This construction gives rise to two random graph models defined by the graphon W . For

every integer n > 0, we generate a W -random weighted graph H(n,W ) on nodes {1, . . . , n} as

follows: We generate n independent samples X1, . . . , Xn from the uniform distribution on [0, 1],

and consider W [{X1, . . . , Xn}] (renaming i the node Xi). If W ∈ W[0,1], then we also define the

W -random (simple) graph G(n,W ) ∼= Ŵ [{X1, . . . , Xn}].
When proving concentration, it will often be useful to generate G(n,W ) by first independently

choosing n random variables X1, . . . , Xn and n(n + 1)/2 random variables Yij (i ≤ j) uniformly

at random from [0, 1], and then defining G(n,W ) to be the graph with an edge between i and

j whenever Yij ≤ W (Xi, Xj). This allows us to express the adjacency matrix of G(n,W ) as

a function of the independent random variables Z1 = (X1, Y11), Z2 = (X2, Y12, Y22), . . .Zn =

(Xn, Y1n, Y2n, . . . , Ynn), as required for the application of Lemma 4.1 (i).

It is easy to see that for every simple graph F with k nodes

E
(
tinj(F,G(n,W ))

)
= E

(
tinj(F,H(n,W ))

)
= t(F,W ), (4.8)

where the second equality holds for all W while the first requires W ∈ W[0,1]. From this we get

that ∣∣E(
t(F,H(n,W ))

)− t(F,W )
∣∣ <

2

n

(
k

2

)
if ‖W‖∞ ≤ 1, (4.9)
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and ∣∣E(
t(F,G(n, W ))

)− t(F, W )
∣∣ <

1

n

(
k

2

)
if W ∈ W[0,1]. (4.10)

Concentration for the W -random graph G(n,W ) was established in Theorem 2.5 of [27]. To

get concentration for W -weighted random graphs, we use Lemma 4.1. This gives the following

lemma, which also slightly improves the bound of Theorem 2.5 of [27] for W -random graphs. See

the appendix for details of the proof.

Lemma 4.4 Let F be a simple graph on k nodes, let 0 < ε < 1 and let W ∈ W. Then

P
(
|t(F,H(n,W ))− t(F,W )| > ε

)
≤ 2 exp

(
− ε2

11k2
n

)
if ‖W‖∞ ≤ 1, (4.11)

and

P
(
|t(F,G(n,W ))− t(F, W )| > ε

)
≤ 2 exp

(
− ε2

4k2
n

)
if W ∈ W[0,1]. (4.12)

From this lemma we immediately get the following:

Theorem 4.5 (a) For any W ∈ W, the graph sequence H(n,W ) is convergent with probability

1, and its limit is the graphon W .

(b) For any W ∈ W[0,1], the graph sequence G(n, W ) is convergent with probability 1, and its

limit is the graphon W .

4.5 The Distance of Samples

The closeness of a sample to the original graph lies at the heart of many results in this and the

companion paper [16]. We will prove these results starting with an extension of Theorem 2.10,

which is an improvement of a theorem of Alon, Fernandez de la Vega, Kannan and Karpinski

[3, 4], as discussed earlier.

Theorem 4.6 Let k be a positive integer.

(i) If U ∈ W, then ∣∣∣‖H(k, U)‖¤ − ‖U‖¤
∣∣∣ ≤ 10

k1/4
‖U‖∞ (4.13)

with probability at least 1− 2e−
√

k/8.

(ii) If U1, U2 ∈ W[0,1], then G(k, U1) and G(k, U2) can be coupled in such a way that

∣∣∣d¤(G(k, U1),G(k, U2))− ‖U1 − U2‖¤
∣∣∣ ≤ 10

k1/4
, (4.14)

with probability at least 1− e−
√

k/8.

24



Proof. (i) Since the assertion is homogeneous in U , we may assume without loss of generality

that ‖U‖∞ = 1. The proof proceeds in two steps: first we prove that for k ≥ 104, we have

− 2

k
≤ E

(‖H(k, U)‖¤
)− ‖U‖¤ <

8

k1/4
, (4.15)

and then use Lemma 4.1 to prove concentration.

It turns out that the most difficult step is the proof of an upper bound on the expectation of

‖H(k, U)‖¤. To obtain this bound, we use a refinement of the proof strategy of [3], using Lemma

3 from that paper as our starting point. The main difference between their and our proofs is

that we first bound the expectation of ‖H(k, U)‖¤, and only use Lemma 4.1 in the very end.

This allows us to simplify their proof, giving at the same time a better dependence of our errors

on k.

Let X1, . . . , Xk be i.i.d. random variables, distributed uniformly in [0, 1], let B = B(X) be the

k × k matrix with entries Bij = U(Xi, Xj), and for S1, S2 ⊂ [k], let B(S1, S2) =
∑

i∈S1,j∈S2
Bij.

Finally, given a set S ⊂ [k], let P (S) be the set of nodes i ∈ [k] such that B({i}, S) > 0, and

N(S) be the set of nodes for which B({i}, S) < 0. We will prove upper and lower bounds on the

expectation of ||B‖¤ = maxS1,S2⊂[k] |B(S1, S2)|.
The lower bound is a simple sampling argument: consider two measurable subsets T1, T2 ⊂

[0, 1], and let S1 = {i ∈ [k] : Xi ∈ T1}, and similarly for S2. Then

E‖H(k, U)‖¤ ≥ 1

k2

∣∣∣E
[
B(S1, S2)

]∣∣∣ =
∣∣∣k − 1

k

∫

T1×T2

U(x, y) dx dy +
1

k

∫

T1∩T2

U(x, x) dx
∣∣∣

≥
∣∣∣
∫

T1×T2

U(x, y) dx dy
∣∣∣− 2

k
.

Taking the supremum over all measurable sets S1, S2 ⊂ [0, 1], this proves the lower bound in

(4.15).

To prove an upper bound on the expectation of ‖H(k, U)‖¤, we start from Lemma 3 of [3].

In our context, it states that for a random subset Q ⊂ [k] of size p, we have

B(S1, S2) ≤ EQ[B(P (Q ∩ S2), S2)] +
k√
p
‖B‖F ,

where ‖B‖F =
√∑

i,j B2
ij ≤ k. Inserting this inequality into itself, we obtain that

B(S1, S2) ≤ EQ1,Q2

[
max
Ti⊆Qi

B(P (T1), P (T2))
]

+
2k2

√
p
.

In order to take the expectation over the random variables X1, . . . , Xk, it will be convenient

to decompose P (T1) and P (T2) into the parts which intersect Q = Q1 ∪Q2 and the parts which

intersect Qc = [k] \ (Q1∪Q2). Let PQ(T ) = P (T )∩Q and PQc(T ) = P (T ) \Q. Since |P (T )| ≤ k
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and |P (T )\PQc(T )| = |PQ(T )| ≤ 2p we have that B(P (T1), P (T2)) ≤ B(PQc(T1), PQc(T2))+4pk,

implying that

B(S1, S2) ≤ EQ1,Q2

[
max
Ti⊆Qi

B(PQc(T1), PQc(T2))
]

+
2k2

√
p

+ 4pk.

Applying this estimate to −B and taking the maximum of the two bounds, this gives

‖B‖¤ ≤ EQ1,Q2

[
max
Ti⊆Qi

max{B(PQc(T1), PQc(T2)),−B(NQc(T1), NQc(T2))}
]

+
2k2

√
p

+ 4pk, (4.16)

where NQc(T ) = N(T ) \Q.

Consider a fixed pair of subsets Q1, Q2 ⊂ [k]. Fixing, for the moment, the random variables

XQ, let us consider the expectation of, say, B(PQc(T1), PQc(T2)). For T ⊂ [k], let XT be the

collection of random variables Xi with i ∈ T , and let

P(XT ) =
{

x ∈ [0, 1] :
∑
i∈T

U(x,Xi) > 0
}

.

Then PQc(Ti) = {j ∈ Qc : Xj ∈ P(XTi
)}, and

EXQc

[
B(PQc(T1), PQc(T2))

]
= |Qc|(|Qc| − 1)

∫

P(XT1
)×P(XT2

)

U(x, y) dx dy

+ |Qc|
∫

P(XT1
)∩P(XT2

)

U(x, x) dx

≤ k2‖U‖¤ + k.

It is not hard to see that the random variable Y = B(PQc(T1), PQc(T2)) is highly concentrated.

Indeed, consider Y as a function of the random variables in XQc . If we change one of these

variables, then Y changes by at most 4k, implying that with probability at least 1 − e−kρ2/32,

Y ≤ E(Y )+ρk2. The same bound holds for the random variable Ỹ = −B(NQc(T1), NQc(T2)). As

a consequence, the maximum in (4.16) obeys this bound with probability at least 1−22p+1e−kρ2/32.

Since Y, Ỹ ≤ k2 for all X, we conclude that

E
[
‖H(k, U)‖¤

]
=

1

k2
E
[
‖B‖¤

]
≤ ‖U‖¤ +

2√
p

+
4p

k
+

1

k
+ ρ + 22p+1e−kρ2/32.

Choosing p and ρ of the form p = dα
√

ke and ρ = βk−1/4 with α = (4
√

log 2)−1 and β =

4(log 2)1/4 + 4/10, this implies that for k ≥ 104, we have

E
[
‖H(k, U)‖¤

]
≤ ‖U‖¤ +

1

k1/4

(
8(log 2)1/4 + 0.534 . . . )

)
≤ ‖U‖¤ +

8

k1/4
, (4.17)

which is the upper bound in (4.15).
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To prove concentration, we use that ‖H(k, U)‖¤ changes by at most 4
k
‖U‖∞ if we change one

of the random variables X1, . . . , Xk, so applying Lemma 4.1 (i) we get that its values are highly

concentrated around its expectation:

P
(∣∣∣‖H(k, U)‖¤ − E

[
‖H(k, U)‖¤

]∣∣∣ >
2

k1/4

)
< 2e−

√
k/8.

This completes the proof of (i).

(ii) We couple G(k, U1) and G(k, U2) as follows: as in the proof of (i) we chose X1, . . . , Xk to

be i.i.d., distributed uniformly in [0, 1]. In addition, we independently choose k(k +1)/2 random

variables Yij = Yji uniformly at random from [0, 1]. In terms of these random variables, we then

define G1 to be the graph on [k] which has an edge between i and j whenever U1(Xi, Xj) < Yij,

and G2 to be the graph which has an edge between i and j whenever U2(Xi, Xj) < Yij. Then

G1, G2 is a coupling of G(k, U1) and G(k, U2), and

d¤(G1, G2) =
1

k2
max

S1,S2⊂[k]
|B(S1, S2)|,

where B is the matrix with entries Bij = 1Yij<U1(Xi,Xj) − 1Yij<U2(Xi,Xj). We again have to bound

the expectation of B(PQc(T1), PQc(T2)). As before, we fix the variables Xi for i ∈ Q, but now we

also fix all random variables Yij for which {i, j} intersects Q. In order to calculate expectations

with respect to the remaining random variables, we express B(PQc(T1), PQc(T2)) as the sum∑
i,j∈Qc B+

i,j(T1, T2), where

B+
i,j(T1, T2) = Bij1i∈P (T1)1j∈P (T1).

