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ABSTRACT

In a recent paper we developed a method which allows to rigorously control the finite-

size behavior in long cylinders near first-order phase transitions at low temperature. Here

we apply this method to asymmetric transitions with two competing phases, and to the

q-state Potts model as a typical model of a temperature driven transition, where q low

temperature phases compete with one high temperature phase. We obtain the finite-size

scaling of the first N eigenvalues (where N is the number of competing phases) of the

transfer matrix in a periodic box of volume L× . . .× L× t, and, as a corollary the finite-

size scaling of the shape of the order parameter in a hypercubic box (t = L), the infinite

cylinder (t = ∞), and the crossover regime from hypercubic to cylindrical scaling. For

the two-phase case (N = 2) we find that the crossover length ξL is given by O(Lw)eβσL
ν

,

where β is the inverse temperature, σ is the surface tension and w = 1/2 if ν + 1 = 2

while w = 0 if ν + 1 > 2. For the standard Ising model we also consider free boundary

conditions, showing that ξL = exp(βσLν + O(Lν−1)) for any dimension ν + 1 ≥ 2. For

ν + 1 = 2 we finally discuss a class of boundary conditions which interpolate between free

(corresponding to the interpolating parameter g = 0) and periodic boundary conditions

(corresponding to g = 1), finding that ξL = O(Lw)eβσL
ν

with w = 0 for g = 0 and w = 1/2

for 0 < g ≤ 1.
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1. Introduction

In recent years, finite-size effects at first-order transitions have been widely studied [1].

For a wide class of models the finite-size scaling in a cubic box V with periodic boundary

conditions can be derived from the ansatz

Zper(V, µ) ∼=
N∑
m=1

e−βfm(µ)|V | (1.1)

for the partition function. Here |V | is the volume of the cubic box V , µ is the driving

parameter of the transition, N is the number of stable phases at the transition point, β

is the inverse temperature and fm(µ) is some sort of metastable free energy of the phase

m. It is equal to the free energy f(µ) if m is stable, and strictly larger than f(µ) if m is

unstable.

If the model in consideration allows for a contour representation in which the config-

urations of the system may be described in terms of “ground state regions” separated by

energetically unfavorable “contours 1,” a formula of the form (1.1) can actually be proven,

together with a bound O(|V |e−bdiamV ) for the error term [2,3]. Here diamV is the diameter

of the cube, and b > 0 is a constant. Actually, these results remain true in the the more

general case where V is a ν + 1 dimensional cylinder with L× · · · ×L× t points, provided

|V |e−min(L,t) ≤ 1 . (1.2)

For long cylinders, however, the effects neglected in the approximation (1.1) play

an important role. Using a linear scaling ansatz to scale the cylinder down to a one-

dimensional interval of length t/L, Blöte and Nightingale [4] have developed a heuristic

theory of finite-size scaling in long cylinders. A little bit later, Privman and Fisher [5]

developed an alternative theory, starting from the observation that the periodic partition

function may be written as

Zper(V, µ) =
∞∑
i=1

λi(L)t (1.3)

1 For the ferromagnetic Ising model, the ground states regions are the regions where

the spin is constant, while the contours are just the usual Peierls contours.
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if the model in consideration has a positive transfer matrix (as many models of statistical

mechanics do). Here λ1(L) ≥ λ2(L) ≥ · · · are the eigenvalues of the transfer matrix.

They then argue, for N = 2 and models with a symmetry relating µ to −µ, that only

λ1 and λ2 are important for the asymptotic behavior of Zper(V, µ), and that λ1 and λ2

may be calculated by diagonalizing a certain 2 × 2 matrix. As a consequence, they were

able to calculate the finite-size scaling of the magnetization from cubic boxes up to infinite

cylinders, finding a crossover regime when t diverges with L like

ξL = D(L) exp(βσLν)

where σ is the surface tension between the two phases and D(L) is a “slowly varying

function of L.” Privman and Fisher predicted D(L) ∼ L1/2 for ν = 1 and Brézin and

Zinn-Justin [6] predicted D(L) ∼ L(2−ν)/2 for ν ≥ 1, see also [7]. As we will see, this

prediction is incorrect for ν > 2 and low temperature. (As pointed out in [8], the exponent

may be different above the roughening transition.)

Here we continue the rigorous analysis in [9] of finite-size scaling in long cylinders at

low temperature. Among other results we will obtain a rigorous derivation of the results

of Privman and Fisher, a formula for the slowly varying function D(L), the generalization

of these results to a wide class of two-phase systems without any symmetry assumptions,

and — as an example of a temperature driven transition — the finite-size scaling for the

q-state Potts model.

In order to describe the ideas and results of [9] let us consider a perturbed Ising model

with Hamiltonian

βH = β
∑
x,y

|x−y|=1

|σy − σy|+ β
∑
X

JX
∏
x∈X

σx − µ
∑
x

σx , (1.4)

where JX = 0 if diam X > r0 (r0 <∞ is the range of the interaction),
∑
X3x |JX | is small

and β is large. Note that µ is β times the usual magnetic field. This model is a typical

example of a model describing an asymmetric first order transition between two different

low temperature phases and allows for a Peierls contour expansion with exponentially

suppressed contours.

Neglecting for the moment contours which wind around the cylinder in the time di-

rection, we now distinguish two different kinds of contours: interfaces which separate two
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different phases in the lower and upper part of an infinite cylinder, and ordinary contours

which do not. Resumming the ordinary contours we get an effective weight, κ(Y ), for the

interfaces, a “renormalized” ground state energy, f±(L), for the regions between interfaces,

and an interaction between interfaces. Using iterative cluster expansions to control this

interaction (see Section 4 of [9]) and a variant of Dobrushin’s surface expansion [10] to

control the deviation from flat interfaces (Section 5 of [9]), we obtain a system of non-

interacting flat interfaces with weight O(L−1/2)e−βσL
ν

for ν = 1 and (1+O(e−bL))e−βσL
ν

for ν > 1. Since a system of flat interfaces is equivalent to a one-dimensional system we

obtain Theorem A (below) for the perturbed Ising model (1.4).

In fact, Theorem A is proven in a much wider context, see Section 2 and 5 of [9] for

a description of the class of models to which it applies. Essentially we need a contour

or cluster representation with a Peierls condition, translation invariance, and invariance

under reflection in the t-direction, together with several assumptions on the structure of

interfaces, essentially locality and suppression of defects relative to a flat interface. The

notation is as follows: Zper(V, µ) is the periodic partition function in volume V , |V | = Lνt,

µ is an (N − 1)-vector of parameters driving transitions amongst N states, µ∗ is the

coexistence point, f = f(µ) is the free energy density, σmn is the surface tension between

the phases m and n, and τ is the parameter in the Peierls condition (τ = O(β) for the

perturbed Ising model (1.4)). It is assumed throughout that L, t are positive integers.

Theorem A. There are C4 functions fm(µ) ≥ f(µ), m = 1, · · · , N , agreeing with f(µ) if

and only if the corresponding phase is stable, such that the following statements are true

provided τ is sufficiently large and |µ− µ∗|Lν ≤ 1.

(i) There exists an N × N symmetric matrix R such that for all t ≥ ν logL and for

0 ≤ k ≤ 4, ∣∣∣∣ dkdµk (Zper(V, µ)− TrRt)
∣∣∣∣ ≤ e−βf |V |e−(τ−O(1))t. (1.5)

(ii)
∣∣∣∣ dkdµk (L−ν logRmm + βfm(µ))

∣∣∣∣ ≤ e−(τ−O(1))L (1.6)

(iii)
∣∣∣∣ dkdµk Rmn

∣∣∣∣ ≤ e−(βf+τ−O(1))Lν if n 6= m (1.7)
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(iv) Let N = 2. Then there are constants 0 < b1 < 1 and C+− > 0 such that the off-

diagonal matrix elements R+− = R−+ of R are

R+− = e−βf(µ)Lν

C+− L
−1/2e−βσL(1 +O(L−1)) , ν = 1, L� 1

e−βσL
ν

(1 +O(e−b1τL)) , ν ≥ 2 ,
(1.8)

provided |µ− µ∗| ≤ e−τL/2.

This theorem reduces the determination of the asymptotics of Zper(V, µ) to a calcula-

tion of an N×N matrix R. If the original model has a positive transfer matrix T , it implies

that the first N eigenvalues of T are just the eigenvalues of R, and that λi(L) ≤ e−O(τ)λ1

for the remaining ones.

In the present note, we use the results of [9], in particular Theorem A above, to

derive the explicit scaling form for the magnetization, Mper(V, µ), and the internal energy,

Eper(V, β), respectively, of models like the perturbed Ising model (1.4) or the q-state Potts

model (at low temperatures and large q, respectively). For the perturbed Ising model

and more generally for any two-phase model satisfying the assumptions described before

Theorem A, our main results are summarized in the following Theorem B. We need the

infinite volume magnetizations of the two phases, which we write as

M0±∆M ≡ −d(βf)
dµ

(µ∗±). (1.9)

Theorem B. Let N = 2, let τ be sufficiently large, and let µ∗(L) = µ∗ + e−(τ−O(1))L be

the point for which the diagonal matrix elements R++ and R−− of the matrix R are equal.

There exists a ξL satisfying

ξL =


1

2C+−
L1/2eβσL(1 +O(L−1)) , ν = 1, L� 1

1
2e
βσLν (1 +O(e−b1τL)) , ν ≥ 2 ,

(1.10)

such that in terms of scaling variables

yB = tLν(µ− µ∗(L))∆M (1.11)

yC = ξLL
ν(µ− µ∗(L))∆M (1.12)
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and the scaling function

Y (yB , yC) =
2yC√

1 + 4y2
C

tanh
[
yB
2yC

√
1 + 4y2

C

]
, (1.13)

the magnetization obeys the following bound:

Mper(V, µ) = M0 + ∆M Y (yB , yC) + e−O(τ)L + e−O(τ)t +O(µ− µ∗), (1.14)

for any t, L, µ which fulfills the conditions Lνe−t ≤ 1 and |µ− µ∗| ≤ O(1). Here C+− is

the constant from Theorem A.

Theorem B is the announced generalization of Privman and Fisher’s results to asym-

metric two-phase systems. Note that the formula (1.10) for ξL (which is the inverse of

the smallest splitting of the eigenvalues of logR in (1.5) as µ varies near µ∗) agrees with

their prediction for ν = 1, and corrects the prediction of Brézin and Zinn-Justin for ν > 2.

We emphasize that (1.10) is a low temperature result and that ξL may behave differently

above the roughening transition in ν + 1 = 3. For ν + 1 > 3, however, it is not expected

that there is a roughening transition. Nevertheless, numerical simulations of the four-

dimensional Ising model near Tc [11,12] seem to support the continuum calculations of [7],

who predicts ξL = C(β)L−1/2eβσL
ν

with C(β) given explicitely in terms of the renormal-

ized mass and coupling constant. It is an interesting open problem to explain the transition

from the apparent continuum behaviour near Tc to the low temperature behaviour proven

in this paper.

While (1.14) holds for all t, L, µ within the prescribed range, it is natural to consider

a limit t, L, |µ− µ∗|−1 →∞ fixing yB , yC . In this limit t ∼ ξL, the crossover length scale,

(µ− µ∗(L)) ∼ 1/(LνξL), all error terms in (1.14) are exponentially small, and

Mper(V, µ)→M0 + ∆M Y (yB , yC) ,

If one considers, on the other hand, a limit where yB is kept fixed while yC →∞,

Mper(V, µ)→M0 + ∆M tanh yB ,
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which is the usual scaling form in the block limit. Considering finally the cylinder limit,

where t, L, |µ− µ∗|−1 →∞ in such a way that yC is kept fixed while yB →∞,

Mper(V, µ)→M0 + ∆M
2yC√

1 + 4y2
C

,

which is the typical form for a one-dimensional system.

We emphasize that the width of the transition in the crossover and in the cylinder

regime is of the order µ−µ∗ = O(1/(LνξL)), which is (at least for ν+1 ≥ 3) much smaller

than the shift µ∗(L) − µ∗ = e−O(τ)L allowed by the bound (1.6) 2. Note, however, that

µ∗(L) = µ∗ for a model like the ordinary Ising model, where the two phases are related by

a symmetry µ− µ∗ → µ∗ − µ.

We finally discuss the q-state Potts model, which is a spin model with spin variable

σx ∈ Zq := {1, e2πi/q, . . . , e2πi(q−1)/q} and Hamiltonian

H = − 1
2

∑
x,y

|x−y|=1

δ(σy, σy) , (1.15)

where δ is the Kronecker delta (for a review of the Potts model, see e.g. [13]). For q

large enough (and ν + 1 ≥ 2) this model undergoes a first-order phase transition as the

inverse temperature, β = 1/(kT ), is varied. At the transition point, βt, the number of

stable phases goes from 1 below βt to q above βt. Actually, for β = βt, the q ordered low

temperature phases and the disordered high temperature phase coexist and the internal

energy E(β) jumps from Ed = E(βt − 0) to Eo = E(βt + 0) ([14,15]).

The next theorem summarizes our main results concerning the finite-size scaling of

this model. The constant σod appearing in (1.17) below is the surface tension between the

disordered and an ordered phase.

Theorem C. Let q and L be sufficiently large. Then there exists a finite volume transition

point β∗(L) and a length scale ξL satisfying

|βt − β∗(L)| ≤ q−O(1)L , (1.16)

ξL =

C(q)L1/2(1 +O(L−1))eβσodL , ν = 1 ,

q−1/2eβσodL
ν

(1 +O(q−O(1)L)) , ν ≥ 2 ,
(1.17)

2 We expect that the actual shift is µ∗(L)− µ∗ = O(e−L/max(ξ+,ξ−)), where ξ± are the

infinite volume correlation lengths of the two phases.
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for some C(q) such that in terms of scaling variables

yB = tLν(β − β∗(L))
Ed − Eo

2
(1.18)

yC = ξLL
ν(β − β∗(L))

Ed − Eo
2

(1.19)

and the scaling function

Y (yB , yC) =
(q − 1)eyB + (1 + y−2

C )−1/22 sinh
(
yB

√
1 + y−2

C

)
(q − 1)eyB + 2 cosh

(
yB

√
1 + y−2

C

) (1.20)

the internal energy obeys the following bound:

Eper(V, β) =
Eo + Ed

2
+
Eo − Ed

2
Y (yB , yC) + q−O(1)L + q−O(1)t

+O(q|β − βt|) +O(ξ−(1−ε)
L ) min{1 + |yC |, yB/yC} , (1.21)

for any t, L, β which fulfill the conditions Lνe−t ≤ 1 and |β − β∗| ≤ O(1). Here ε = ε(q)
is a small positive constant which goes to zero as q →∞.

Note that the asymptotics (1.21) simplifies in the block limit where t, L, and (βt −
β)−1 →∞ in such a way that yC →∞ while yB is kept fixed; in this case

Eper(V, β)→ Eo + Ed
2

+
Eo − Ed

2
tanh(yB + 1

2 log q)

(in accordance with the results of [3]). On the other hand, in the cylinder limit where t,
L, and (βt − β)−1 →∞ in such a way that yB →∞ while yC is kept fixed, we have that

Eper(V, β)→ Eo + Ed
2

+
Eo − Ed

2
yC√

1 + y2
C

.

Outline. We derive the finite-size scaling for the two-phase system in Section 2, where
we also state a more precise version of Theorem B. Among other things we eliminate
the error term exp(−O(τ)L) by using L-dependent quantities in defining the block and
cylinder scaling variables yB , yC . In Section 3 we discuss the finite-size scaling of the
internal energy and the specific heat for the Potts model, and in Section 4 we discuss
free boundary conditions (and more generally a class of boundary conditions interpolating
between free and periodic), restricting ourselves to a situation where two phases related by
a symmetry are coexisting to avoid technical complications. Some of the more technical
aspects of Section 4 are dealt with in an appendix.
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2. Asymmetric First-Order Phase Transitions with Two Competing Phases

In this section we consider a large class of models describing this coexistence of two

infinite volume phases, m = ±1, at the value µ = µ∗ of the driving field µ. We need a

contour or cluster representation with a Peierls condition, translation invariance, and in-

variance under reflection in the t-direction (see Section 2 of [9] for the precise assumptions),

together with several assumptions on the structure of interfaces, essentially locality and

suppression of defects relative to a flat interface (see Section 5, Assumption 5.1 through

5.5, of [9]). As a typical example, the reader should keep in mind the perturbed Ising

model (1.4) at low temperatures. We will prove Theorem B stated in the introduction,

and its more precise version Theorem 2.1 below.

Recall that we are interested in the behavior of the partition function Zper (V, µ) and

the magnetization

Mper(V, µ) =
1
tLν

d

dµ
logZper (V, µ) , (2.1)

in a cylinder V = A×T , where A is the ν-dimensional torus of side length L, and T is the

one dimensional torus of length |T | = t. Due to Theorem A,

∣∣∣∣∣Zper (V, µ)−
2∑
i=1

λi(L)t
∣∣∣∣∣ ≤ e−βf(µ)|V |e−(τ−O(1))t; , (2.2)∣∣∣∣∣ dkdµk

[
Mper(V, µ)−

∑
i

Mi(L, µ)Pi(V, µ)

]∣∣∣∣∣ ≤ e−(τ−O(1))t , (2.3)

if k ≤ 3, t ≥ ν logL and |µ−µ∗|Lν ≤ 1. Here λi(L) are the eigenvalues of the 2×2 matrix

R described in Theorem A, and

Mi(L, µ) ≡ 1
Lν

d

dµ
log λi(L) , (2.4)

Pi(V, µ) ≡ λi(L)t

∑
j

λj(L)t

−1

. (2.5)

As a consequence, the asymptotic behavior of Zper (V, µ) and Mper(V, µ) is determined

once the asymptotic behavior of the eigenvalues λ1,2(L) is given.
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We start with a heuristic derivation of this behavior in the region |µ−µ∗|Lν ≤ 1. Let

us neglect the L-dependence in the diagonal elements of R, so that (in the approximation

given by (1.6))

R =
(

exp(−Lνβf+(µ)) R+−(µ)
R+−(µ) exp(−Lνβf−(µ))

)
.

Now we pull out an overall factor exp(−Lνβ(f+(µ) + f−(µ))/2) from this matrix, leaving

R̃ =
(

exp(−Lνβ(f+(µ)− f−(µ))/2) R̃+−
R̃+− exp(Lνβ(f+(µ)− f−(µ))/2)

)
.

Ignoring the µ-dependence of R̃+− we have R̃+− = R̃+−(µ∗). Finally, we linearize f±(µ)

about µ∗, so that

R̃ =
(

ex R̃+−
R̃+− e−x

)

with x = ∆M(µ − µ∗)Lν . The eigenvalues of this matrix are coshx ±
√

sinh2 x+ R̃2
+−

which for small x and R̃+− becomes

1±
√
x2 + R̃2

+− = 1± 1
2
ξ−1
L

√
1 + 4y2

C ,

where ξL = (2R̃+−(µ∗))−1 and yC = ξLL
ν(µ− µ∗(L)) ∆M is the scaling variable defined

in (1.12). As a consequence,

λ1,2(L) = exp
(
−1

2
Lνβ(f+ + f−)

)[
1± 1

2
ξ−1
L

√
1 + 4y2

C

]
.

To see the form of the magnetization, differentiate the eigenvalues with respect to µ, as

required by (2.4):

M1,2(L, µ) =
1
Lν

d

dµ
log λ1,2

∼= M0 ±
1
2
ξ−1
L

4yCy′C√
1 + 4y2

C

= M0 ±∆M
2yC√

1 + 4y2
C

.

(In the second equality, we have neglected second and higher order terms in the expansion

of the log.) The relative weightings P1,2 given by (2.5) are determined by

λt1,2 ∼ exp
(
±(t/2ξL)

√
1 + 4y2

C

)
= exp

(
± yB

2yC

√
1 + 4y2

C

)
,
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so that

Mper = M1P1 +M2P2 = M0 + ∆M
2yC√

1 + 4y2
C

tanh
[
yB
2yC

√
1 + 4y2

C

]
,

as in Theorem B.

In order to obtain the optimal asymptotics for Theorem 2.1 below, we now introduce

scaling variables yB and yC where the constant ∆M is replaced by an L-dependent constant

∆̃M . Our definitions are based on the exact matrix R of Theorem A. We write

R =
(

exp(−Lνβf̃+) R+−
R+− exp(−Lνβf̃−)

)
, (2.6)

and recall that ∣∣∣∣ dkdµk (βf±(µ)− βf̃±(L, µ)
)∣∣∣∣ ≤ e−(τ−O(1))L , (2.7)

provided k ≤ 4 and |µ − µ∗|Lν ≤ 1. We define µ∗(L) by the equation f̃+(µ∗(L)) =

f̃−(µ∗(L)), and introduce the magnetizations of the two phases in Rν+1, and the corre-

sponding L-dependent quantities

M± = −d(βf±)
dµ

(µ∗) , M̃± = M̃±(L) = −d(βf̃±)
dµ

(µ∗(L)) . (2.8)

We also define

M0 = 1
2 (M+ +M−) ,

M̃0 = 1
2 (M̃+ + M̃−) ,

∆M = 1
2 (M+ −M−) ,

∆̃M = 1
2 (M̃+ − M̃−) .

(2.9)

Note that the assumption (2.7) formulated in [9] implies that ∆M , ∆̃M are nonzero.

Furthermore, Theorem A, (ii) implies that

|µ∗(L)− µ∗| ≤ e−(τ−O(1))L , (2.10)

|∆̃M −∆M | ≤ e−(τ−O(1))L , (2.11)

|M̃0 −M0| ≤ e−(τ−O(1))L . (2.12)
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Next, we introduce a characteristic length scale

ξL = 1
2R+−(L, µ∗(L))−1 exp

(
− 1

2L
νβ(f̃+(µ∗(L)) + f̃−(µ∗(L)))

)
,

which governs transitions between phases along the t-axis at µ∗(L). Finally, we introduce

block and cylinder scaling parameters:

yB = tLν(µ− µ∗(L))∆̃M , (2.13)

yC = ξLL
ν(µ− µ∗(L))∆̃M . (2.14)

Remark: If the model in consideration has a positive transfer matrix T with eigenvalues

λ1 > λ2 ≥ · · ·, the correlation length ξ‖ in time direction is just

ξ‖ = [log(λ1/λ2)]−1 .

Due to Theorem A, λ1 and λ2 may be calculated from the matrix R, and

ξ‖(µ = µ∗(L)) =
[
log
(

1 + (2ξL)−1

1− (2ξL)−1

)]−1

= ξL(1 +O(ξ−2
L ))

by the above definition of ξL.