For i ∈ Qc, the event that i ∈ P (T ) for some T ⊂ Q can then be re-expressed as the event that

Xi lies in the set {
x ∈ [0, 1] :

∑

j′∈T

1Yij′<U1(x,Xj′ ) >
∑

j′∈T

1Yij′<U2(x,Xj′ )

}
.

Observing that this set only depends on the fixed random variables, we can now proceed as before

to calculate the expectation of B+
i,j(T1, T2), and hence the expectation of B(PQc(T1), PQc(T2)).

This, together with a similar (again much easier) calculation for the lower bound, leads to the

estimate

− 2

k
≤ E

[
d(G1, G2)¤

]
− ‖U1 − U2‖¤ ≤ 8

k1/4
, (4.18)

as before valid for k ≥ 104. Concentration is again proved with the help of Lemma 4.1. ¤

Essentially the same proof also gives Theorem 2.10:

Proof of Theorem 2.10 We generate the set S by choosing X1, . . . , Xk uniformly without

replacement from V . In this way, we rewrite d¤(G1[S], G2[S]) in terms of the matrix B = B(X)

with entries Bij = βXiXj
(G1)− βXiXj

(G2). Observing that

|Bij| ≤ C = 2 max{‖G1‖∞, ‖G2‖∞},
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we may proceed exactly as in the proof of Theorem 4.6 (i), leading to the bound

− 2C

k
≤ E[d¤(G1[S], G2[S]]− d¤(G1, G2) ≤ 8C

k1/4
. (4.19)

Using Lemma 4.1 (ii) to prove concentration, we get the bound (2.13). ¤
We now come to the main theorem about sampling.

Theorem 4.7 Let k be a positive integer.

(i) If U ∈ W, then with probability at least 1− e−k2/(2 log2 k), we have

δ¤(U,H(k, U)) ≤ 10√
log2 k

‖U‖∞.

(ii) If U ∈ W[0,1], then with probability at least 1− e−k2/(2 log2 k), we have

δ¤(U,G(k, U)) ≤ 10√
log2 k

.

Proof. We again first bound expectations and then prove concentration, and as before, we

assume without loss of generality that ‖U‖∞ ≤ 1. Finally, we may assume that k ≥ 225 ≥ 104,

since otherwise the bounds of the theorem are trivial.

In a first step, we use the weak Szemerédi approximation in Lemma 3.3 and the sampling

bound (4.15) to show that it is enough to consider the case where U is a step function. Indeed,

given ε > 0, let U1 be a step function with q ≤ 41/ε2
steps such that

‖U − U1‖¤ ≤ ε. (4.20)

By the bound (4.15), we have that

E
[
δ¤(H(k, U1),H(k, U))

]
≤ E[ ‖H(k, U − U1)‖¤] ≤ ε +

16

k1/4
.

As a consequence,

E
[
δ¤(U,H(k, U))

]
≤ δ¤(U,U1) + E

[
δ¤(U1,H(k, U1))

]
+ E

[
δ¤(H(k, U1),H(k, U))

]

≤ 2ε +
16

k1/4
+ E

[
δ¤(U1,H(k, U1))

]
.

(4.21)

We are thus left with the problem of sampling from the step function U1. Let U1 have steps

J1, . . . , Jq ⊆ [0, 1], and λ(Ji) = αi. Let X1, . . . , Xk be independent random variables that are

uniformly distributed on [0, 1], and let Zi be the number of points Xj that fall into the set Ji. It

is easy to compute that

E(Zi) = αik, Var(Zi) = (αi − α2
i )k < αik.
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Construct a partition of [0, 1] into measurable sets J ′1, . . . , J
′
q such that λ(J ′i) = Zi/k and

λ(Ji ∩ J ′i) = min(αi, Zi/k),

and also construct a symmetric function U ′ ∈ W such that the value of U ′ on J ′i ×J ′j is the same

as the value of U1 on Ji×Jj. Then U ′ is a step function representation of H(k, U1), and it agrees

with U1 on the set Q = ∪q
i,j=1(Ji ∩ J ′i)× (Jj ∩ J ′j). Thus

δ¤(U1,H(k, U1)) ≤ ‖U1 − U ′‖¤ ≤ ‖U1 − U ′‖1 ≤ 2
(
1− λ(Q)

)
= 2

(
1−

(∑
i

min
(
αi,

Zi

k

))2)

≤ 4
(
1−

∑
i

min
(
αi,

Zi

k

))
= 2

∑
i

∣∣∣αi − Zi

k

∣∣∣ ≤ 2

(
q
∑

i

(
αi − Zi

k

)2
)1/2

,

which we rewrite as (
δ¤(U1,H(k, U1)

)2

≤ 4q
∑

i

(
αi − Zi

k

)2

.

The expectation of the right hand side is

4q

k2

∑
i

Var(Zi) <
4q

k
,

so by Cauchy–Schwarz

E
[
δ¤(U1,H(k, U1))

]
≤

√
4q

k
. (4.22)

Inserted into (4.21), this gives

E
[
δ¤(U,H(k, U))

]
≤ 2ε +

16

k1/4
+

√
4n

k
≤ 2ε +

16

k1/4
+

2

k1/2
21/ε2

.

Choosing ε = 2/(log2 k) and recalling that k ≥ 225, this gives the upper bound

E
[
δ¤(U,H(k, U))

]
≤ 1√

log2 k

(
4 + (16 + 2)

√
log2 k

k1/4

)
≤ 6√

log2 k
. (4.23)

Observing that δ¤(U,H(k, U)) changes by at most 4/k if one of the random variables Xi changes

its value, we finally use Lemma 4.1 (i) to complete the proof of the first statement.

(ii) The proof of the second statement is completely analogous: we first show that

E
[
δ¤(U,G(k, U))

]
≤ 1√

log2 k

(
4 + (8 + 2)

√
log2 k

k1/4

)
≤ 5√

log2 k
, (4.24)

and then use Lemma 4.1 (i) to prove concentration. ¤

The proof again generalizes to samples from weighted graphs, this time leading to Theo-

rem 2.9.
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Proof of Theorem 2.9. Again, the proof is analogous to the proof of statement (i) above,

except that we now use the original Frieze-Kannan Lemma (Lemma 2.4) for graphs instead of

our Weak Szemerédi Lemma (Lemma 3.3) for graphons. One also needs to generalize the bound

(4.22) to samples X1, . . . , Xk chosen uniformly without replacement from V (G), but this is again

straightforward: the random variable Zi is now the number of points that fall into the class

Vi of a weak Szemerédi partition P = (V1, . . . , Vq), and its variance is bounded by αik, where

αi = |Vi|/|V (G)|. Continuing as in the above proof, these considerations now lead to the bound

E
[
δ¤(G,G(k, G))

]
≤ 1√

log2 k

(
4 + (16 + 2)

√
log2 k

k1/4

)
≤ 6√

log2 k
, (4.25)

where we again assume that the weights have been rescaled so that ‖G‖∞ = 1. Using Lemma 4.1

(ii) to show concentration, this gives the bound (2.12). ¤

4.6 Proof of Theorem 3.7

4.6.1 Proof of Theorem 3.7 (a)

Let V (F ) = [n] and E(F ) = {e1, . . . , em}. For t = 1, . . . , m, let it, jt be the endpoints of the

edge et, and let Et = {e1, . . . , et} ⊂ E(F ). Then t(F,W )− t(F,W ′) can be rewritten as

t(F,W )− t(F,W ′) =

∫

[0,1]n

( ∏

ij∈E(F )

W (xi, xj)−
∏

ij∈E(F )

W ′(xi, xj)
)

dx1 . . . dxn

=
m∑

t=1

∫

[0,1]n

∏
s<t

W (xis , xjs)
∏
s>t

W ′(xis , xjs)
(
W (xit , xjt)−W ′(xit , xjt)

)
dx1 . . . dxn. (4.26)

Take any term in this sum, and for notational convenience, assume that it = 1 and jt = 2.

Let X(x1, x3, . . . , xn) be the product of those factors in
∏

s<t W (xis , xjs)
∏

s>t W
′(xis , xjs) that

contain x1, and let Y (x2, . . . , xn) be the product of the rest. Then we have

∫

[0,1]n

∏
s<t

W (xis , xjs)
∏
s>t

W ′(xis , xjs)
(
W (xit , xjt)−W ′(xit , xjt)

)
dx1 . . . dxn

=

∫

[0,1]n−2

( ∫

[0,1]2

X(x1, x3 . . . , xn)Y (x2, . . . , xn)
(
W (x1, x2)−W ′(x1, x2)

)
dx1 dx2

)
dx3 . . . dxn.

Here the interior integral is bounded by

∣∣∣
∫

[0,1]2

X(x1, x3 . . . , xn)Y (x2, . . . , xn)
(
W (x1, x2)−W ′(x1, x2)

)
dx1 dx2

∣∣∣

≤ ‖X‖∞‖Y ‖∞‖W −W ′‖∞→1.
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Substituting into (4.26), and using that

‖X‖∞‖Y ‖∞ ≤ ‖W‖t−1
∞ ‖W ′‖m−t

∞ ≤ Cm−1

and (by (3.5))

‖W −W ′‖∞→1 ≤ 4‖W −W ′‖¤,

we get

|t(F,W )− t(F, W ′)| ≤ 4mCm−1‖W −W ′‖¤,

Using the representation in Lemma 3.5 for the δ¤ distance and the fact that t(F,W ) = t(F,W φ)

whenever φ is a measure-preserving function from [0, 1] to [0, 1], this bound implies the bound

(3.18). ¤

Remark 4.8 The above proof can easily be generalized to show that

|t(F,W )| ≤ 4‖W‖|E(F )|−1
∞ ‖W‖¤. (4.27)

for all W ∈ W and all simple graphs F . Also, it is not hard to show that the factor 4 in (3.18)

and (4.27) is not needed if W and W ′ are non-negative.