Theorem 2.1. Consider a two-phase system satisfying the assumptions formulated in

Section 2 and 5 of [9], and suppose τ is sufficiently large. Then Zper(V, µ), the partition

function in periodic cylindrical volume V = Lνt, obeys the asymptotics (2.2) with

λ1,2(L) = exp
(

1
2
Lνβ(f̃+ + f̃−)

)
(2.15)

×
[
1 +O(|µ− µ∗(L)|2L2ν)± 1

2
ξ−1
L

√
1 + 4y2

C (1 +O(|µ− µ∗(L)|Lν))
]
,

provided |µ− µ∗|Lν ≤ 1 and t ≥ ν logL. Under the same conditions the magnetization is

described by

Mper(V, µ) = M̃0 + ∆̃M Y (yB , yC) +O(ξ−1
L ) +O(e−(τ−O(1))t) +O(µ− µ∗(L)) . (2.16)
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Here yB and yC are block and cylinder scaling variables defined in (2.13) and (2.14) and

Y (·, ·) is the scaling function

Y (yB , yC) =
2yC√

1 + 4y2
C

tanh
[
yB
2yC

√
1 + 4y2

C

]
. (2.17)

Finally,

ξL =


1

2C+−
L1/2eβσL(1 +O(L−1)) , ν = 1, L� 1

1
2e
βσLν (1 +O(e−bτL)) , ν ≥ 2 ,

(2.18)

where C+− is the constant introduced in Theorem A and σ is the string tension at the

coexistence point µ∗.

It is interesting to consider three types of scaling limits t, L, |µ − µ∗|−1 → ∞: the

cylinder limit where yC is fixed while yB → ∞, so that t/ξL = yB/yC → ∞, the block

limit where yB is fixed and yC → ∞, so that t/ξL → 0, and the crossover limit where yB
and yC are fixed in (0,∞), so that t ∼ ξL. Note that in any of these cases

|µ− µ∗(L)|Lν = |yB |/(t∆̃M) = |yC |/(ξL∆̃M)→ 0 , (2.19)

since both t and ξL tend to infinity.

Cylinder geometry: yC fixed, yB →∞. In this case we have t >> ξL ∼ LweβσL
ν

,

Y (yB , yC) =
2yC√

1 + 4y2
C

(1 +O(e−2yB )) .

Since (µ− µ∗(L)) = O(ξ−1
L ) in this geometry, we get

Mper(V, µ) = M̃0 +O(ξ−1
L ) + ∆̃M

2yC√
1 + 4y2

C

(1 +O(e−2yB )) . (2.20)

Block geometry: yB fixed, yC →∞. In this case t/ξL → 0,

Y (yB , yC) = (tanh yB)(1 +O(y−2
C )) ,
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and

Mper(V, µ) = M̃0 +O(ξ−1
L ) +O(e−(τ−O(1))t) + ∆̃M(1 +O(y−2

C )) tanh yB +O(µ− µ∗(L)) .

(2.21)

Block geometry still allows diverging t/L. If instead we consider fixed aspect ratio, then

(2.21) simplifies to

Mper(V, µ) = M0 + e−O(τL) + ∆M tanh yB +O(µ− µ∗) . (2.22)

In this case there is no gain in using quantities defined at µ∗(L) and we recover the

asymptotics of [2].

Crossover geometry: yB , yC fixed. Recalling that |µ − µ∗(L)|Lν ∼ yCξ
−1
L = yBt

−1 we

can write

Mper(V, µ) = M̃0 +O((1 + yC)ξ−1
L ) + ∆̃M Y (yB , yC) . (2.23)

Before proving Theorem 2.1, we note that it is actually possible to eliminate the error

term O(µ− µ∗(L)) in (2.16) if one introduces µ-dependent quantities

M̃0(L, µ) = − d

dµ

f̃+(L, µ) + f̃(−L, µ)
2

, (2.24)

∆̃M(L, µ) = − d

dµ

f̃+(L, µ)− f̃(−L, µ)
2

, (2.25)

x = 1
2 (f̃− − f̃+)Lν = ∆̃M(µ− µ∗(L))Lν(1 +O(µ− µ∗(L)) . (2.26)

Then

Mper(V, µ) = M̃0(L, µ)+∆̃M(L, µ) Y

(
yB

√
1 + 4(xξL)2

1 + 4y2
C

, yC

)
+O(ξ−1

L )+O(e−(τ−O(1))t) .

(2.27)

The bound (2.16) is obtained from (2.27) by expanding M̃0(L, µ), ∆̃M(L, µ) and xξL about

µ∗(L) (note that xξL = yC(1 + O(µ− µ∗(L)))). If one went further to second derivatives

in µ, one would obtain the more detailed shape (involving the susceptibility) predicted in

[16]. We will prove the bound (2.27) together with Theorem 2.1.
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Proof of Theorem 2.1. Let us write R as

R = exp
(
− 1

2L
ν(f̃+ + f̃−)

) (
ex R̃
R̃ e−x

)
, (2.28)

where x is defined in (2.26). We have R̃(µ∗(L)) = 1
2ξ
−1
L , and we would like this equality

to hold approximately for µ 6= µ∗(L). This is the content of the following proposition.

Proposition 2.2. If τ is large and |µ− µ∗|Lν ≤ 1, then

R̃(µ) = 1
2ξ
−1
L (1 +O(|µ− µ∗(L)|Lν) +O(|µ− µ∗(L)|2L2νeO(L))) . (2.29)

The last term in (2.29) may be omitted if ν ≥ 2.

The proof is based on the results of Section 5 of [9]. We defer it to the end of this

section.

If we put C = coshx, S = sinhx, then the eigenvalues of R are

λ1,2 = exp
(
− 1

2L
ν(f̃+ + f̃−)

)
(C ±

√
S2 + R̃2) , (2.30)

with the + sign corresponding to the larger eigenvalue λ1, the − sign corresponding to

λ2. Proceeding with the proof of Theorem 2.1, we need to approximate C ±
√
S2 + R̃2 as

1± 1
2ξ
−1
L

√
1 + 4y2

C . We have

C = 1 +O(x2) = 1 +O((µ− µ∗(L))2L2ν) ,

and by (2.26), (2.29) we have

√
S2 + R̃2 =

√
x2

0(1 +O(µ− µ∗(L)) +O(x2
0)) + 1

4ξ
−2
L (1 +O(x0) +O(x2

0)eO(L))

= 1
2ξ
−1
L

√
1 + 4y2

C

(
1 +

O(µ− µ∗(L))y2
C +O(x2

0)y2
C +O(x0) +O(x2

0)eO(L)

1 + 4y2
C

)
= 1

2ξ
−1
L

√
1 + 4y2

C (1 +O(|µ− µ∗(L)|Lν)) , (2.31)
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where x0 = ∆̃M(µ − µ∗(L))Lν = yCξ
−1
L . The last term was estimated using x0e

O(L) =

yCξ
−1
L eO(L) ≤ yC ≤ 1 + 4y2

C . Altogether we find that

1
2 (λ1 + λ2) = exp

(
− 1

2L
ν(f̃+ + f̃−)

)
(1 +O(|µ− µ∗(L)|Lν)2)

λ1 − λ2 = exp
(
− 1

2L
ν(f̃+ + f̃−)

)
ξ−1
L

√
1 + 4y2

C(1 +O(|µ− µ∗(L)|Lν)) .

This proves the first part of Theorem 2.1.

Next we evaluate and approximate

M1,2 = L−ν
d

dµ
log λ1,2 . (2.32)

A calculation shows that

M1,2 = M̃0(L, µ)±

 S√
S2 + R̃2

∆̃M(L, µ) +
R̃L−ν dR̃

dµ(
C ±

√
S2 + R̃2

)√
S2 + R̃2

 . (2.33)

Since we assume |µ − µ∗|Lν ≤ 1, x is bounded. Also R̃ << 1, so the last term can be

bounded by O(1)L−νR̃ dR̃
dµ (S2 + R̃2)−1/2.

Lemma 2.3. If τ is large and |µ− µ∗|Lν ≤ 1, then∣∣∣∣∣ L−νR̃ dR̃

dµ
(S2 + R̃2)−1/2

∣∣∣∣∣ ≤ O(ξ−1
L ) . (2.34)

The proof is deferred to the end of this section.

We expand S(S2 + R̃2)−1/2 as in (2.31) using R̃/S = [1 +O(x0) +O(x2
0)eO(L)]/(2yC):

S√
S2 + R̃2

=
2yC√

1 + 4y2
C

(
1 +

O(x0) +O(x2
0)eO(L)

1 + 4y2
C

)
=

2yC√
1 + 4y2

C

(1 +O(ξ−1
L )) .

This leads to the following result:

Proposition 2.4. If τ is large and |µ− µ∗|Lν ≤ 1, then

M1 +M2

2
= M̃0(L, µ) +O(ξ−1

L ) , (2.35)

M1 −M2

2
= ∆̃M(L, µ)

2yC√
1 + 4y2

C

+O(ξ−1
L ) . (2.36)
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We need to approximate the relative weights

P1,2 = λt1,2(λt1 + λt2)−1 , (2.37)

which determine how M1,2 are represented in the true magnetization Mper. We have

λt1,2 = (λ1λ2)t/2
(
λ1

λ2

)±t/2
,

P1 − P2 = tanh
(
t

2
log

λ1

λ2

)
,

and if we define x̂ by the equation

tanh x̂ =
√

tanh2 x+ (R̃/C)2 , (2.38)

then (2.30) yields

log
λ1

λ2
= log

1 + tanh x̂
1− tanh x̂

= 2x̂ .

If we express x̂2 in terms of x and R̃ and perturb in (R̃/C)2, we find

x̂2 = x2 + (R̃/C)2(1 +O(x2) +O(R̃2))

x̂ =
√
x2 + R̃2

(
1 + (O(x2) +O(R̃2))

R̃2

x2 + R̃2

)

=
√
x2 + R̃2 (1 +O(R̃2)) .

Then Proposition 2.2 implies that

x̂ =
√
x2 + (2ξL)−2

(
1 +

[
O(x) +O

(
x2eO(L)

)] (2ξL)−2

x2 + (2ξL)−2

)
=
√
x2 + (2ξL)−2 (1 +O(ξ−1

L )) .

Since t/ξL = yB/yC , we obtain the following
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Proposition 2.5. If τ is large and |µ− µ∗|Lν ≤ 1, then

log(λ1/λ2) = 2
√
x2 + (2ξL)−2 (1 +O(ξ−1

L )) , (2.39)

and

P1 − P2 = tanh
[
yB
2yC

√
1 + 4(xξL)2 (1 +O(ξ−1

L ))
]
. (2.40)

Using (2.26), which implies that xξL = yC(1 +O(µ− µ∗(L))), we have

P1 − P2 = tanh
[
yB
2yC

√
1 + 4y2

C (1 +O(µ− µ∗(L)) +O(ξ−1
L ))

]
.

Of course P1 +P2 = 1. Finally, we put these results together to compute, using the bound

(2.3):

Mper(V, µ) = M1P1 +M2P2 +O(e−(τ−O(1))t)

=
M1 +M2

2
+
M1 −M2

2
(P1 − P2) +O(e−(τ−O(1))t)

= M̃0 +O(ξ−1
L ) +O(e−(τ−O(1))t) +O(µ− µ∗(L))

+ ∆̃M
2yC√

1 + 4y2
C

tanh
[
yB
2yC

√
1 + 4y2

C

]
. (2.41)

Here we see the scaling function

Y (yB , yC) =
2yC√

1 + 4y2
C

tanh
[
yB
2yC

√
1 + 4y2

C

]

appear with various corrections to this form displayed. Since |µ∗(L)− µ∗| ≤ e−(τ−O(1))L,

the bound (2.18) follows from Theorem A and the definition of ξL. This completes the

proof of Theorem 2.1. The bound (2.27) follows from (2.3), Proposition 2.4 and Proposition

2.5.

Proof of Proposition 2.2. The proof is based on the bounds

∣∣∣∣ ddµ R+−

∣∣∣∣ ≤
O(L)|R+−|

(
1 + 1

2 |f+ − f−|eO(L)
)
, ν = 1

O(Lν)|R+−| , ν ≥ 2 ,
(2.42)

∣∣∣∣ dkdµk R+−

∣∣∣∣ ≤ eO(L)|R+−| (2.43)
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proven in [9] under the assumption that τ is large, k ≤ 4 and |µ− µ∗|Lν ≤ O(1).

For ν ≥ 2 we now replace R+− with R̃(µ) in (2.42); the derivatives of e
1
2 (f̃++f̃−)Lν

merely contribute to the O(Lν). Integrating the bound from µ∗(L) to µ we obtain

R̃(µ) = R̃(µ∗(L))(1 +O(µ− µ∗(L))Lν) (2.44)

which is just (2.29) without the last term.

In order to prove (2.29) for ν = 1 we note that the results of Section 5 of [9], in

particular Proposition 5.2 (ii) and Proposition 5.3, (5.6b), imply that

|R+−(µ)| ≤ |R+−(µ∗(L))|eO(L) (2.45)

provided |µ − µ∗|L ≤ O(1). Combined with (2.43) (for k = 2) and rephrased in terms of

R̃, we get ∣∣∣∣ d2

dµ2
R̃(µ)

∣∣∣∣ ≤ ∣∣∣R̃(µ∗(L))
∣∣∣ eO(1)L . (2.46)

On the other hand, ∣∣∣∣ ddµ R̃(µ∗(L))
∣∣∣∣ ≤ O(L)(R̃(µ∗(L))) , (2.47)

due to (2.42) and the fact that |f+(µ∗(L)) − f−(µ∗(L))| ≤ e−(τ−O(1))L. Then, applying

the second order Taylor’s formula for R̃(µ) in powers of µ − µ∗(L), we obtain (2.29) for

ν = 1.

Proof of Lemma 2.3. The best bound on dR̃/dµ is obtained from (2.42) and (2.44) if

ν > 1 and (2.46), (2.47) if ν = 1. We obtain

L−ν

∣∣∣∣∣dR̃dµ (µ)

∣∣∣∣∣ ≤ O(1)ξ−1
L (1 + |µ− µ∗(L)|LνeO(L)) .

Hence for |µ− µ∗(L)| ≤ e−τL/2 the bound (2.34) holds. For larger values S cannot be too

small, and so by using (2.29) also we obtain

∣∣∣∣∣L−νR̃dR̃dµ (S2 + R̃2)−1/2

∣∣∣∣∣ ≤ e(τ/2+O(1))Lξ−2
L ≤ ξ−1

L ,
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which completes the proof.

In order to prove Theorem B, which covers the whole region |µ−µ∗| ≤ O(1), we recall

the definition of high and low energy phases introduced in [9]. If |µ− µ∗| is so small that

β|f+(µ)− f−(µ)|Lν ≤ 13
16τ , (2.48)

the set Qs(L) of low energy phases is just the whole set {+,−}, while Qs(L) contains only

the phase m with fm(µ) = f(µ) ≡ minm̃ fm̃(µ) if the condition (2.48) is violated. In [9] the

concept of high and low energy phases was introduced to distinguish between phases which

(for a given cross-section Lν) are stable against perturbations with bubbles of all other

phases (and hence may be analyzed by convergent cluster expansions), and phases which

are so heavily suppressed that they do not contribute to the leading asymptotics of Zper;

see Section 2 of [9] for details. As a net result, one obtains the following generalization of

Theorem A:

Theorem A′. Let τ be sufficiently large, t ≥ ν logL, let N(L) ≡ |Qs(L)| and define

τ∗ ≡ min{τ, min
m/∈Qs(L)

(fm(µ)− f(µ))} . (2.49)

Then there is a N(L)×N(L) matrix R, such that the statements (i) through (iv) of Theorem

A remain valid, with τ replaced by τ∗ in the bound (1.5).

Remark: If the condition (2.48) is valid, Qs(L) = {+,−}, τ∗ = τ and the bounds of

Theorem A′ are just the bounds of Theorem A. If, on the other hand, (2.48) is violated,

|Qs(L)| = 1 and Theorem A′ states that there exists a function f̃(L, µ) with

∣∣∣∣ dkdµk β (f̃(L, µ)− f(L)
)∣∣∣∣ ≤ O(e−(τ−O(1))) (2.50)

such that ∣∣∣∣ dkdµk [Zper(V, µ)− e−βf̃(µ)|V |
]∣∣∣∣ ≤ e−βf̃(L,µ)|V |e−(τ∗−O(1))t . (2.51)

Proof of Theorem B. Since Theorem B covers the whole region |µ− µ∗| ≤ O(1), we must

piece together the cases covered by the theorems of this section.
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(i) |µ−µ∗|Lν ≤ 1. We apply Theorem 2.1, noting the changes O(e−(τ−O(1))L) between

f±, M0, ∆M and their L-dependent versions. There is a similar change in ξL between the

two theorems if ν ≥ 2. But it can be checked that the changes

yB → yB(1 +O(e−(τ−O(1))L)), yC → yC(1 +O(e−(τ−O(1))L))

affect the scaling function in a manner which can be written as

Y (yB , yC)→ Y (yB , yC)(1 +O(e−(τ−O(1))L)) .

Furthermore, since |Y (yB , yC)| ≤ 1, this change and the other terms in (2.27) fall within

the bound desired in Theorem B:

Mper(V,m) = M0+∆M Y (yB , yC)+O(e−(τ−O(1))L)+O(e−(τ−O(1))t)+O(µ−µ∗) . (1.14′)

(ii) 1 ≤ |µ− µ∗|Lν ≤ 13τ
32 (∆M)−1. In this case yC ≥ exp(O(τ)Lν) and

Y (yB , yC) = (tanh yB)(1 + exp(−O(τ)Lν)) . (2.52)

We may apply Theorem A′ with N(L) = 2, obtaining the following matrix for the eigen-

value calculation:

R = e−fL
ν

(
1 + e−O(τ)L R0

R0 e−(f−−f+)Lν (1 + e−O(τ)L)

)
,

with R0 = exp(−O(τ)Lν). Here we take the case f+ < f−, in which case (f− − f+)Lν ≥
O(1) because |µ− µ∗|Lν ≥ 1. Thus |R++ −R−−|−1 ≤ O(1) and R0 perturbs the diagonal

part of R with no small denominator. Hence the eigenvalues are

λ±(L) = e−f±L
ν

(1 + e−O(τ)L) .

Proceeding to Mper(V, µ) , we have

Mper(V, µ) =
M+(L, µ)λ+(L)t +M−(L, µ)λ−(L)t

λ+(L)t + λ−(L)t
+O(e−(τ−O(1))t) ,
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where M± are defined by (2.4). Letting M0(L, µ)±∆M(L, µ) = M±(L, µ), this becomes

M0(L, µ) + ∆M(L, µ) tanh
[
t

2
(log λ+(L)− log λ−(L))

]
+ e−O(τ)t

= M0 + ∆M tanh
[
t

2
(f+L

ν − f−Lν)
]

+ e−O(τ)L + e−O(τ)t +O(µ− µ∗)

= M0 + ∆M tanh yB + e−O(τ)L + e−O(τ)t +O(µ− µ∗) .

Together with (2.51) we get (1.14).

(iii) 13τ
32 (∆M)−1 ≤ |µ − µ∗|Lν ≤ O(1)Lν . In this case yC ≥ exp(O(τ)Lν) and yB ≥

O(τ)t so

Y (yB , yC) = 1 + exp(−O(τ)Lν) + exp(−O(τ)t) . (2.53)

Theorem A′ applies with N(L) = 1 and R = λ1(L) = e−fL
ν

(1 + e−O(τ)L). Taking again

the case f+ < f− we find

Mper(V, µ) = M0 + ∆M + e−O(τ)L + e−O(τ)t +O(µ− µ∗) ,

and together with (2.53) this completes the proof.
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3. Crossover Finite-Size Scaling for Potts Models.

In this section, we consider the q-state Potts model, which is a spin model with spin

variable σx ∈ Zq := {1, e2πi/q, . . . , e2πi(q−1)/q} and Hamiltonian

H = − 1
2

∑
x,y

|x−y|=1

δ(σy, σy) , (3.1)

where δ is the Kronecker delta. As the inverse temperature β is varied, the model undergoes

a phase transition from a disordered high temperature region β < βt with a unique infinite

volume phase to an ordered region β > βt where q different low temperature phase coexist.

If q is sufficiently large, this transition is first order, and the model is an example of a

temperature driven first order transition where q ordered low temperature phases and one

disordered high temperature phase coexist at the transition point βt.

For sufficiently large q and cubic boxes V , or more generally for cylinders V which

obey the condition (1.2), finite-size scaling of the internal energy

Eper(V, β) := − 1
|V |

d

dβ
logZper(V, β) (3.2)

and of the specific heat

Cper(V, β) := −kβ2 d

dβ
Eper(V, β) (3.3)

can be derived from the ansatz

Zper(V, β) = e−βfd(β)|V | + qe−βfo(β)|V | +O(q−bmin{t,L}) (3.4)

for the partition function, see [3]. Here |V | is the volume of the box V , β is the inverse

temperature, b > 0 is a constant which depends only on the dimension ν + 1, and fm(β)

(m = o, d) is some sort of metastable free energy of the phase m. It may be chosen as a

C6 function of β such that fo(β) is equal to the free energy and fd(β) > f(β) if β > βt,

while fd(β) is equal to the free energy and fo(β) > f(β) if β < βt.

Here we derive the finite-size scaling (FSS) of Eper(V, β) for cylinders which obey a

condition

t ≥ ν logL . (3.5)
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To this end we need a suitable version of Theorem A for the Potts model. Using a com-

bination of the methods of [9] and [3], such a theorem has been proven in [17]. For the

convenience of the reader we restate this theorem below as Theorem 3.1. Our notation

is as follows: Zper(V, β) is the periodic partition function in the cylinder V , |V | = Lνt,

β is the inverse temperature, βt is the transition point, σod is the infinite volume surface

tension between the disordered phase and the ordered phases, and fo(β), fd(β) are the

metastable free energies introduced above. Throughout this section we will use b, b0, b1,

etc. for constants b > 0, b0 > 0, b1 > 0 which depend on nothing but the dimension ν + 1.

Theorem 3.1. Let q and L be sufficiently large and assume that |fd(β)− fo(β)|Lν ≤ 7
8 τ1,

where τ1 =
(

1
2ν+2 −

1
4ν+2

)
log q. Then there are real valued functions fo(L, β), fd(L, β),

Γoo(L, β), Γdd(L, β) and Γod(L, β), forming (q + 1) × (q + 1) symmetric matrices F and

Γ, as follows: F is the diagonal matrix with matrix elements F00 = exp(−βfd(L, β)Lν),

Fmm = exp(−βfo(L, β)Lν) (m = 1, · · · , q) and Γ is the matrix with matrix elements

Γ00 = Γdd(L, β), Γ0m = Γm0 = Γod(L, β) and Γmn = Γoo(L, β), (m,n = 1, · · · , q). The

following statements hold for k ≤ 6 and some b > 0.