4.6.2 Proof of Theorem 3.7 (b)

Without loss of generality, we may assume that ‖W‖∞, ‖W ′‖∞ ≤ 1 (otherwise we just rescale

both W and W ′ by the maximum of these two numbers). Let U,U ′ ∈ W[0,1] be the graphons

U = 1
2
W + 1

2
and U ′ = 1

2
W ′ + 1

2
. Then δ¤(W,W ′) = 2δ¤(U,U ′), so it is enough to prove that

δ¤(U,U ′) ≤ 11/
√

log2 k. We will prove this bound by relating the distance of U and U ′ to the

distance of the random graphs G(k, U) and G(k, U ′). To this end, we need an expression for the

probability that G(k, U) is equal to some given graph F on k nodes. We first use the relations

(4.8) to express t(F, U) as a sum over graphs G on k nodes. Combined with (4.4) and the fact

that for all graphs F ′ and G on k nodes, tind(F
′, G) = 0 unless G is isomorphic to F ′, we have

that
t(F, U) =

∑
G

P
(
G(k, U)) = G

)
tinj(F,G)

=
∑

G

∑

F ′⊃F

P
(
G(k, U)) = G

)
tind(F

′, G)

=
1

k!

∑

F ′⊃F

P
(
G(k, U)) = F ′

)(
ind(F ′, F ′)

)2

,

where ind(·, ·) is defined in (4.2). With the help of inclusion-exclusion, this leads to

P
(
G(k, U)) = F

)
= k!

∑

F ′⊃F

(−1)|E(F ′)\E(F )|
(
ind(F ′, F ′)

)−2

t(F ′, U),
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which in turn implies that

∑
F

∣∣∣P
(
G(k, U)) = F

)
− P

(
G(k, U ′)) = F

)∣∣∣ ≤ k!
∑

F,F ′:
E(F ′)⊃E(F )

∣∣∣t(F ′, U)− t(F ′, U ′)
∣∣∣

where the sum runs over graphs F and F ′ on k nodes. To continue, we need to relate the

homomorphism densities of U and U ′ to those of W and W ′. To this end, we insert the relation

U = 1
2

(
W +1

)
into the definition of t(F ′, U). For a graph F ′ on k nodes, this leads to the identity

t(F ′, U) = 2−|E(F ′)| ∑

F ′′⊂F ′
t(F ′′,W )

where the sum goes over all subgraphs that have the same node set as F ′. Using the assumption

of the theorem, we thus obtain the bound
∣∣t(F ′, U)− t(F ′, U ′)

∣∣ ≤ 3−k2
which in turn implies that

∑
F

∣∣∣P
(
G(k, U)) = F

)
− P

(
G(k, U ′)) = F

)∣∣∣ ≤ k!
∑

F,F ′:
E(F )⊂E(F ′)

3−k2

= k!3−k2

3k(k−1)/2.

Bounding k! (rather crudely) by 3k2/2, we note that the right hand side is smaller than 3−k/2.

As a consequence, G(k, U) and G(k, U ′) can be coupled in such a way that G(k, U) = G(k, U ′)

with probability at least 1− 3−k/2. Combined with the triangle inequality and the bound (4.24),

we obtain that

δ¤(U,U ′) ≤ Eδ¤(G(k, U),G(k, U ′)) + E[δ¤(G(k, U), U)] + E[δ¤(G(k, U ′), U ′)]

≤ 3−k/2 +
10√
log2 k

≤ 11√
log2 k

.

¤

5 Convergence in Norm and Uniform Szemerédi Parti-

tions

5.1 Comparison of Fractional and Non-Fractional Overlays

Let G and G′ be two graphs on n nodes, both with nodeweights 1/n. Consider any labeling that

attains the minimum in the definition (2.6) of δ̂¤, and identify the nodes of G and G′ with the

same label. In this case, we say that G and G′ are optimally overlaid.

In addition to this distance we also defined the distance δ¤, given in terms of fractional

overlays X ∈ X (G,G′), see (2.7). Since every bijection between the nodes of G1 and G2 defines

a fractional overlay X, we trivially have that

δ¤(G,G′) ≤ δ̂¤(G,G′).
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This inequality can be strict. Let G = K2, and let G′ be a graph with two nonadjacent nodes but

with a loop at each node. It is easy to see that δ̂¤(G,G′) = 1/4, but δ¤(G,G′) = 1/8 (the best

fractional overlay is Xiu = 1/4 for all i ∈ V (G) and u ∈ V (G′)). To give an example without

loops, let G = K3,3, and let G′ consist of two disjoint triangles ∆1 and ∆2. There are only two

essentially different ways to overlay these graphs; the better one maps two nodes of ∆i into one

color class of K3,3 and the third one into the other color class. The number of edges in G′ between

∆1 and ∆2 is 5, whence δ̂¤(G,G′) ≥ 5/36. (One can check that equality holds.) On the other

hand, let us double each node in both graphs, to get G(2) = K6,6 and G′(2) = ∆1(2) ∪ ∆2(2).

Let us map one copy of each twin node of G′(2) into one color class of K6,6, and its pair into the

other color class. Case distinction shows that the worst choice for S and T in the definition of

d¤ is S = V (∆1(2)) and T = V (∆2(2)), showing that

δ¤(G,G′) ≤ δ̂¤(G(2), G′(2)) =
18

144
=

1

8
<

5

36
.

We have no example disproving the possibility that δ̂¤(G1, G2) = O(δ¤(G1, G2)), but we are

only able to prove a much weaker inequality given in Theorem 2.3. We start with a simple but

very weak bound we will need.

Lemma 5.1 Let G1 and G2 be weighted graphs on n nodes. If both G1 and G2 have nodeweights

one, then

δ̂¤(G1, G2) ≤ n6δ¤(G1, G2).

Proof. Let (Xui) be an optimal fractional overlay of G1 and G2, normalized in such a way that∑
i Xui =

∑
v Xvj = 1/n for all n. We claim that there is a bijection π : V (G1) → V (G2) such

that Xuπ(u) ≥ 1/n3 for all u ∈ V (G1). This follows from a routine application of the Marriage

Theorem: if there is no such bijection, then there are two sets S ⊆ V (G1) and T ⊆ V (G2) such

that |S|+ |T | > n and Xst < 1/n3 for all s ∈ S and all t ∈ T . But then

|S|
n

=
∑
u∈S

∑

i∈V (G2)

Xiu =
∑
u∈S

∑
i∈T

Xiu +
∑
u∈S

∑

i∈V (G2)\T
Xiu

≤ 1

n3
|S| · |T |+ |V (G2) \ T |

n
<

1

n
+
|S| − 1

n
,

a contradiction. Thus a map π with the desired properties exists.

Let G′
1 be the image of G1 under this map. Then

δ̂¤(G1, G2) ≤ max
s∈V (G1)

max
t∈V (G2)

|βst(G1)− βπ(s)π(t)(G2)|
≤ max

s∈V (G1)
max

t∈V (G2)
n6Xsπ(s)Xtπ(t)|βst(G1)− βπ(s)π(t)(G2)|

≤ n6δ¤(G1, G2),
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which proves the lemma. ¤

Now we are able to prove Theorem 2.3, which shows that the two distances δ and δ̂ define the

same topology. As the reader may easily verify, the proof below gives an exponent of 1/3 instead

of the exponent of 1/67 from Theorem 2.3 if the number of nodes is large enough. However, even

under this assumption, we could not obtain a linear bound, i.e., bi-Lipschitz equivalence.

Proof of Theorem 2.3 The first inequality, as remarked before, is trivial. To prove the second,

write δ¤(G1, G2)
1/67 = ε. If n ≤ ε−11, then the bound follows by Lemma 5.1, and if ε ≥ 2/36,

the bound is trivial, so we may assume that

n > ε−11 and ε ≤ 1

16
. (5.1)

Consider an optimal overlay of WG1 and WG2 (in other words, consider a measure-preserving

bijection φ : [0, 1] → [0, 1]) such that

‖WG1 −W φ
G2
‖¤ = δ¤(G1, G2) = ε67.

Let us select a set Z of k = dn/εe random points from [0, 1]. Let H1 = WG1 [Z] and H2 = WGφ
2
[Z].

Then by Lemma 4.6, we get that with probability at least 1− e−
1
8

√
n/ε ≥ 1− 8ε6,

d¤(H1, H2) ≤ ‖WG1 −W φ
G2
‖¤ +

20

k1/4
= ε67 +

20

k1/4
.

Each element z ∈ Z corresponds to a node iz ∈ V (G1) and a node jz ∈ V (G2). These pairs

(iz, jz) form a bipartite graph F with color classes V (G1) and V (G2) (which we assume are

disjoint).

Claim 5.2 With probability at least 1 − (2/e)−2n, the bipartite graph F has a matching of size

at least (1− 2ε)n.

To prove this claim, we use König’s Theorem: if F does not contain a matching of size

(1 − 2ε)n, then its edges can be covered by a set X of nodes with |X| < (1 − 2ε)n. Let

Yi = V (Gi) \X. Then there is no edge of F between Y1 and Y2.

On the other hand, |Y1|+|Y2| ≥ (1+2ε)n. Let Ji ⊆ [0, 1] be the union of intervals representing

Yi in WGi
, so that λ(J1)+λ(J2) ≥ 1+2ε, and hence also λ(J1)+λ(φ(J2)) ≥ 1+2ε. This implies

that λ(J1 ∩ φ(J2)) ≥ 2ε. The random set Z avoided this intersection; the probability of this

happening is at most

(1− 2ε)k < e−2εk ≤ e−2n.

Since there are at most 4n pairs of sets (Y1, Y2), the probability that F does not have a matching

of cardinality at least (1− 2ε)n is less than 4ne−2n. This proves the claim.
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Now let (i1, j1) . . . , (im, jm) be a maximum matching in F . With positive probability, we have

both d¤(H1, H2) ≤ ε67 + 20/k1/4 and m ≥ (1− 2n
k

)n. Fix a choice of Z for which this happens.

Let (im+1, jm+1), . . . , (in, jn) be an arbitrary pairing of the remaining nodes of V (G1) and V (G2).

We claim that the pairing π : ir 7→ jr gives an overlay of G1 and G2 with small d¤ distance.

Let S, T ⊆ V (G2), and let S ′ = S ∩ {j1, . . . , jm}, T ′ = T ∩ {j1, . . . , jm}. Then |S \ S ′| ≤ 2n2

k
,

and |T \ T ′| ≤ 2n2

k
, and hence

|eG′1(S, T )− eG2(S, T )| ≤ |eG′1(S
′, T ′)− eG2(S

′, T ′)|+ 2
(
2n

2n2

k
+

(2n2

k

)2)
.