(i) Let t ≥ ν logL. Then∣∣∣∣ dkdβk [Zper(V, β)− tr (F + F 1/2ΓF 1/2)t
]∣∣∣∣ ≤ e−βf |V |q−bt . (3.6)

(ii) Let τ = 1
2ν+2 log q = σod +O(q−b). Then

∣∣∣∣ dkdβkΓoo(L, β)
∣∣∣∣ ≤ e−(2τ−O(1))Lν , (3.7a)∣∣∣∣ dkdβkΓdd(L, β)
∣∣∣∣ ≤ qe−(2τ−O(1))Lν , (3.7b)∣∣∣∣ dkdβkΓod(L, β)
∣∣∣∣ ≤ e−(τ−O(1))Lν . (3.7c)

(iii)
∣∣∣∣ dkdβk (βfi(L, β)− βfi(β))

∣∣∣∣ ≤ q−bL (3.8)

(iv) There is a (q-dependent) constant Cod > 0 such that

Γod(L, β) =

Cod L
−1/2e−βσodL(1 +O(L−1)) , ν + 1 = 2 ,

e−βσodL
ν

(1 +O(q−bL)) , ν + 1 ≥ 3 ,
(3.9)
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provided |β − βt| ≤ q−bL/2.

Remarks:

i) The leading contribution to Γoo and Γdd are terms involving two interacting inter-

faces. This explains the fact that Γoo and Γdd are roughly given by (Γod)2. The additional

factor of q in (3.7b) comes from the fact that these interfaces enclose an ordered region

(which corresponds to q different ordered phases) if the outer region is disordered.

ii) The reader may have noticed that the above condition that L is sufficiently large

is not present in Theorem A. In [17], this restriction is used as a technical tool at several

places, e.g. in the proof of the decay condition (2.7) of Section 2 of [17]. It is clear, however,

that this condition is not a purely technical condition because the transfer matrix T for

L = 1 has rank q, which would not be compatible with (3.6) if L = 1 were an allowed value

for Theorem 3.1 (recall that F and Γ are matrices of rank q + 1).

Computation of eigenvalues. The first step in deriving the scaling form for the Potts

model is a computation of the eigenvalues of the (q + 1)× (q + 1) matrix

R = F + F 1/2ΓF 1/2 .

By Theorem 3.1, Zper(V, β) is well approximated by tr T t.

The calculation is simplified by noting that any vector of the form (0, v1, . . . , vq) with∑
vi = 0 is an eigenvector with eigenvalue

λ⊥ = exp(−βf0(L, β)Lν) . (3.10)

Thus λ⊥ is (q − 1)-fold degenerate. On the remaining subspace of vectors of the form

(v0, v, . . . , v), the eigenvalues are obtained by diagonalizing the effective 2× 2 matrix

R̂ =

 (1 + Γdd)e−βfd(L,β)Lν √
q Γode−(β/2)(f0(L,β)+fd(L,β))Lν

√
q Γode−(β/2)(f0(L,β)+fd(L,β))Lν (1 + qΓoo)E−βf0(L,β)Lν

 , (3.11)
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If we define

βf̃0(L, β) = βf0(L, β)− L−ν log(1 + qΓoo) , (3.12a)

βf̃d(L, β) = βfd(L, β)− L−ν log(1 + qΓdd) , (3.12b)

x̃ =
1
2

(βf̃d(L, β)− βf̃0(L, β))Lν , (3.13)

A = exp
(
−β

2
(f̃0(L, β) + f̃d(L, β)

)
Lν , (3.14)

Γ̃od =
Γod√

1 + Γdd
√

1 + qΓoo
, (3.15)

then R̂ can be written in a form familiar from the two-phase case:

R̂ = A

 e−x̃
√
q Γ̃od

√
q Γ̃od ex̃

 . (3.16)

Fig. 1. The avoiding crossing region for the first three eigenvalues of − log R̂. The

eigenvalue λ⊥ is q−1 fold degenerate. To make the figure better readable, we have subtracted

a term βf̃o+βf̃d
2 Lν from all curves.
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Thus the remaining two eigenvalues may be computed as

λ± = A

(
cosh x̃±

√
sinh2 x̃+ qΓ̃2

od

)
. (3.17)

The degenerate eigenvalue can be rewritten as

λ⊥ = Aex̃(1 + qΓoo)−1 . (3.18)

The eigenvalues are plotted in Fig. 1.

Definition of scaling variables. We define an L-dependent “transition point” β∗(L) by

the equation

f̃d(L, β∗(L)) = f̃o(L, β∗(L)) , (3.19)

i.e., where x̃ = 0. A “correlation length” ξL may be defined by the relation

ξ−1
L =

√
q Γ̃od(β∗(L)) . (3.20)

The true correlation length in the time direction is

ξ‖ = [log(λ+/λ⊥)]−1 ,

since λ+ and λ⊥ are the two largest eigenvalues. However, at β∗(L), ξ−1
‖ and ξ−1

L differ

by only O(qΓ̃2
od) + O(Γoo) = O(ξ−(2−ε)

L ) so that ξ‖ = ξL(1 + O(ξ−(1−ε)
L )). Thus, there is

no harm in using the more convenient definition.

Next we define the L-dependent internal energies

Ẽo,d(L) =
d

dβ
(βf̃o,d(L, β∗(L))) , (3.21)

and write

Ẽ = 1
2 (Ẽd(L) + Ẽo(L)) , ∆̃E = 1

2 (Ẽd(L)− Ẽo(L)) .
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By (3.7), (3.8), and (3.12),

|E − Ẽ|, |∆E − ∆̃E| ≤ q−bL , (3.22)

where E, ∆E are the corresponding L =∞ quantities. Similarly, we have |βt − β∗(L)| ≤
q−bL, which verifies (1.16) of Theorem C. Finally, we define scaling variables

yB = tLν(β − β∗(L)) ∆̃E , (3.23a)

yC = ξLL
ν(β − β∗(L)) ∆̃E . (3.23b)

Derivation of the scaling function. As in the two-phase case it is worthwhile deriving

the scaling form heuristically before carefully going over the approximations involved. We

approximate the eigenvalues for small x̃, Γ as

λ± = A

(
1±

√
x̃2 + ξ−2

L

)
, λ⊥ = A(1 + x̃) . (3.24)

Theorem 3.1(i) implies that for k ≤ 5

∣∣∣∣∣ dkdµk
[
Eper(V, β)−

∑
i

Ei(L, β)Pi(V, β)

]∣∣∣∣∣ ≤ O(q−bt) , (3.25)

where i runs over q + 1 values corresponding to the q + 1 eigenvalues λ±, λ⊥, and

Ei(L, β) = −L−ν d

dβ
log λi(L) , (3.26)

Pi(V, β) = λi(L)t

∑
j

λj(L)t

−1

. (3.27)

Approximating x̃ as

(β − β∗(L))Lν
d

dβ

(
βf̃d − βf̃o

2

)∣∣∣∣∣
β∗(L)

= (β − β∗(L))Lν
(
Ẽd − Ẽo

2

)
= yc/ξL ,
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we find that

E±(L, β) = Ẽ ∓ L−ν x̃x̃′√
x̃2 + ξ−2

L

= Ẽ ∓ x̃ξL∆̃E√
1 + (x̃ξL)2

= Ẽ ∓ yC∆̃E√
1 + y2

C

,

E⊥(L, β) = Ẽ − ∆̃E .

We ignore the β-dependence in ξL and work to first order about β = β∗(L). Note that

λ±(L)t ∼ At exp
(
± t

ξL

√
(x̃ξL)2 + 1

)
,

λ⊥(L)t ∼ At exp
(
t

ξL
(x̃ξL)

)
,

and since t/ξL = yB/yC , this becomes

λ±(L)t ∼ At exp
(
±yB
yC

√
1 + y2

C

)
,

λ⊥(L)t ∼ At exp yB .

Putting these computations into (3.25), we obtain

Eper ≈ Ẽ − ∆̃E


[
exp(yByC

√
1 + y2

C)− exp(−yByC
√

1 + y2
C)
]

yC√
1+y2

C

+ eyB (q − 1)

exp(yByC
√

1 + y2
C) + exp(−yByC

√
1 + y2

C) + eyB (q − 1)


= Ẽ − ∆̃E Y (yB , yC) ,

where

Y (yB , yC) =
(q − 1)eyB + yC(1 + y2

C)−1/22 sinh
(
yB
yC

√
1 + y2

C

)
(q − 1)eyB + 2 cosh

(
yB
yC

√
1 + y2

C

) .

The following theorem, analogous to Theorem 2.1 in the two-phase case, gives a precise

picture (without errors q−bL) near β∗(L).
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Theorem 3.2. Let q and L be sufficiently large and assume that |β − βt|Lν ≤ 1. The

eigenvalues of the matrix F + F 1/2ΓF 1/2 obey the following estimates:

λ±(L) = A exp
(
O(ξ−2

L )± ξ−1
L

√
1 + y2

C(1 +O(β − β∗(L)))
)
, (3.28a)

λ⊥(L) = A exp
(
O(ξ−(2−ε)

L ) + ξ−1
L yC (1 +O(β − β∗(L)))

)
, (3.28b)

Furthermore, in the cylindrical volume V = Lνt with t ≥ ν logL, the internal energy is

described by

Eper(V, β) =Ẽ − ∆̃E Y (yB , yC) +O(q−bt)

+O(ξ−(1−ε)
L ) min{1 + |yC |, yB/yC}+O(q|β − β∗(L)|) . (3.29)

Finally,

ξL =

C(q)L1/2eβσodL(1 +O(L−1)) , ν = 1 ,

q−1/2eβσodL
ν

(1 +O(q−bL)) , ν ≥ 2 .
(3.30)

Proof. We shall need estimates analogous to Proposition 2.2 and Lemma 2.3 on the

variation of Γ̃od as a function of β. The situation here is somewhat simpler due to the

fact that bounds on the logarithmic derivative of Γod are available. In 17] it is shown

(Theorems 2.1 and 2.2) that

∣∣∣∣ dkdβk Γoo

∣∣∣∣ , ∣∣∣∣ dkdβk Γdd

∣∣∣∣ ≤ e−(2τ−O(1))Lν , (3.31a)∣∣∣∣ dkdβk Γod

∣∣∣∣ ≤ O(Lkν)Γod , (3.31b)

provided k ≤ 6 and a := β|fo(β) − fd(β)| ≤ 7
8τ1L

−ν . With Γ̃od = Γod(1 + Γdd)−1/2(1 +

qΓod)−1/2, it is immediate that
∣∣∣dΓ̃od
dβ

∣∣∣ ≤ O(Lν)Γ̃od. Hence for |β − β∗(L)|Lν ≤ 1 we have

√
q Γ̃od(β) =

√
q Γ̃od(β∗(L)) exp(O(|β − β∗(L)|Lν))

= ξ−1
L (1 +O(|β − β∗(L)|Lν)) , (3.32)

L−ν

∣∣∣∣∣dΓ̃od
dβ

∣∣∣∣∣ ≤ O(ξ−1
L ) . (3.33)
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Rather than expand λi in terms of β − β∗(L) to produce a result like (2.15), we analyze

log λi. With C = cosh x̃, S = sinh x̃ we have

λ+λ−
A2

=
(
C +

√
S2 + qΓ̃2

od

)(
C −

√
S2 + qΓ̃2

od

)
= 1− qΓ̃2

od ,

so by (3.32) it follows that √
λ+λ− = A exp(O(ξ−2

L )) . (3.34)

Proceeding as in the proof of Proposition 2.5, we find that

1
2 log(λ+/λ−) =

√
x̃2 + qΓ̃2

od(1 +O(ξ−2
L ))

=
√
x̃2 + ξ−2

L (1 +O(x̃)(1 +O(ξ−2
L ))

=
√
x̃2 + ξ−2

L

(
1 +O(ξ−2

L ) +
O(x̃ξ−2

L )
x̃2 + ξ−2

L

)
=
√
x̃2 + ξ−2

L +O(ξ−2
L ) . (3.35)

Recall that

x̃ = 1
2 (βf̃d(L, β)− βf̃0(L, β))Lν

= ∆̃E(β − β∗(L))Lν(1 +O(β − β∗(L))) , (3.36)

so in terms of the scaling variable yC = ξLL
ν(β − β∗(L))∆̃E,

1
2 log(λ+/λ−) = ξ−1

L

√
1 + y2

C(1 +O(β − β∗(L))) +O(ξ−2
L ).