Here

|eG′1(S
′, T ′)− eG2(S

′, T ′)| = |eH1(S
′, T ′)− eH2(S

′, T ′)| ≤ d¤(H1, H2)k
2 ≤ (ε67 +

20

k1/4
)k2,

and hence

|eG′1(S, T )− eG2(S, T )|
n2

≤ 8n

k
+

8n2

k2
+

ε67k2

n2
+

20k
7
4

n2

≤ 8ε + 8ε2 + ε67(1 + ε−1)2 + 20(1 + ε−1)7/4n−1/4

≤ 8ε + 8ε2 + ε65(1 + ε)2 + 20ε(1 + ε)7/4 ≤ 32ε

where we used (5.1) in the last two bounds. ¤

5.2 Convergence in Norm

Let (Gn) be a convergent sequence of weighted graphs. Theorem 3.8 then implies that there

exists a graphon W ∈ W such that WGn → W in the δ¤ distance. This does not imply, however,

that WGn → W in the ‖ · ‖¤ norm. It turns out, however, that the graphs in the sequence (Gn)

can be relabeled in such a way that this becomes true, provided (Gn) has no dominant nodes in

the sense that
maxi αi(Gn)

αGn

→ 0

as n → ∞. This is the content of the following lemma, which will be useful when discussing

testability.

Lemma 5.3 Let (Gn) be a sequence of weighted graphs with uniformly bounded edgeweights, and

no dominant nodes. If

δ¤(U,WGn) → 0

for some U ∈ W, then the graphs in the sequence (Gn) can be relabeled in such a way that the

resulting sequence (G′
n) of labeled graphs converges to U in the cut-norm:

‖U −WG′n‖¤ → 0.
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Proof. We first prove the lemma for graphs with nodeweights one. Let m(n) = |V (Gn)|, and

let Pm(n) be a partition of [0, 1] into consecutive intervals of length 1/m(n). By Lemma 3.2,

we have that ‖U − UPm(n)
‖¤ → 0, so combined with the assumption that δ¤(U,WGn) → 0 we

conclude that δ¤(UPm(n)
,WGn) → 0. But the left hand side can be expressed as the distance of

two weighted graphs on the same number of nodes, δ¤(UPm(n)
,WGn) = δ¤(U/Pm(n), Gn), so by

Theorem 2.3, we get that

δ̂¤(U/Pm(n), Gn) → 0.

This means that the graphs in the sequence (Gn) can be relabeled in such a way that for the

resulting graph sequence, (G′
n), we have

‖UPm(n)
−WG′n‖¤ = d¤(U/Pm(n), G

′
n) → 0.

Combined with the fact that ‖U − UPm(n)
‖¤ → 0, this gives the statement of the lemma for

graphs with nodeweights one.

To prove the lemma for general sequences without dominant nodes, we use the Weak Regular-

ity Lemma to approximate (Gn) by a sequence of graphs (G̃n) with nodeweights one. Indeed, let

us assume without loss of generality that all graphs in the sequence (Gn) have total nodeweight

αGn = 1. Define an = maxi αi(Gn), and choose εn in such a way that εn → 0 and an240/ε2
n → 0

as n → ∞. With the help of Corollary 3.4 (ii), we then construct a partition Pn of V (Gn) into

qn ≤ 220/ε2
n classes such that d¤(Gn, (Gn)Pn) → 0 and the classes in Pn have almost equal weights

(in the sense that |∑x∈Vi
αx(Gn)−∑

y∈Vj
αy(Gn)| ≤ an for all i, j ∈ [qn]). Consider the sequence

of graphs G̃n that are obtained from Gn/Pn by changing all nodeweights to 1. Since the classes

of Pn have almost equal weights, we have that ‖WG̃n
− WGn/Pn‖¤ ≤ q2

nan → 0 which in turn

implies that δ¤(Gn, G̃n) → 0. Thus (G̃n) is a sequence of weighted graphs with nodeweights one

which converges to U , implying that it can be reordered in such a way that ‖WG̃n
− U‖¤ → 0.

But this means that Gn/Pn can be relabeled in such a way that ‖WGn/Pn − U‖¤ → 0, which in

turn implies that Gn itself can be relabeled so that ‖WGn − U‖¤ → 0, as desired. ¤

The previous lemma suggests that we extend the definition of the distance δ̂ to the case when

one of the arguments is a graphon U :

δ̂¤(U,G) = min
G′
‖U −WG′‖¤ (5.2)

where the minimum goes over all relabelings G′ of G. Then the lemma asserts that if Gn is a

convergent graph sequence with uniformly bounded edgeweights and no dominant nodes, then

δ̂¤(U,Gn) → 0.

In the special case of nodeweights one, Theorem 2.3 and Lemma 5.3 naively suggest the

stronger statement that δ̂¤(U,G) can be bounded by a function f(δ¤(U,WG), |V (G)|) such that

f(x, n) → 0 if x → 0 and n →∞. However, this is false, as the following example shows.
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Example 5.1 Let G = Kn,n be the complete bipartite graph on 2n nodes, and let H = Knm,nm

be the complete bipartite graph on 2nm nodes, where H has randomly labeled nodes, and let

U = WH . Then δ¤(U,WG) = 0. But it is not hard to show that for every n, if m is sufficiently

large, then with large probability, ‖WH −WG′‖¤ ≥ 1/10 for every relabeling G′ of G, implying

that δ̂¤(U,G) ≥ 1/10, see appendix for details.

5.3 Convergent Szemerédi Partitions

Given Lemma 5.3, we now are ready to prove Theorem 2.8 about the convergence of the quotient

graphs of suitably chosen Szemerédi partitions for a convergent graph sequence (Gn).

We start by proving the easier direction, namely that convergent quotients imply convergence

of the sequence (Gn).

Let ε > 0, and let q be such that the conditions (i) and (ii) of Theorem 2.8 hold. For a

fixed q, convergence of Gn/Pn is equivalent to convergence of all edgeweights and nodeweights,

which in turn implies convergence in the δ¤ distance. Let n0 be such that δ¤(Gn/Pn, Gm/Pm) ≤ ε

whenever n,m ≥ n0, and |V (Gn)| ≥ q whenever n ≥ n0. Then δ¤(Gn, Gm) ≤ 3ε for all n,m ≥ n0

by the triangle inequality, the property (i) and the fact that δ¤(Gn, Gn/Pn) ≤ d¤(Gn, (Gn)Pn).

This proves that (Gn) is a Cauchy sequence in the metric δ¤, and hence left-convergent.

To prove the necessity of the conditions (i) and (ii), consider a convergent sequence (Gn),

a graphon U ′ such that δ¤(Gn, U
′) → 0, and a constant ε > 0. With the help of the Weak

Regularity Lemma for graphons, Lemma 3.3, we can find a partition P ′ of [0, 1] into q0 ≤ 210/ε2

classes such that ‖U ′ − U ′
P′‖¤ < ε/

√
5. Applying a measure-preserving map to both U ′ and

P ′, this allows us to find a graphon U and a partition P ′′ of [0, 1] into q0 consecutive intervals

such that ‖U − UP′′‖¤ ≤ ε/
√

5 and δ¤(Gn, U) → 0. Appealing to Lemma 5.3 we finally relabel

the graphs in the sequence (Gn) in such a way that for the relabeled sequence (which we again

denote by (Gn)), we get convergence in norm,

‖WGn − U‖¤ → 0

as n →∞.

On the other hand, by Lemma 2.4, we can find a sequence of partitions (P ′n) such that P ′n is

a weakly (ε/
√

5)-regular partition of Gn with not more than 210/ε2
classes. Let qn be the number

of classes in P ′n, and let q = maxn≥0 qn. By the bound (3.11), we can refine the partitions P ′n to

obtain weakly (2ε/
√

5 ≤ ε)-regular partitions P ′′n with exactly q classes whenever |V (Gn)| ≥ q.

In a similar way, we can refine the partition P ′′ to obtain a partition P of [0, 1] into q consecutive

intervals such that

‖U − UP‖¤ ≤ 2√
5
ε ≤ 9

10
ε.
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Let n0 be such that for n ≥ n0

‖WGn − U‖¤ ≤ ε

30
and

q

|V (Gn)| ≤
ε

30
,

and let αi be the Lebesgue measure of the ith partition class of P . For n < n0, we then set

Pn = P ′′n, and for n ≥ n0 we define Pn to be the partition into the classes V
(n)
1 = {1, . . . , k(n)

1 },
V

(n)
2 = {k(n)

1 + 1, . . . , k
(n)
1 + k

(n)
2 }, etc., where the integers k

(n)
i are chosen in such a way that

bαi|V (Gn)|c ≤ k
(n)
i ≤ dαi|V (Gn)|e. With this definition, we have that

‖(WGn)P −W(Gn)Pn
‖¤ ≤ ‖(WGn)P −W(Gn)Pn

‖1 ≤ q

|V (Gn)| ≤
ε

30

for all n ≥ n0. Combined with the triangle inequality and the bound (3.9), this gives

d¤(Gn, (Gn)Pn) = ‖WGn −W(Gn)Pn
‖¤

≤ ‖WGn − U‖¤ + ‖U − UP‖¤ + ‖UP − (WGn)P‖¤ + ‖(WGn)P −W(Gn)Pn
‖¤

≤ 2‖WGn − U‖¤ + ‖U − UP‖¤ + ‖(WGn)P −W(Gn)Pn
‖¤ ≤ 2

ε

30
+

9

10
ε +

ε

30
= ε

whenever n ≥ n0. Thus Pn is a weakly ε-regular partition of Gn, whether n < n0, or n ≥ n0. By

definition, it also is a partition into exactly q classes whenever |V (Gn)| ≥ q. This proves (i).

To prove (ii), we note that for n ≥ n0, we have

d¤(Gn/Pn, U/P) ≤ ‖W(Gn)Pn
− (WGn)P‖¤ + ‖(WGn)P − UP‖¤ ≤ q

|V (Gn)| + ‖WGn − U‖¤.

As n → 0, the right hand side goes to 0, as required.

6 Parameter Testing

6.1 Definitions and Statements of Results

In this section we discuss the notion of continuous graph parameters, and the closely related

notion of parameter testing. In parameter testing, one wants to determine some parameter of a

large, simple graph G, e.g., the edge density or the density of the maximum cut. It is usually

difficult to determine the exact value of such a parameter, but using sufficiently large samples,

one might hope to approximate the value of parameter with large probability at a much lower

computation cost; recall Definition (2.11).

Throughout this section, G will be a simple graph; this will be made explicit only in the state-

ments of theorems and supplements. Our principal theorem gives several useful characterizations

of testable graph parameters.
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Theorem 6.1 Let f be a bounded simple graph parameter. Then the following are equivalent:

(a) f is testable.

(b) For every ε > 0, there is an integer k such that for every simple graph G on at least k

nodes,

|f(G)− E(f(G(k, G))| ≤ ε.

(c) For every convergent sequence (Gn) of simple graphs with |V (Gn)| → ∞, the limit of

f(Gn) exists as n →∞.

(d) There exists a functional f̌(W ) on W that is continuous in the rectangle norm, and

f̌(WG)− f(G) → 0 if |V (G)| → ∞.

(e) For every ε > 0 there is an ε0 > 0 and an n0 ∈ Z+ such that if G1, G2 are two simple

graphs with |V (G1)|, |V (G2)| ≥ n0 and δ¤(G1, G2) < ε0, then |f(G1)− f(G2)| < ε.

If we want to use (e) to prove that a certain invariant is testable, then the complicated

definition of the δ¤ distance may cause a difficulty. So it is useful to show that (e) can be

replaced by a weaker condition, which consists of three special cases of (e). For this purpose,

we define the disjoint union G ∪ G′ of two graphs G and G′ as the graph whose node set is the

disjoint union of V (G) and V (G′), and whose edge set is E(G) ∪ E(G′).

Supplement 6.2 The following three conditions together are also equivalent to testability:

(e.1) For every ε > 0 there is an ε′ > 0 such that if G and G′ are two simple graphs on the

same node set and d¤(G,G′) ≤ ε′, then |f(G)− f(G′)| < ε.

(e.2) For every simple graph G, f(G[m]) has a limit as m →∞.

(e.3) f(G∪K1)− f(G) → 0 if |V (G)| → ∞.

We formulate two further conditions for testability, in terms of Szemerédi partitions. Recall

that a partition {V1, . . . , Vk} of a finite set V is an equitable partition if b|V |/kc ≤ |Vi| ≤ d|V |/ke
for every 1 ≤ i ≤ k. Let P = {V1, . . . , Vk} be an equitable partition of the node set of a simple

graph G. A pair (Vi, Vj) if partition classes is called an ε-regular pair, if for all X ⊆ Vi and

Y ⊆ Vj with |X|, |Y | ≥ ε|V (G)|/k, we have

∣∣∣∣∣
eG(X, Y )

|X| · |Y | −
eG(Vi, Vj)

|Vi| · |Vj|

∣∣∣∣∣ ≤ ε.

The partition P is ε-regular if all but at most εk2 pairs (Vi, Vj) are ε-regular.

Every ε-regular partition is weakly (7ε)-regular, but in the reverse direction only a much

weaker implication holds: a weakly ε-regular partition with k classes is ε̃-regular with ε̃ =
3
√

k2ε.

The “original” Szemerédi Lemma can be stated as follows.
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Lemma 6.3 (Szemerédi Regularity Lemma [31]) For every ε > 0 and l > 0 there is a

k(ε, l) > 0 such that every simple graph G = (V, E) with at least l nodes has an ε-regular

partition into at least l and at most k(ε, l) classes.

Let G be a graph and let P be an equitable partition of V (G). Then G/P is a weighted

graph with almost equal nodeweights. We modify this graph by making all nodeweights equal

to 1. This way we get a weighted graph G÷ P with nodeweights 1 and edgeweights in [0, 1].

For every bounded, simple graph parameter f and every weighted graph H with nodeweights

1 and edgeweights in [0, 1], define

f̂(H) = E(f(G(H)),

where G(H) is the graph obtained by the randomizing procedure described in Section 4.3. Clearly

f̂ is an extension of f .

Supplement 6.4 Either one of the following conditions is also equivalent to testability:

(f) For every ε > 0 there is an ε′ > 0 and an n0 ∈ Z+ such that if G is any graph with

|V (G)| ≥ n0 and P is an equitable weakly ε′-regular partition of G with n0 ≤ |P| ≤ ε′|V (G)|,
then |f(G)− f̂(G÷P)| ≤ ε.

(g) The parameter f has an extension f̌ to (finite) weighted graphs with nodeweights 1 and

edgeweights in [0, 1] such that

(g.1) for every fixed n, f̌ is a continuous function of the edgeweights on n-node graphs, and

(g.2) for every ε > 0 there is an ε′ > 0 and an n0 ∈ Z+ such that if G is any graph with

|V (G)| ≥ n0 and P is an ε′-regular partition of G with n0 ≤ |P| ≤ ε′|V (G)|, then |f(G)− f̌(G÷
P)| ≤ ε.

Condition (g) is a priori weaker than (f) on two counts: First, (g) allows an arbitrary extension

of f to weighted graphs, while (f) makes assumptions about a specific extension f̂ . Second, (g)

states a condition about ε-regular partitions, for which the condition may be easier to verify than

for weakly ε-regular partitions. Of course, we could formulate two “intermediate” conditions, in

which only one of these relaxations is used.

Condition (g.1) concerns graphs on a fixed finite set, so when we say that f̌ should be

“continuous”, we do not have to specify in which metric we mean this. But to be concrete, we

will use the d¤ distance as a metric on these graphs.

6.2 Proofs

Before proving the equivalence of the above conditions, we state and prove a simple lemma.
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Lemma 6.5 Let G,G′ be weighted graphs with edgeweights in some interval I of length |I| and

total nodeweight one. If G and G′ have equal edgeweights but different nodeweights, then

δ¤(G,G′) ≤ |I|
∑

i

|αi(G)− αi(G
′)|.

Proof. Let αi be the nodeweights of G, and α′i be those of G′. Consider a coupling X such

that Xii = min{αi, α
′
i}. Then

δ¤((G,G′) ≤ d¤(G[X], G′[X>]) ≤
∑

i,j,k,l

XikXjl|βij(G)− βkl(G
′)| ≤ |I|

∑

i6=j or
k 6=l

XikXjl

= |I|
(
1−

(∑
i

min{αi, α
′
i}

)2)
= |I|

(
1−

(
1− 1

2

∑
i

|αi − α′i|
)2)

≤ |I|
∑

i

|αi − α′i|.

¤

After these preparations, we are ready to prove the results of the last section.

Proof of Theorem 6.1 We first prove that (a), (b), (c) and (e) are equivalent:

(a)⇒(b): The definition of testability is very similar to condition (b): it says, in this language,

that a random set Sk on k nodes of G as in (b) satisfies

|f(G)− f(G(k, G))| ≤ ε

with large probability. This clearly implies that this difference is small on average.

(b)⇒(c): Let (Gn) be a convergent sequence with |V (Gn)| → ∞. Given ε > 0, let k be such

that for every graph G on at least k nodes, |f(G)− E(f(G(k, G))| ≤ ε. Since Gn is convergent,

t(F,Gn) tends to a limit for all graphs F on k nodes, from which we get that tind(F, Gn) tends

to a limit tind(F ) for all graphs on k nodes. This means that Pr(G(k, Gn) = F ) → tind(F ), and

so

E(f(G(k,Gn))) →
∑

F

tind(F )f(F ) = ak.

As a consequence, we have that for all sufficiently large n,

|f(Gn)− ak| ≤ |f(G)− E(f(G(k, Gn))|+ ε ≤ 2ε,

so f(Gn) oscillates less than 4ε if n is large enough. This proves that the sequence (f(Gn)) is

convergent.

(c)⇒(e): Suppose that (e) does not hold for some ε > 0; then there are two sequences (Gn)

and (G′
n) of graphs such that |V (Gn)|, |V (G′

n)| → ∞, δ¤(Gn, G
′
n) → 0, but |f(Gn)− f(G′

n)| > ε.

We may assume that both graph sequences are convergent; but then δ¤(Gn, G
′
n) → 0 implies that
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the merged sequence (G1, G
′
1, G2, G

′
2, . . . ) is also convergent, so by (c), the sequence of numbers

(f(G1), f(G′
1), f(G2), f(G′

2), . . . ) is also convergent, a contradiction.

(e) ⇒(a): Suppose (a) does not hold. Then there is an ε > 0 and a sequence (Gn) of graphs

with |V (Gn)| ≥ n such that with probability at least ε we have that |f(Gn)− f(G(n,Gn))| > ε

for all n. Now choose ε0 > 0 and an n0 ∈ Z+ in such a way that |f(G1)− f(G2)| < ε whenever

G1, G2 are two graphs with |V (G1)|, |V (G2)| ≥ n0 and δ¤(G1, G2) < ε0 (this is possible by (e)).

But by Theorem 4.7 (iii), we have δ¤(Gn,G(k, Gn)) → 0 in probability, implying in particular

that for n large enough, δ¤(Gn,G(k, Gn)) < ε0 with probability at least 1− ε/2. By our choice

of ε0, this implies that for n large enough, |f(Gn) − f(G(k,Gn))| < ε with probability at least

1− ε/2, a contradiction.

We continue with proving that (d) is equivalent to (a), (b), (c) and (e).

(e)⇒(d): For W ∈ W[0,1], define f̌(W ) = limn→∞ f(Gn), where (Gn) is any sequence of

graphs such that Gn → W and |V (Gn)| → ∞ (by (e), f̌(W ) does not depend on the choice of

the sequence Gn as long as Gn → W ). We prove that this functional has the desired properties.

Let ε > 0, and let ε′ and n0 be as given by (e) with ε replaced by ε/3. To prove continuity, we

will prove that |f̌(W )− f̌(W ′)| ≤ ε whenever ‖W −W ′‖¤ ≤ ε′/3. Considering a graph sequence

tending to W , we can choose a simple graph G such that |V (G)| ≥ n0, δ¤(G,W ) < ε′/3 and

|f(G) − f̌(W )| ≤ ε/3; similarly, we can choose a simple graph G′ such that |V (G′)| ≥ n0,

δ¤(G′,W ′) < ε′/3 and |f(G′)− f̌(W ′)| < ε/3. Then

δ¤(G,G′) ≤ δ¤(G,W ) + δ¤(W,W ′) + δ¤(W ′, G′) ≤ ε′,

and hence by (e), |f(G)− f(G′)| ≤ ε/3. But then

|f̌(W )− f̌(W ′)| ≤ |f̌(W )− f(G)|+ |f(G)− f(G′)|+ |f(G′)− f̌(W )| ≤ ε

as claimed. Note that our proof shows that, in fact, f̌ is continuous in the δ¤ metric.

The fact that f̌(WGn) − f(Gn) → 0 whenever |V (Gn)| → ∞ can now be easily verified by

contradiction. Indeed, assume that this is not the case. Using compactness, we may choose a

subsequence such that Gn → W for some W . But this implies that f(Gn) → f̌(W ), and by the

continuity of f̌ , also that f̌(WGn) → f̌(W ), a contradiction.

(d)⇒(c). Consider a convergent graph sequence (Gn) with |V (Gn)| → ∞, and let W ∈ W
be its limit. Then δ¤(WGn ,W ) → 0, and by Lemma 5.3, ‖WG′n −W‖¤ → 0 for a relabeling of

Gn. By the continuity of f̌ , we have f̌(WG′n)− f̌(W ) → 0. By assumption, f(Gn)− f̌(WG′n) =

f(Gn)− f̌(WGn) → 0, and so f(Gn)− f̌(W ) → 0. This proves that (f(Gn)) is convergent. ¤

Proof of Supplement 6.2:

(e)⇒(e.1), (e.2), (e.3): To see that (e.1) is a special case of (e), it suffices to note that

if G1 and G2 are two different graphs on the same set of n nodes, and d¤(G,G′) ≤ ε′, then
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n ≥ 1/
√

ε′. For (e.2), note that δ¤(G[m], G[m′]) = 0 for all m,m′. For (e.3), it suffices to verify

that δ¤(G,GK1) ≤ 1/|V (G)|.
(e.1), (e.2), (e.3)⇒(c): Suppose that (c) does not hold. Then there exist two graph sequences

(Gn) and (G′
n) with |V (Gn)| → ∞ and |V (G′

n)| → ∞ such that Gn, G′
n → W , f(Gn) → a and

f(G′
n) → b as n →∞, but a 6= b.