Taken together with (3.34), this proves (3.28a). The bound (3.28b) on λ⊥ follows imme-

diately from (3.18); we can bound qΓoo by a power of ξ−1
L using Theorem 3.1.

In order to compute Eper(V, β) we follow the prescription given in (3.25)–(3.27). The

calculation of E±(L, β) is virtually the same as the one for M1,2 in the proof of Proposi-

tion 2.4. We state the result:

E+ + E−
2

= Ẽ(L, β) +O(ξ−1
L ) , (3.37a)

E+ − E−
2

= −∆̃E(L, β)
yC√

1 + y2
C

+O(ξ−1
L ) . (3.37b)
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Here

Ẽ(L, β) =
d

dβ

(
βf̃d(L, µ) + βf̃o(L, µ)

2

)
,

∆̃E(L, β) =
d

dβ

(
βf̃d(L, µ)− βf̃o(L, µ)

2

)
= L−ν

dx̃

dβ
.

The remaining internal energy is

E⊥(L, β) = −L−ν d

dβ
log λ⊥(L)

= Ẽ(L, β)− L−ν d

dβ
log(1 + qΓoo)− ∆̃E(L, β)

= Ẽ(L, β)− ∆̃E(L, β) +O(ξ−(2−ε)
L ) . (3.37c)

The other part of the formula for Eper(V, β) is the relative weightings Pi. Using (3.18),

(3.34), and (3.35) we obtain

P+ − P− =
2 sinh(t(

√
x̃2 + ξ−2

L +O(ξ−2
L )))

2 cosh(t(
√
x̃2 + ξ−2

L +O(ξ−2
L ))) + (q − 1) exp(t(x̃− x0))

, (3.38a)

P⊥ =
exp(t(x̃− xo))

2 cosh(t(
√
x̃2 + ξ−2

L +O(ξ−2
L ))) + (q − 1) exp(t(x̃− xo))

, (3.38b)

where

x0 = log
[
(1 + qΓod)

√
1− qΓ̃2

od

]
= o

(
ξ
−(2−ε)
L

)
.

We would like to pull out x0 and O(ξ−2
L ) as additive corrections to P+ − P− and P⊥. To

this end we rewrite

P+ − P− =
1− (λ−/λ+)t

1 + (λ−/λ+)t + (λ⊥/λ+)t
, and P⊥ =

(λ⊥/λ+)t

1 + (λ−/λ+)t + (λ⊥/λ+)t

and prove the following

Lemma 3.3. Let q and L be sufficiently large and assume that |β − βt|Lν ≤ 1. Then∣∣∣∣(λ−/λ+)t − e−2t
√
x̃2+ξ−2

L

∣∣∣∣ ≤ O(ξ−1
L ) (3.39a)
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and ∣∣∣∣(λ⊥/λ+)t − e−t(
√
x̃2+ξ−2

L
−x̃)

∣∣∣∣ ≤ O(ξ−(1−ε)
L ) min

{
1 + |yC |,

yB
yC

}
(3.39b)

Proof: The bound (3.39a) is trivial. In order to prove (3.39b) we may assume without loss

of generality that

yB
yC
ξ
−(1−ε)
L = tξ

−(2−ε)
L ≤ 1 (3.40a)

or

ξ
−(1−ε)
L |yC | ≤ 1 (3.40b)

because the r.h.s. of (3.39b) is just O(1) if both (3.40a) and (3.40b) are violated. We then

use the bound eδ − 1 ≤ δeδ (with δ = O(tξ−2
L ) + tx0 = o(tξ−(2−ε)

L )) to bound the l.h.s. of

(3.39b) by

O(tξ−(2−ε)
L )e

−t
(√

x̃2+ξ−2
L
−x̃−o(tξ−(2−ε)

L
)

)
If the bound (3.40a) is fulfilled, we conclude that the l.h.s. of (3.39b) is bounded by

O(tξ−(2−ε)
L )e

−t
(√

x̃2+ξ−2
L
−x̃
)

= O(
yB
yC
ξ
−(1−ε)
L )e

−O(yB)

(√
1+y−2

C
−1

)

≤ O(ξ−(1−ε)
L ) min

yByC , 1

|yC |(
√

1 + y−2
C − 1)


≤ O(ξ−(1−ε)

L ) min
{
yB
yC
, 1 + |yC |

}
.

We have used that

tx̃ = yB(1 +O(β − β∗(L))) , (3.41a)

which follows from (3.36). If (3.40b) is valid, we use the fact that x̃ = O(yCξ−1
L ) to bound

ξ
−(2−ε)
L |x̃| by O(ξ−2

L ). As a consequence,√
x̃2 + ξ−2

L ≥ |x̃|+ bξ
−(2−ε)
L
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provided b > 0 is chosen small enough. We conclude that

o(tξ−(2−ε)
L ) ≤ 1

2

(√
x̃2 + ξ−2

L − |x̃|
)
≤ 1

2

(√
x̃2 + ξ−2

L − x̃
)

provided L is large enough. Using this bound we may continue as before.

Combining Lemma 3.3 with (3.27) and (3.37), we obtain

Eper(V, β) =Ẽ(L, β) +O(ξ−(1−ε)
L ) min {1 + |yC |, yB/yC}+O(ξ−1

L ) +O(q−bt)

− ∆̃E(L, β)
2 sinh(

√
(tx̃)2 + (yB/yC)2)yC(1 + y2

C)−1/2 + (q − 1)etx̃

2 cosh(
√

(tx̃)2 + (yB/yC)2) + (q − 1)etx̃
.

Finally, we expand in β − β∗(L) using (3.41a) and

∆̃E(L, β) = ∆̃E +O(β − β∗(L)) , (3.41b)

Ẽ(L, β) = Ẽ +O(β − β∗(L)) . (3.41c)

Once again there is a problem with pulling out the correction. After dividing through

numerator and denominator, the only tricky term is the derivative of

(q − 1) exp
(
tx̃(1 + δ)−

√
(tx̃(1 + δ))2 + (yB/yC)2

)
(3.42)

in δ (which stands for O(β−β∗(L)). The logarithmic derivative of the exponent is bounded

by a constant, so the derivative of (3.42) is bounded by O(q). Hence we may replace tx̃

with yB if we add an error O(q|β− β∗(L)|). Bounding O(ξ−1
L ) by O(q−bL), this completes

the proof of (3.29).

The last statement of Theorem 3.2 follows immediately from Theorem 3.1(ii), (iv).

(Recall that ξ−1
L =

√
q Γod(1 + Γdd)−1/2(1 + qΓoo)−1/2.)

Proof of Theorem C. We consider three cases:

(i) |β−βt|Lν ≤ 1. By (3.22), 1
2 (Ed±E0) differ from Ẽ, ∆̃E by q−O(1)L. This induces

changes

yB → yB(1 +O(q−O(1)L)), yC → yC(1 +O(q−O(1)L)),
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going from Theorem 3.2 to the simpler definitions (1.18), (1.19). Note that yB/yC is not

changed. Checking the effect of these changes on P+ − P− and P⊥ as before (see (3.42)),

and observing that

yC(1 + δ)√
1 + y2

C(1 + δ)2
=

yC√
1 + y2

C

+O(δ)

(with δ = q−O(1)L), we obtain

Eper(V, β) =
(Eo + Ed)

2
+

(Eo − Ed)
2

Y (yB , yC) + q−O(1)L + q−O(1)t +O(q|β − β∗(L)|)

+O(ξ−(1−ε)
L ) min{1 + |yC |, yB/yC} . (1.21′)

(ii) 1 ≤ |β−βt|Lν ≤ 13
32 (∆E)−1τ1. In this case yC ≥ O(ξL) and we may perturb away

y−2
C in

Y (yB , yC) =
(q − 1)eyB + α−1(eαyB − e−αyB )

(q − 1)eyB + (eαyB + e−αyB )
,

where α =
√

1 + y−2
C = 1 +O(ξ−2

L ). We distinguish two cases: either |yB | ≤ log ξL, which

implies |αyB − yB | = O(ξ−(2−ε)
L ) and hence

Y (yB , yC) =
qeyB − eyB
qeyB + e−yB

+O(qξ−(2−ε)
L )

≡ T (yB) +O(qξ−(2−ε)
L ) . (3.43)

Or |yB | ≥ log ξL, in which case both Y (yB , yC) and T (yB) are equal to sgn yB+O(qξ−2
L ) =

sgn yB + O(ξ−(2−ε)
L ), which gives again the bound (3.43). By Theorem 3.1, the matrix,

F + F 1/2ΓF 1/2 governs the behavior in the region (ii), and its eigenvalues (3.17), (3.18)

can be approximated as

λ± = Ae±x̃(1 +O(ξ−2
L )) λ⊥ = Aex̃(1 +O(ξ−(2−ε)

L )) . (3.44)

Noting that we have good bounds on dΓij
dβ , a calculation shows that

E±(L, β) = −L−ν d
dβ

log λ± = Ẽ(L, β)∓ ∆̃E(L, β) +O(ξ−1
L ) ,

E⊥(L, β) = −L−ν d
dβ

log λ⊥ = Ẽ(L, β)− ∆̃E(L, β) +O(ξ−1
L ) .
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(The error term in E± is essentially the third term in (2.33) and is easily bounded.) Putting

these results together we obtain

Eper(V, β) = Ẽ(L, β)− ∆̃E(L, β)
2 sinh t(x̃− x0) + (q − 1)et(x̃−x1)

2 cosh t(x̃− x0) + (q − 1)et(x̃−x1)
+O(ξ−1

L ) +O(q−bt),

where x0 = O(ξ−2
L ), x1 = O(ξ−(2−ε)

L ). If |x̃|t ≥ log ξL, e−2t|x̃−x0| and e−2t|x̃−x1| are

O(ξ−(2−ε)
L ) and

Eper(V, β) = Ẽ(L, β)− ∆̃E(L, β)(1 +O(ξ−(2−ε)
L )) +O(ξ−1

L ) +O(q−bt)

= Ẽ(L, β)− ∆̃E(L, β)T (x̃t) +O(ξ−1
L ) +O(q−bt) .

If |x̃|t < log ξL, we pull out a correction O(q)(t|x1| + |x0|) ≤ O(q ξ−(2−ε)
L log ξL) =

O(ξ−(2−ε)
L ). Again we find that

Eper(V, β) = Ẽ(L, β)− ∆̃E(L, β)T (x̃t) +O(ξ−1
L ) +O(q−bt) . (3.45)

Combining (3.45) with (3.41) and (3.43), we obtain that

Eper(V, β) = E(L)−∆E(L)Y (yB , yC) +O(ξ−1
L ) +O(q−bt) +O(q(β − β∗(L)) . (1.21′′)

(iii) 13
32 (∆E)−1τ1 ≤ |β − βt|Lν . Here |yC | ≥ eO(τ1)Lν , |yB | ≥ O(τ1)t so that

Y (yB , yC) = sgn(β − βt) + q−O(Lν) + q−O(t) , (3.46)

We need a replacement for Theorem 3.1 when the ordered and disordered states are widely

separated in energy. The following theorem, proven in 17], provides the necessary infor-

mation.