By (e.1), there exists an ε > 0 such that if G and G′ are two graphs on the same node

set, and d¤(G,G′) ≤ ε, then |f(G) − f(G′)| ≤ |a − b|/4. Let ε1 = (ε/32)67. By Lemma 2.5,

for every n there is a simple graph Hn whose number of nodes k depends only on ε such that

δ¤(Gn, Hn) ≤ ε1/2. By selecting an appropriate subsequence, we may assume that Hn = H is

the same graph for all n. Since (Gn) and (G′
n) have the same limit, it follows that δ¤(G′

n, H) ≤ ε1

for all n that are large enough.

Let us add to each Gn at most k − 1 isolated nodes so that the resulting graph G∗
n has kmn

nodes for some integer mn. The mn-fold blow-up H[mn] of H then satisfies δ¤(G∗
n, H[mn]) ≤ ε1,

and so by Theorem 2.3, for a suitable overlay of Gn and H[mn], we have d¤(G∗
n, H[mn]) ≤ ε,

and so, by the definition of ε,

|f(G∗
n)− f(H[mn])| ≤ |a− b|

4
.

Using (e.3), we see that f(G∗
n)− f(Gn) → 0, and hence

|f(Gn)− f(H[mn])| ≤ |a− b|
3

if n is large enough. Similarly, H has a m′
n-node blow-up H[m′

n] such that

|f(G′
n)− f(H[m′

n])| ≤ |a− b|
3

.

But since H[mn] and H[m′
n] are blow-ups of the same graph H, (e.2) implies that f(H[mn]) −

f(H[m′
n]) → 0, a contradiction. ¤

Proof of Supplement 6.4: We will assume (without loss of generality) that |f | ≤ 1.

(e)⇒(f). Choose ε0 and n0 so that (i) for n ≥ n0 the bound in Lemma 4.3 is at most ε0 with

probability at least 1 − ε/4 and (ii) for two graphs G1 and G2 with |V (G1)|, |V (G2)| ≥ n0 and

δ¤(G1, G2) ≤ 3ε0, we have |f(G1) − f(G2)| < ε/4. Suppose that |V (G)| ≥ n0 and n0 ≤ |P| ≤
ε0|V (G)|. By definition of ε0-regular partitions and by Lemma 6.5 we have δ¤(G,G÷P) ≤ 2ε0.

Furthermore, by Lemma 4.3, we have δ¤(G ÷ P ,H(G ÷ P)) ≤ ε0 with probability at least

1 − ε/4. If this occurs, then δ¤(G,H(G ÷ P)) ≤ 3ε0, and by the choice of ε0 and n0, it follows

that |f(G)− f(H(G÷ P))| ≤ ε/2. Hence

|f(G)− f̂(G)| =
∣∣E(

f(G)− f(H(G÷ P))
)∣∣ ≤ ε

2
(1− ε/4) + 2(ε/4) < ε.
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(f)⇒(g). All we have to verify is that for weighted graphs on a fixed node set (say [n]), f̂ is

a continuous function of the edgeweights. Consider two weighted graphs H1, H2 with V (H1) =

V (H2) = [n] and d1(H1, H2) ≤ ε/n2. By Lemma 4.2, the randomized simple graphs G(H1) and

G(H2) can be coupled so that E[d1(G(H1),G(H2))] ≤ ε/n2, which by Markov’s inequality implies

that G(H1) = G(H2) with probability at least 1−ε. This implies that |f̂(G(H1))− f̂(G(H2))| ≤
ε. (Note that this argument did not require that f is testable.)

(g)⇒(e.1),(e.2),(e.3). Let ε > 0, and consider the extension f̌ postulated in (g). By property

(g.2), we can choose an ε1 > 0 and an n1 ∈ Z+ such that if |V (G)| ≥ n1 and P is an ε1-

regular partition of G with n1 ≤ |P| ≤ ε1|V (G)|, then |f(G) − f̌(G ÷ P)| ≤ ε/3. Using the

Regularity Lemma 6.3, fix k = k(ε1/2, n1) > n1 so that every graph G with at least n1 nodes has

an (ε1/2)-regular partition with at least n1 and at most k classes. Let n0 = max{n1, dk/ε1e}.
Using condition (g.1), choose an ε2 > 0 such that for any two graphs H1 and H2 on the same

set of m ≤ n0 nodes with d¤(H1, H2) ≤ ε2 we have |f̌(H1) − f̌(H2)| ≤ ε/3. Finally, choose

ε′ = min{ε2/4, ε
3
1/(8k

2)}.
To prove (e.1), let G and G′ be two simple graphs on the same node set with d¤(G,G′) ≤ ε′. If

n = |V (G)| ≤ n0, then |f(G1)− f(G2)| = |f̌(G1)− f̌(G2)| ≤ ε/3, so we can assume |V (G)| > n0.

Let P = (V1, . . . , Vl) be an (ε1/2)-regular partition of G and n1 ≤ l ≤ k. From the assumption

that d¤(G,G′) ≤ ε′ ≤ ε3
1/(8k

2), it follows that P is an ε1-regular partition of G′. By the choice

of ε1 and n1 it follows that

|f(G)− f̌(G÷P)| ≤ ε

3
and |f(G′)− f̌(G′ ÷P)| ≤ ε

3
.

Furthermore, we have

n2d¤(G,G′) ≥ l2d¤(G÷ P , G′ ÷ P)
⌊n

l

⌋2

,

and so

d¤(G÷ P , G′ ÷ P) ≤ n2

l2

⌊n

l

⌋−2

d¤(G,G′) ≤ 4ε′ ≤ ε2.

Hence by the choice of ε2, we have

|f̌(G÷ P)− f̌(G′ ÷P)| ≤ ε

3
.

Summing up,

|f(G)− f(G′)| ≤ |f(G)− f̌(G÷ P)|+ |f̌(G÷P)− f̌(G′ ÷ P)|+ |f̌(G′ ÷ P)− f(G′)| ≤ ε.

The proof of (e.2) is similar, but divisibility concerns cause some complications. We have to

show that f(G[q]) is a Cauchy sequence, i.e., we have to show that given G and ε > 0, we can

find a q0 such that |f(G[q]) − f(G[q′])| ≤ 2ε whenever q, q′ ≥ q0. Let n = |V (G)|, p > 1 large
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enough, and let P = {V1, . . . , Vl} be an (ε1/2)-regular partition of G[p] with n1 ≤ l ≤ k. By our

choice of p we have, in particular, that l ≤ ε1

2
np, so we may apply (g.2) to get

|f(G[p])− f̌(G[p]÷ P)| ≤ ε

3
. (6.1)

Let r be sufficiently large, and let q = pr + s with 0 ≤ s < p. The graph G[pr] arises from

G[p] by blowing up each node into r nodes, and then G[q] arises from G[pr] adding sn further

nodes.

First we consider the graph G[pr]. The partition P determines a partition Q = {U1, . . . , Ul}
of V (G[pr]). Let

pij =
eG[p](Vi, Vj)

|Vi| · |Vj| =
eG[pr](Ui, Uj)

|Ui| · |Uj|
denote the edge density between Vi and Vj in G[p] (which is the same as the edge density between

Ui and Uj in G[pr]).

We claim that if (Vi, Vj) is an (ε1/2)-regular pair in P , then for all X ⊆ Ui and Y ⊆ Uj with

|X|, |Y | ≥ 2ε1npr/(3l), we have

pij − ε1

2
≤ eG[pr](X,Y )

|X| · |Y | ≤ pij +
ε1

2
. (6.2)

For u ∈ Vi, let x′u denote the number of elements in X among the r copies of u in G[pr],and let

xu = x′u/r. Clearly 0 ≤ xu ≤ 1 and
∑

u xu ≥ b2ε1npr/(3l)c. We define yv for v ∈ Vj analogously.

Then we have

eG[pr](X, Y )− |X| · |Y |(pij − ε1) =
∑
u∈Vi

∑
v∈Vj

r2xuyv(auv − pij − ε1

2
). (6.3)

Since the right hand side is linear in each xu, it attains its minimum over 0 ≤ xu ≤ 1,
∑

u xu ≥
b2ε1npr/(3l)c, at a vertex of this domain, which is a 0-1 vector. Similarly, the minimizing

choice of the yv is a 0-1 vector. Let S = {u : xu = 1} and T = {v : yv = 1}, then

|S|, |T | ≥ b2ε1npr/(3l)c ≥ ε1

2
|V (G[p]|/l. The right hand side of (6.3) is equal to

r2
(
eG[p](S, T )− |S| · |T |(pij − ε1

2

)) ≥ 0,

since (Vi, Vj) is (ε1/2)-regular. This proves the first inequality in (6.2); the proof of the second

is similar.

Now Q is not necessarily an equitable partition; the largest and smallest class sizes may differ

by r, not by 1. Let us remove r nodes from those classes of Q that are too big. To get a partition

of V (G[q]), we have to add back these nodes (t ≤ l) and sn further nodes. Let us distribute these

nodes as equally as possible between the classes, to get an equitable partition Q′ = {U ′
1, . . . , U

′
l}

of G[q].
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We claim that Q′ is ε1-regular. Consider a pair (Vi, Vj) that is (ε1/2)-regular in G[p], and

subsets X ′ ⊆ U ′
i and Y ′ ⊆ U ′

j with |X|, |Y | ≥ ε1nq/l. Remove the new nodes from X ′ and Y ′ to

get X ⊆ Ui and Y ⊆ Uj. Clearly |X|, |Y | ≥ ε1nq/l − r − dsn/le ≥ 2ε1npr/(3l), and so (6.2) is

satisfied. Now it is easy to check that

∣∣∣∣
eG[q](U

′
i , U

′
j)

|U ′
i | · |U ′

j|
− eG[pr](Ui, Uj)

|Ui| · |Uj|

∣∣∣∣ ≤
ε1

4
and

∣∣∣∣
eG[q](X

′, Y ′)
|X ′| · |Y ′| − eG[pr](X, Y )

|X| · |Y |

∣∣∣∣ ≤
ε1

4

if p > 32l/ε2
1 and q > 32p/ε2

1, which proves that

∣∣∣∣
eG[q](U

′
i , U

′
j)

|U ′
i | · |U ′

j|
− eG[q](X

′, Y ′)|X ′| · |Y ′|
∣∣∣∣ ≤ ε1.

Thus Q′ is an ε1-regular partition of G[q]. It follows by (g.2) and the choice of ε1 that

|f(G[q])− f̌(G[q]÷Q′)| ≤ ε

3
. (6.4)

The weighted graphs G[p] ÷ P and G[q] ÷Q′ are very close to each other. In fact, G[p] ÷ P ∼=
G[pr]÷Q, while it is easy to check that d¤(G[pr]÷P , G[q]÷Q) < ε2 if q > 4p/ε2, and so (g.1)

implies that

|f̌(G[p]÷P)− f̌(G[q]÷Q′)| ≤ ε

3
. (6.5)

Now (6.1), (6.4) and (6.5) imply that |f(G[p]) − f(G[q])| ≤ ε. So if q, q′ > max(32p/ε2
1, 4p/ε2},

then

|f(G[q])− f(G[q′])| ≤ |f(G[q])− f(G[p])|+ |f(G[p])− f(G[q′])| ≤ 2ε.

Thus f(G[q]) is a Cauchy sequence, which proves (e.2).

The proof of (e.3) is similar but easier, and is left to the reader. ¤

7 Concluding Remarks

7.1 Norms Related to the Cut-Norm

The cut-norm (and the cut-distance of graphs) is closely related to several other norms that are

often used. We formulate these connections for the case of graphons, but similar remarks would

apply to the d¤ distance of graphs.

We start with the remark that we could restrict the sets S, T in Definition 3.3; it turns out that

“reasonable” restrictions only change the supremum value by a constant factor. In particular, it

is not hard to see that
1

2
‖W‖¤ ≤ sup

S=T

∣∣∣∣
∫

S×T

W

∣∣∣∣ ≤ ‖W‖¤, (7.1)

1

4
‖W‖¤ ≤ sup

S∩T=∅

∣∣∣∣
∫

S×T

W

∣∣∣∣ ≤ ‖W‖¤, (7.2)
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and
2

3
sup

S∩T=∅

∣∣∣∣
∫

S×T

W

∣∣∣∣ ≤ sup
S=[0,1]\T

∣∣∣∣
∫

S×T

W

∣∣∣∣ ≤ sup
S∩T=∅

∣∣∣∣
∫

S×T

W

∣∣∣∣, (7.3)

see appendix for details.

To relate the cut norm to homomorphisms, we start with noticing that

t(C4, U)1/4 = (Tr T 4
U)1/4, (7.4)

and hence the functional t(C4, .)
1/4 defines a norm, called the trace norm or Schatten norm, on

W . (More generally, any even cycle leads to a norm in this way.) The following lemma shows

that the norm in (7.4) is intimately related to the cut-norm.

Lemma 7.1 For U ∈ W with ‖U‖∞ ≤ 1, we have

1

4
t(C4, U) ≤ ‖U‖¤ ≤ t(C4, U)1/4.

Proof. The first inequality is a special case of (4.27). To prove the second inequality, we use

(3.5) and (7.4):

‖U‖¤ ≤ ‖U‖∞→1 = sup
|f |,|g|≤1

〈f, TUg〉,

and here

〈f, TUg〉 ≤ ‖f‖2 · ‖TUg‖2 = ‖f‖2 · 〈TUg, TUg〉1/2 = ‖f‖2 · 〈g, T 2
Ug〉1/2

≤ ‖f‖2 · ‖g‖2 · ‖T 2
U‖1/2

2→2 ≤ ‖T 2
U‖1/2

2 = (Tr T 4
U)1/4 = t(C4, U)1/4.

¤

Lemma 7.1 allows for a significant simplification of the proof that the sample from a weighted

graphs is close to the original graph. Indeed, it is possible to use the following easy lemma instead

of the quite difficult Theorem 4.6 (or the equally difficult results of [3]) to establish a slightly

weaker version of Theorem 4.7, which is still strong enough to prove the equivalence of left-

convergence and convergence in metric (see [15] for details).

Lemma 7.2 Let 0 < ε < 1, 0 < δ < 1, and let U ∈ W, ‖U‖∞ ≤ 1. If

‖U‖¤ ≤ 1

8
ε1/4 and k ≥ 352

ε8
ln(

2

δ
),

then

P
(
‖H(k, U)‖¤ ≤ ε

)
≥ 1− δ.
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Proof. Applying first Lemma 7.1 and then Lemma 4.4, we have

‖H(k, U)‖¤ ≤ t(C4,H(k, U))1/4 ≤
(
t(C4, U) +

ε4

2

)1/4

with probability at least 1− δ. Thus, using Lemma 7.1 again, we get

‖H(k, U)‖¤ ≤
(
t(C4, U) +

ε4

2

)1/4

≤
(
4‖U‖¤ +

ε4

2

)1/4

≤ ε,

as claimed. ¤

A substantial advantage of the norm t(C4, W ) over the cut-norm is that for weighted graphs

(and for many other types of graphons W , for example, for polynomials), it is polynomial-time

computable. A better polynomial-time computable approximation is the Grothendieck norm,

which approximates the cut-norm within a constant factor (see [5]).

7.2 A Common Generalization of Lemma 2.4 and Lemma 3.3

As stated, Lemma 3.3 does not generalize Lemma 2.4 since the partition in Lemma 3.3 is not

necessarily aligned with the steps of the stepfunction WG. But the following lemma implies both

Lemma 2.4 and Lemma 3.3.

Lemma 7.3 Let A be an algebra of measurable subsets of [0, 1], and let

‖W‖A,¤ = sup
S,T∈A

∣∣∣
∫

S×T

W
∣∣∣.

Then for every graphon W and every ε > 0, there exists a partition P of [0, 1] into sets in A
with at most 4d1/ε2e−1 classes such that

‖W −WP‖A,¤ ≤ ε‖W‖2.

Proof. Let P of be a partition of [0, 1] into q classes in A, let S, T ∈ A, and let P ′ be the

partition generated by S, T and P . Clearly P ′ has at most 4q classes, all of which lie in A. Since

WP ′ gives the best L2-approximation of W among all step functions with steps P ′, we conclude

that for every real number t, we have

‖W −WP ′‖2
2 ≤ ‖W −WP − t1S×T‖2

2.

Bounding the right hand side by ‖W−WP‖2
2−2t〈1S×T ,W−WP〉+t2 and choosing t = 〈1S×T ,W−

WP〉, this gives

〈1S×T , W −WP〉2 ≤ ‖W −WP‖2
2 − ‖W −WP ′‖2

2 = ‖WP ′‖2
2 − ‖WP‖2

2
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Taking the supremum over all sets S, T ∈ A, this gives

‖W −WP‖2
A,¤ ≤ sup

P ′
‖WP ′‖2

2 − ‖WP‖2
2, (7.5)

where the supremum goes over all partitions of [0, 1] into 4q classes in A. From this bound, the

lemma then follows by standard arguments. ¤

7.3 Right Convergence

When studying homomorphisms from G into a small graph H it will be convenient to consider

graphs H with nodeweights, αi(H) > 0, and edgeweights βij(H) ∈ R (with i running over all

nodes in H, and ij running over all edges of F ). For such a graph, we define

hom(G,H) =
∑

φ

∏

i∈V (G)

αφ(i)(H)
∏

ij∈E(G)

βφ(i),φ(j)(H)

where the sum runs over all maps φ from V (G) to V (H) and βφφ′(H) is set to zero if φφ′ is not

an edge in H. We call hom(G,H) the weighted number of H-colorings of G.

For dense graphs G, the weighted H-coloring numbers hom(G,H) turn out to be most in-

teresting when all edgeweights of H are strictly positive (we say that H is a soft-core graph

if this is the case). Under this assumption, the homomorphism numbers hom(G,H) typically

grow exponentially in the number of edges in G. For homomorphism into small graphs H, it is

therefore natural to consider the logarithm of hom(G,H) divided by the number of nodes in G

to the power two. We will also consider the “microcanonical ensemble”, where the number of

nodes in V (G) colored by a given color c ∈ V (H) is fixed to be some constant proportion ac of

all nodes. We denote these homomorphism densities by homa(G,H), where a is the vector with

components ac, c ∈ V (H).

The above perspective leads to two a priori different notions of convergence: A sequence

of weighted graphs (Gn) will be called convergent from the left if the homomorphism densities

t(F,Gn) converge for all finite graphs F , and it will be called convergent from the right if the

quantity |V (Gn)|−2 log homa(Gn, H) converges for all a and all soft-core graphs H. It will turn

out that these two notions are closely related. Convergence from the left implies convergence

from the right (both for the standard homomorphism numbers and the microcanonical ones), and

convergence from the right for the microcanonical homomorphism numbers implies convergence

from the left. This will be discussed in more detail in the continuation of this paper [16].
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Anal. 7 (1997) 322–337.

[26] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins and E. Upfal: Stochas-

tic models for the web graph; in Proc. of the 41th ACM Found. of Comp. Sci. (FOCS) (2000)

57 – 65.

[27] L. Lovász and B. Szegedy: Limits of dense graph sequences, MSR Tech Report # MSR-

TR-2004-79, ftp://ftp.research.microsoft.com/pub/tr/TR-2004-79.pdf

[28] L. Lovász and B. Szegedy: Graph limits and testing hereditary graph properties, MSR Tech

Report # MSR-TR-2005-110,

ftp://ftp.research.microsoft.com/pub/tr/TR-2005-110.pdf
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8 Appendix

In this appendix, we collect various proofs which were omitted in the body of the paper.

8.1 Proof of Corollary 3.4

Proof of (i): Let P ′ be a partition of [0, 1] into q′ ≤ 281/(8ε2) classes such that ‖W −WP ′‖¤ ≤
4ε
9
‖W‖2. Then there exists an equipartition P of [0, 1] into q classes such that at most q′

of its classes intersect more than one class of P ′. Let R be the union of these exceptional

classes, and let U be the step function which is equal to WP ′ on ([0, 1] \ R)2, and 0 on the

complement. Then ‖W − U‖¤ can easily be bounded by decomposing the sets S, T in the

definition of the cut-norm into the part contained in [0, 1] \ R and its complement. Using the

fact that λ(R) ≤ q′
q
≤ 2−79/(8ε2) ≤ ε22−79/8, this leads to the estimate

‖W − U‖¤ ≤
(4ε

9
+

√
2λ(R)

)
‖W‖2 ≤ ε

2

(8

9
+
√

8 · 2−79/8
)
‖W‖2 ≤ ε

2
‖W‖2.

By construction, U is a step function with steps in P . Using the bound (3.11), we conclude

that ‖W −WP‖¤ ≤ 2‖W − U‖¤ ≤ ε‖W‖2, which gives the first statement of the corollary. The

second assertion in statement (i) is proved in a similar way, starting from a common refinement

of P ′ and P̃ .