Theorem 3.4. Let q and L be sufficiently large, and assume that 3
4τ1 ≤ |fd(β)−fo(β)|Lν ≤

O(1)Lν . Then the following statements hold for k ≤ 6 and some b > 0.

(i) If β < βt, then there exists Γ′dd(L, β) satisfying (3.7b) such that

∣∣∣∣ dkdβk
[
Zper(V, β)−

(
(1 + Γ′dd(L, β))e−βfd(L,β)Lν

)t]∣∣∣∣ ≤ e−βf |V |q−bt.
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(ii) If β > βt, then there exists Γ′oo(L, β) satisfying (3.7a) such that

∣∣∣∣ dkdβk [Zper(V, β)− tr(F + F 1/2ΓF 1/2)t
]∣∣∣∣ ≤ e−βf |V |q−bt ,

where Γ, F are q×q matrices with matrix elements Γmn = Γ′oo and Fmn = δmne
−βf0(L,β)Lν .

Recall that Eper(V, β) is approximated as a convex combination of Ei =

−L−ν d
dβ log λi, where λi are the eigenvalues of F +F 1/2ΓF 1/2. If β < βt there is only one

λi, and the corresponding energy is

Ei =
d

dβ
(βfd(L, β)) +O(ξ−(2−ε)

L ) = Ed +O(ξ−(2−ε)
L ) +O(β − βt) .

If β > βt, the eigenvalues are exp(−βfo(L, β)Lν) and exp(−βfo(L, β)Lν)(1 + qΓ′oo(L, β)),

the former with multiplicity q − 1. All of the energies, however, obey the same estimate:

Ei = Eo +O(ξ−(2−ε)
L ) +O(β − βt) .

Putting these facts together with (3.46) we obtain (1.21), and the proof of Theorem C is

complete.
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4. Crossover Finite-Size Scaling for Free Boundary Conditions.

In this section we consider volumes where we impose free boundary conditions in

the directions transversal to the time direction. We therefore take volumes of the form

V = A× T where A is the ν-dimensional box {1, 2, . . . , L}ν and T is the torus Z/(tZ). In

order to avoid technical complications we only consider the standard Ising model. For this

model, the partition function with free boundary conditions is just

Zfree(V, µ) :=
∑
σV

exp

−β ∑
〈xy〉∈V1

|σx − σy|+ µ
∑
x∈V

σx

 , (4.1)

where the first sum goes over all configurations σV : V → {− 1
2 ,+

1
2}, while the second

sum goes over the set V1 of all nearest neighbor pairs {x, y} for which both x and y are in

V . We recall that the infinite volume transition takes place as µ crosses the point µ∗ = 0

due to the ± symmetry of the model. We use σ to denote the infinite volume surface

tension, f(L) to denote the free energy in the infinite cylinder V∞ := A× Z,

−βf(L) := lim
V→V∞

1
|V |

logZfree(V, µ) , (4.2)

and f± = f±(µ) to denote the metastable free energies introduced in (1.1) (their exis-

tence is guarantied by Theorem A). Our main result for free boundary conditions is then

summarized in the following theorem.

Theorem 4.1. Let β be large and |µ|Lν ≤ 1. Then there exists a 2× 2 symmetric matrix

R = R(L, µ) with strictly positive entries, such that the following statements are true.

(i) For t ≥ ν logL and for 0 ≤ k ≤ 4,

∣∣∣∣ dkdµk (Zfree(V, µ)− TrRt)
∣∣∣∣ ≤ e−βf(L)|V |e−(β−O(1))t . (4.3)

(ii) R++(L, µ = 0) = R−−(L, µ = 0)

(iii)
∣∣∣∣ dkdµk (L−ν logRmm + βfm(µ))

∣∣∣∣ ≤ O(L−1) , m ∈ {−,+} (4.4)

(iv)
∣∣∣∣ dkdµk R+−

∣∣∣∣ ≤ e−βf(L)Lνe−(β−O(1))Lν (4.5)
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(v) There are constants b0, . . . , bν−1 such that

R+−(L, µ = 0)
R++(L, µ = 0)

= e−βσL
ν

exp

(
−
ν−1∑
i=0

biL
i

)
(1 +O(e−(β−O(1))L)) (4.6)

provided ν + 1 ≥ 2.

Remarks:

i) If one defines

βf̃+(L, µ) = −L−ν logR++ , (4.7)

βf̃−(L, µ) = −L−ν logR−− , (4.8)

x =
β

2
(f̃+(L, µ)− f̃−(L, µ))Lν (4.9)

Γ = Γ(L, µ) = e
β
2 (f̃+(L,µ)+f̃−(L,µ))LνR+−(L, µ) , (4.10)

then the two eigenvalues of R (and hence the two lowest eigenvalues of the transfer matrix

T ) are

λ± = e−
β
2 (f̃+(L,µ)+f̃−(L,µ))Lν

(
coshx±

√
sinh2 x+ Γ2

)
. (4.11)

As a consequence, the spectral gap ξ−1
L in the infinite cylinder V∞ at µ = 0 is related to

the surface tension σ by the equation

ξL :=
[

1
log(λ+/λ−)

]
µ=0

= D(L)eβσL
ν

, (4.12)

where

D(L) =
1
2

exp

(
ν−1∑
i=0

biL
i

)
(1 +O(e−(β−O(1))L)) . (4.13)

Note that D(L) = O(1) for ν + 1 = 2, in accordance with the results of [18,19,20].

ii) As in the periodic case, the finite volume magnetization is given by an equation of the

form (2.3), i.e. ∣∣∣∣∣ dkdµk
[
Mfree(V, µ)−

∑
i

Mi(L, µ)Pi(V, µ)

]∣∣∣∣∣ ≤ e−(β−O(1))t (4.14)
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if k ≤ 3, t ≥ ν logL and |µ|Lν ≤ 1. Here

M±(L, µ) ≡ 1
Lν

d

dµ
log λ± , (4.15)

P±(V, µ) ≡ λt±
[
λt+ + λt−

]−1
. (4.16)

We leave it to the reader to use the methods of Section 2 to obtain an analog of Theorem

B for free boundary conditions.

We now sketch the main ideas of the proof of Theorem 4.1, putting some of the

more technical details to the appendix. As usual we define the contours corresponding

to a configuration σV as the connected components of ∂σV , where ∂σV is the set of ν

dimensional faces dual to the bonds 〈xy〉 ∈ V1 for which σx 6= σy. We distinguish between

long contours which wind around the cylinder in time direction, and short contours which

do not. For short contours we distinguish between interfaces which are those short contours

which are perforated by all time-like loops3 in V1 and ordinary contours which are those

short contours Y for which it is possible to find a time-like loop in V1 which does not

perforate Y .

Neglecting configurations σV for which ∂σV contains long contours (as shown in the

appendix, these configurations only contribute to the error term in (4.3)), we then consider

the partition function Zres(V, µ) which is obtained from Zfree(V, µ) by restricting the sum

in (4.1) to those configurations for which ∂σV is only made of interfaces and ordinary

contours. If the condition |µ|Lν ≤ 1 is fulfilled — as we assume from now on — the

gain in energy resulting from the insertion of an ordinary contour with interior IntY into

an unstable phase is bounded by |µ| |IntY | ≤ |µ|Lν |Y | ≤ |Y |, leaving an effective decay

exp(−(β |Y |− |µ| |IntY |)) ≤ exp(−(β−1)|Y |). As a consequence, we can use a convergent

cluster expansion to resum the ordinary contours in Zres(V, µ). This leads to effective

free energies f±(µ,L) for the regions between interfaces, an interaction term eg(Y,Y
′) for

neighboring interfaces, and a modified weight κ(Y ) for the interfaces. As a consequence,

Zres(V, µ) =e−βf+(L,µ)|V | + e−βf−(L,µ)|V |

+
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

κ(Yi) e−βfi(L,µ)|Vi| eg(Yi,Yi+1) , (4.17)

3 We call a closed line in V time-like if its closed via the periodicity of V .
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where the second sum goes over interfaces Y1, . . . , Yn that are chronologically ordered, Vi
is the region between Yi and Yi+1, fi = f+ if Vi is in the + phase and fi = f− otherwise.

The factor 1/n in the above sum counts for the fact that cyclic permutations of Y1, . . . , Yn

correspond to the same configuration in Zres(V, µ).

Comparing (4.17) to the corresponding expansion for periodic boundary conditions,

we note two main differences: first, the L-dependence of f±(L, µ) is much stronger then

before. For the periodic case, we had a bound |f±(L, µ)−f±(µ)| ≤ e−(β−O(1))L, while now

f±(L, µ)− f±(µ) = O(L−1) (4.18)

due to the presence of the free boundary. Second, the sum over interfaces is now a sum

over interfaces with free boundaries, while the interfaces in the periodic case had to match

at the boundary (it is this restriction which is responsible for the power law correction

O(L−1/2) in (1.8), see Section 5 of [9] for details).

Keeping these differences in mind, we continue as in the periodic case: we assign a

time t(Y ) ∈ T1/2 := {1/2, 3/2, . . . , t − 1/2} to each interface Y (roughly speaking, t(Y )

is the middle point of the smallest interval I(Y ) such that Y ⊂ A × I(Y )) and define an

activity

r(Y ) = κ(Y )e−βfm− (L,µ)[ |V−|−Lν |I−| ]e−βfm+ (L,µ)[ |V+|−Lν |I+| ] , (4.19)

where I+ (I−) is the part of I(Y ) above (below) t(Y ), V+ (V−) is the part of A × I(Y )

above (below) Y and m+ (m−) is the label of the phase above (below) Y . With these

definitions, the partition function Zres(V, µ) can be rewritten as

Zres(V, µ) =e−βf+(L,µ)|V | + e−βf−(L,µ)|V |

+
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

r(Yi) e−βfi(L,µ)(t(Yi+1)−t(Yi))Lν eg(Yi,Yi+1) . (4.20)

If we neglect the interaction between neighboring interfaces and approximate the non

overlap constraint between Yi and Yi+1 by the constraint t(Yi) < t(Yi+1), the right-hand

side of (4.17) can be written as a trace

Zres(V, µ) ∼= tr(F (1 + Γ(0)))t = tr(F + F 1/2Γ(0)F 1/2)t . (4.21)
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Here F is the diagonal matrix

F = diag (exp(−βf−(L, µ)Lν), exp(−βf+(L, µ)Lν)) , (4.22)

and Γ(0) is the 2× 2 matrix with matrix elements

Γ(0)
m−m+

= lim
V→V∞

∑
Y : t(Y )=t0

r(Y ) (4.23)

where the sum goes over interfaces describing a transition from the phase m− below Y to

the phase m+ above Y . Note that Γ(0) does not depend on the choice of t0 in (4.23) due

to the translation invariance in time direction.