Proof of (ii): Let V = V (G), let n = |V |, and assume without loss of generality that

αG = 1. Choosing a partition P ′ = (V ′
1 , . . . , V

′
q′) of V with q′ ≤ 281/(8ε2) classes such that

d¤(G,GP ′) ≤ 4ε
9
‖G‖2, we would like to divide each class in P ′ into subclasses Vi such that all

of them obey the condition (3.12). To this end, we proceed as follows: Starting with V ′
1 , we

successively remove sets V1, V2, . . . from first V ′
1 , then V ′

2 , etc. so that
∣∣∣αG[Vi] −

1

q

∣∣∣ < αmax(G) for all i = 1, . . . , q (8.1)

and after each step
∣∣∣

t∑
i=1

αG[Vi] −
t

q

∣∣∣ ≤ αmax(G)

2
.

When it is not possible to further remove a set Vi from V ′
1 while maintaining these constraints,

we are left with a (possibly empty) remainder R1 that has weight αG[R1] < 1/q (otherwise, we

could have continued for at least one more step). Continuing with V ′
2 , . . . , V

′
q′ , we will eventually

end up with q − q′ ≤ t ≤ q disjoint sets V1, . . . , Vt obeying the condition (8.1), and r ≤ q′ non-

empty remainders Ri such that the total weight of their union, R =
⋃

i Ri, obeys the condition

|αG[R] − (q − t)/q| ≤ αmax/2. Using this condition, it is not hard to see that R can be split into

q− t final sets Vt+1, . . . , Vq obeying the condition (8.1). Since each of the remainders had weight

at most 1/q, the total weight of R is at most q′/q ≤ 2−79/(8ε2) ≤ ε22−79/8.

From here on the proof is completely analogous to the proof of (i). ¤
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8.2 Proof of Lemma 2.5

We start with the observation that the proof of the last section actually gives the stronger bound

‖W −WP‖¤ ≤ ε
(8

9
+
√

8 · 2−79/8
)
‖W‖2 ≤ 0.982ε‖W‖.

Applying this bound to WG, this gives a weighted graph H = WG/P on q ≥ 220/ε2 ≥ 220/ε2

nodes such that H has nodeweights one and δ¤(G,H) ≤ 0.982ε. Combined with Lemma 4.3,

this gives the existence of a weighted graph H̃ on [q] such that

δ¤(G, H̃) ≤ 0.982ε +
4√
q
≤ ε,

as required. ¤

8.3 Proof of Lemma 3.5

We notice that δ¤(U,W ) as well as the infima and limits in (3.14), (3.15) and (3.16) are continuous

in both U and W , with respect to the ‖.‖¤ norm. This fact and Lemma 3.2 imply that it is

enough to prove the lemma for graphons U and W that are interval step functions with equal

steps, corresponding to some finite graphs G and G′.

Furthermore, the inequalities

inf
φ,ψ
‖Uφ −Wψ‖¤ ≤ inf

ψ
‖U −Wψ‖¤ ≤ lim inf

n→∞
min

π
‖U −W π̃‖¤

are trivial, so it suffices to prove that

δ¤(U,W ) ≤ ‖Uφ −Wψ‖¤ (8.2)

for all measure-preserving maps φ, ψ : [0, 1] → [0, 1], and

lim sup
n→∞

min
π
‖U −W π̃‖¤ ≤ δ¤(U,W ), (8.3)

where the infimum is over all permutations of [n].

To prove (8.2), we consider two weighted graphs G and G′ with αG = α′G = 1, together

with the step functions U = WG and W = WG′ . Let I1, . . . , In be the intervals [0, α1(G)],

(α1(G), α1(G) + α2(G)], . . . , (α1(G) + · · · + αn−1(G), 1], and similarly for I ′1, . . . , I
′
n′ . For two

measure-preserving maps φ, ψ : [0, 1] → [0, 1], we then rewrite the norm on the right hand side

of (8.2) in the explicit form

‖Uφ −Wψ‖¤ = sup
S,T⊂[0,1]

∣∣∣
∫

S×T

(
WG(φ(x), φ(y))−WG′(ψ(x), ψ(y))

)
dx dy

∣∣∣.
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The supremum on the right hand side is attained when S and T are unions of sets of the form

Viu = φ−1(Ii) ∩ ψ−1(I ′u), i ∈ V (G), u ∈ V (G′). But for these sets, the integral on the right is a

sum of terms of the form
∫

Viu×Vjv

(
WG(φ(x), φ(y))−WG′(ψ(x), ψ(y))

)
dx dy = βij(G)βuv(G

′)XiuXjv

where Xiu is the Lebesgue measure of the set Viu. As a consequence, we have that

‖Uφ −Wψ‖¤ = d¤(G[X], G′[X>]).

Using the fact that φ and ψ are measure-preserving, it is not hard to check that X is a coupling

of the distributions (αi(G))i∈V (G) and (αu(G
′))u∈V (G′), implying that

‖Uφ −Wψ‖¤ = d¤(G[X], G′[X>]) ≥ δ¤(U,W ). (8.4)

To show (8.3), let us consider a coupling X ∈ X (G,G′). First construct a special measure-

preserving bijection ψ : [0, 1] → [0, 1] such that ‖WG −Wψ
G′‖¤ = d¤(G[X], G′[X>]). As shown

above, this is equivalent to finding a measure-preserving map such that Xiu is the Lebesgue

measure of Ii ∩ ψ−1(I ′u). But the construction of such a map is straightforward. Indeed, for

iu ∈ V (G) × V (G′), let bi = α1(G) + · · · + αi−1(G), b′u = α1(G
′) + . . . , αu−1(G

′), ciu = bi +

Xi1 + Xi2 + · · ·+ Xi(u−1) and c′iu = b′i + X1u + X2u + · · ·+ Xnu. Let Iiu and I ′iu be the intervals

Iiu = (ciu, ciu + Xiu] and I ′iu = (c′iu, c
′
iu + Xiu]. We then choose ψ to be the translation that maps

Iiu into I ′iu. Then ψ−1(I ′u) =
⋃

i ψ
−1(I ′iu) =

⋃
i Iiu and Ii ∩ ψ−1(I ′u) = Iiu, implying in particular

that this set has measure Xiu, as required.

So we have two partitions {I1, . . . , Im} and {J1, . . . , Jm} of [0, 1] into intervals, and ψ maps

each Ik onto a Jf(k) by translation. Furthermore, we also know that both U and W are constant

on each rectangle Ik × Il as well as on Jk × Jl.

Let N be a large integer, and consider the partition {L1, . . . , LN} of [0, 1] into intervals of

size 1/N . We define a permutation π of [N ]. For every k ≤ m, the intervals Ik and Jf(k) have

the same length, and so the numbers of intervals Li contained in them can differ by at most

one. Let π match the indices i such that Li ⊆ Ik with the indices j such that Lj ⊆ Jf(k), with

at most one exception. This way π(i) is defined for at least N − 3m integers i ∈ [N ]. Call the

corresponding intervals Ki well-matched. We extend π to a permutation of [N ] arbitrarily.

We see that Wψ(x, y) = W π̃(x, y) whenever both x and y belong to well-matched intervals.

Hence

‖Wψ −W π̃‖¤ ≤ ‖Wψ −W π̃‖1 ≤ 6m

N
‖W‖∞,

and so

‖U −W π̃‖¤ ≤ ‖U −Wψ‖¤ + ‖Wψ −W π̃‖¤ ≤ δ¤(U,W ) +
6m

N
‖W‖∞.

This implies (8.3). ¤
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8.4 Proof of Lemma 4.4

Starting with the proof of (4.11), let us assume that k2/n ≤ ε/(11 log 2) (otherwise the bound

(4.11) is trivial). Using the bound (4.9), we then estimate the probability on the left hand side

of (4.11) by

P
(∣∣∣t(F,H(n,W ))− E[t(F,H(n,W ))]

∣∣∣ >
(
ε− 2k2

n

))

≤ P
(∣∣∣t(F,H(n, W ))− E[t(F,H(n,W ))]

∣∣∣ > ε
(
1− 1

11 log 2

))
.

Applying Lemma 4.1 (i) and the observation that t(F,W [{z1, . . . , zn}]) changes by at most 2k/n

if we change one of the variables zi we immediately obtain the bound (4.11).

Expressing G(n,W ) as a function of the random variables Z1, . . . , Zn introduced above, and

observing that t(F,G(n,W )) changes by at most k/n if we change one of the variables Zi, the

proof of (4.12) is virtually identical to that of (4.11). We leave the details to the reader. ¤

8.5 Detail Concerning Example 5.1

Let H = Knm,nm and G = Kn,n be the graphs considered in Example 5.1. Here we show that

for every n, there exists an m such that with large probability, ‖WH −WG′‖¤ ≥ 1/10 for every

relabeling G′ of G.

Indeed, let S ′ and T ′ be the color classes of G′, and let I and J be the subsets of [0, 1]

corresponding to S ′ and T ′. Let X and Y be the subsets of V (H) that correspond to I and J in

WH . Then

‖WH −WG′‖¤ ≥
∫

I×J

(WG′ −WH) =
eG′(S, T )

n2
− eH(X,Y )

n2m2
=

1

4
− eH(X,Y )

n2m2
.

Now because of the random labeling of V (H), the expectation of the second term is 1/8, and

the value of the second term will be arbitrarily highly concentrated around this value if m is

sufficiently large. There are only n! possible relabelings of G, so with large probability the second

term will be less than 3/20 for all of these, which proves our claim.

8.6 Proof of (7.1), (7.2) and (7.3)

The upper bound in each of the three equations is trivial, so we only need to prove the lower

bounds. To prove these, we introduce the notation

W (S, T ) =

∫

S×T

W (x1, x2) dx1dx2

for the value of the “cut between S and T”.
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Proof of the lower bound in (7.1): This follows easily by inclusion-exclusion applied to

W (S ∪ T, S ∪ T ).

Proof of the lower bound in (7.2): To this end, we first approximate W by a weighted

finite graph without loops. Next, we discard each point in S \ T and T \ S with probability 1/2,

and then we add each point in S∩T uniformly at random either to the remaining points in S \T ,

or to the remaining points in T \ S. In expectation, the weighted number of edges between the

resulting, disjoint sets is off by a factor of 1/4, giving the first bound in (7.2).

Proof of the lower bound in (7.3): To prove this bound, we consider two disjoint sets

S and T and their complement R = [0, 1] \ (S ∪ T ). We then express each of the three cuts

W (S, T ∪ R), W (T, S ∪ R), and W (S ∪ T, R), in terms of W (S, T ), W (S, R) and W (T, R).

Combining these three relations leads to the desired bound in (7.3).
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