Taking into account the interaction between interfaces requires the use of the methods

of [9], Section 4. There is, however, no difference in this part of the proof. We therefore

only state the result, which is the existence of a matrix Γ, with matrix elements

Γm−m+ = Γ(0)
m−m+

+O(e−(2β−O(1))Lν ) , (4.24)

such that

∣∣∣∣ dkdµk [Zres(V, µ)− tr(F + F 1/2ΓF 1/2)t
]∣∣∣∣ ≤ e−βmin{f−(L,µ),f+(L,µ)}|V |e−(β−O(1))t ,(4.25)∣∣∣∣dkΓm−m+

dµk

∣∣∣∣ ≤ e−(β−O(1))Lν , (4.26)

provided β is large enough, k ≤ 4 and |µ|Lν ≤ 1. Up to the difference between Zfree(V, µ)

and Zres(V, µ) (which is bounded in the appendix) and the difference between f(L) and

min{f−(L, µ), f+(L, µ)} (which is O(e−(β−O(1))Lν ) and therefore harmless) this already

proves the bounds (4.3) through (4.5) of Theorem 4.1 (use (4.18) and its generalizations

to derivatives to prove (4.4)), while (4.24) reduces the proof of (4.6) to the proof of the

relation

Γ(0)
+−(µ = 0) = e−βσL

ν

exp

(
−
ν−1∑
i=0

biL
i

)
(1 +O(e−(β−O(1))L)) . (4.27)
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Note that the right-hand side of this equation is typical for the partition function

Z̃ of a dilute lattice gas in a volume A = {1, . . . , L}ν , where log Z̃ contains a volume

term proportional to Lν , a surface term proportional to Lν−1, ... , a corner term O(1)

and finally exponential corrections due to the finite correlation length of the model. We

therefore have to find a suitable representation of Γ(0)
+−(µ = 0) as a dilute lattice gas with

free energy density σ.

In order to present the main ideas let us neglect, for the moment, the fact that

the resummation of ordinary contours also changes the activity of an interface. In this

approximation,

Zres(V, µ = 0) ∼= e−βf+(L,0)|V |

1 + 1 +
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

e−β|Yi| eg(Yi,Yi+1)

 ,

Γ(0)
+−
∼=

∑
Y :t(Y )=t0

e−β|Y | , (4.28)

where we used the fact that f+(L, 0) = f−(L, 0). Note that the leading contribution to

the r.h.s. of (4.28) comes from the completely flat surface Y0, with |Y0| = Lν

Following an idea originally appearing in [10] we now decompose each interface into

flat pieces (defined as those parts of Y which are parallel to the minimal surface Y0 and

which are simple in the sense that all straight lines in time direction which intersect a

flat piece of Y have only one intersection with Y ) and its walls W1, . . . ,Wn (defined as

the connected components of the part Y ∗ of Y which is not flat). We then introduce the

floating walls [W1], . . . , [Wn] of Y by introducing, for each wall W of Y , the equivalence

class [W ] of walls W ′ which are obtained from W by a translation in the time direction. It

is then an easy geometric exercise (see, e.g. [10]) to show that the orthogonal projections,

π(W1), . . . , π(Wn), of W1, . . . ,Wn onto the flat surface Y0 do not overlap, and that two

surfaces Y and Y ′ with the same set of floating walls are identical up to a global translation

in time direction. Given, on the other hand, a set {[W1], . . . , [Wn]} of floating walls such

that π(Wi) and π(Wj) do not overlap for i 6= j (we call such a set an allowed set of floating

walls) one may actually always construct an interface Y such that [W1], . . . , [Wn] are the

floating walls of Y .

We therefore have a one-to-one correspondence between interfaces with fixed time

t(Y ) = t0 and allowed sets of floating walls. Observing finally that |Y | = |π(Y )| +
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∑n
i=1 [|Wi| − |π(Wi)|] = Lν +

∑n
i=1 [|Wi| − |π(Wi)|] we find that the r.h.s. of (4.28) can be

rewritten as

∑
Y :t(Y )=t0

e−β|Y | = e−βL
ν
∞∑
n=0

∑
{[W1],...,[Wn]}

n∏
i=1

z(Wi) =: e−βL
ν

Z̃(A) , (4.29)

where the second sum goes over allowed sets of floating walls and

z(W ) := e−β[|Wi|−|π(Wi)|] . (4.30)

In the approximation (4.28), the r.h.s. of (4.29) is the desired representation of Γ(0)
+− as

the partition function of a dilute lattice gas, with “molecules” which are just the excitations

of the flat surface Y0 . This function can be brought to the standard form of a polymer

partition function, with polymers which are just the connected subsets of Y0, by resumming,

for each set {P1, . . . , Pn}, all floating walls for which π(W1) = P1, . . . , π(Wn) = Pn. After

this resummation, Z̃(A) is just a sum over subsets P1, . . . , Pn of Y0 which are mutually

nonoverlapping, with a weight z̃(Pi) ≤ e−(β−O(1))|Pi| for the polymer Pi. The Mayer

expansion for the logarithm of the polymer partition function Z̃(A), which is absolutely

convergent if β is large enough, then gives an expansion of the form (4.27). If one adds the

corrections coming from the resummation of ordinary contours, using e.g. the methods

described in Section 5 of [9], the expansion for the free energy of the lattice gas is exactly

the same as the usual expansion (see, e.g. [10]) for the surface tension σ. Since both

expansions are convergent, the bound (4.24) is proven.

It is instructive to compare the above situation to the periodic case. In this case

it is no longer true that each allowed set of floating walls {[W1], . . . , [Wn]} leads to an

allowed surface Y because the surface constructed from {[W1], . . . , [Wn]} may violate the

periodicity conditions imposed by the periodic lattice. If ν+1 ≥ 3, this can only happen if

one of the walls is so large that |W |− |π(W )| ≥ L; the contribution of these configurations

therefore only enters into the error term in (1.8), see Section 5 of [9] for the proof. But for

ν + 1 = 2, this effect leads in fact to the 1/
√
L correction in (1.8), and hence to w = 1/2.

Heuristically, this can be easily understood by considering only surfaces without overhangs.

The sum over surfaces is then just a sum over closed random walks. Since a random walk

without restriction on its endpoint walks just an average distance
√
L in a time L, it gets

a 1/
√
L correction if it is forced to return to its endpoint.
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We do want to make this more precise, however, taking at the same time the oppor-

tunity to explain the main idea of the proof of w = 1/2 in the periodic case. To this

end, we introduce for each wall Wj , the height difference hj between its right and left

endpoint. The surface constructed from an allowed set of floating walls then fulfills the

required periodicity condition if and only if the heights hj add up to zero. Following [21],

we then introduce the partition function

Z̃(p) = e−βL
ν
∞∑
n=0

∑
{[W1],...,[Wn]}

n∏
j=1

z(Wj)eiphj , (4.31)

where the sum goes over all allowed sets of floating walls. The restriction
∑
hj = 0 is now

obtained by integrating over p, so that the sum over periodic interfaces is just

∑
Y :t(Y )=t0

e−β|Y | =
1

2π

∫ π

−π
dp Z̃(p) . (4.32)

Since Z̃(p) can again be rewritten as the partition function of a dilute lattice gas (note

that the activities of the walls are multiplied by a complex number of modulus one, which

doesn’t affect the about absolute convergence), its logarithm is again of the form

log Z̃(p) ∼= −Lf̃(p) . (4.33)

For large L, the integration over p in (4.32) can then be analyzed by a saddle point

approximation and we obtain

∑
Y :t(Y )=t0

e−β|Y | ∼=
1

2π

∫ π

−π
dp exp

(
−Lf̃(0)− p2

2
Lf̃ ′′(0)

)
=

1√
2πLf̃ ′′(0)

e−Lf̃(0) (4.34)

in accordance with the heuristic random walk argument.

It is interesting to introduce boundary conditions which interpolate between free and

periodic boundary conditions by adding a term

∑
{x,y}

g|σx − σy| (4.35)
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to the Hamiltonian, where the sum runs over all pairs of points x, y which lie on opposite

sides of the boundary of V . The value g = 0 then corresponds to free and the value g = 1 to

periodic boundary conditions. For the transverse quantum Ising model in one dimension,

such b.c. have been considered by Cabrera and Julien [18] and by Barber and Cates [19].

While Cabrera and Julien present exact calculations on small lattice which suggest that

ξL ∼ O(Lw)eβσL where w varies smoothly as g goes from 1 to 0, Barber and Cates give

random walk arguments which explain this effect as a crossover phenomenon, suggesting

that w = 1/2 for all g > 0. For the classical Ising model considered here, Abraham, Ko

and Svracic [20] gave exact transfer matrix expressions for the spectral gap, which again

give w = 1/2 for all g > 0 in ν + 1 = 2. We think that these results can actually be

proven (and at the same time be extended to a large class of two phase systems with a

symmetry relating h to −h) if one uses the methods developed in Section 5 of [9]. In order

to explain the main idea, we again leave off the corrections coming from the resummation

of ordinary contours. In this approximation, Γ(0)
+− is now given as a sum of the form (4.29),

with an extra factor e−gβ
∑

i
hi on the r.h.s. correcting for the fact that we have left out

the contribution of (4.35) to the energy of an interface. Rewriting

e−gβ
∑

i
hi =

1
2π

∫ π

−π
dpG(p)eip

∑
i
hi ,

where

G(p) =
∞∑

m=−∞
eipme−gβ|m| , (4.36)

we obtain that

Γ(0)
+−
∼=

∑
Y :t(Y )=t0

e−β|Y |e−gβ
∑

i
hi =

1
2π

∫ π

−π
dpG(p)Z̃(p) . (4.37)

Except for g = 0, where G(p) = 2πδ(p) and hence

Γ(0)
+−

∣∣∣
g=0

∼=
1

2π
Z̃(0) = O(1)e−Lf̃(0) ,

G(p) is regular at p = 0. As a consequence, the integral in (4.37) may again be analyzed

by a saddle point approximation, leading to

Γ(0)
+−
∼= O(1)

∫ π

−π
dpG(0) exp

(
−Lf̃(0)− p2

2
Lf̃ ′′(0)

)
= O(1)

G(0)√
Lf̃ ′′(0)

e−Lf̃(0) (4.38)
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for all g > 0. Using the methods of [9], Section 5, it should be possible to actually prove

that this behavior persist when the corrections coming from the resumming over ordinary

contours are taken into account. We therefore conjecture that the following Quasi-Theorem

is in fact a Theorem

Quasi-Theorem 4.2. Let β be large, ν + 1 = 2 and µ = 0. Let ξ−1
L (g) be the spectral gap

in the infinite cylinder V∞ with boundary conditions g as defined above. Then

ξL = D(L)eβσL , (4.39)

where

D(L) ∼ const. Lw as L→∞ (4.40)

and w = 0 for g = 0, while w = 1/2 for all g in the range 0 < g ≤ 1.

Note that (4.40) is only an asymptotic statement for large L, and that the answer to

the question how large is large may depend on g. Heuristically, one just should compare

the average walking distance of the random walk l(L) = O(L1/2) to the length scale

l(g) = O(1/g) on which the term e−gβ
∑

i
hi starts to suppress large height differences

between the two end points of the surface Y , see also [19]. If l(L) < l(g), the insertion

of e−gβ
∑

i
hi should not have a great influence, so that effectively w is still 0, while for

l(L) > l(g) we expect the onset of the asymptotic behavior (4.40). Note that this heuristic

arguments can actually be made more quantitative by calculating the next to leading

orders in the approximation (4.38). One obtains that

Γ(0)
+−
∼=

c0√
L

(
1 + c1L

−1 +O(L−2)
)
, (4.41)

where both c0 and c1 depend on g. For small g, c1 ∼ g−2, which gives a crossover if

L = O(g−2).

Remark: It would be interesting to prove Theorem 4.1 and the above Quasi-Theorem for

asymmetric models. For these models, we expect a shift O(1/L) in the free boundary

finite volume transition point (defined, e.g., as the point µ∗(L) where f+(L, µ∗(L)) =
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f−(L, µ∗(L)), or, more naturally, as the point where the splitting between the two lowest

eigenvalues of the transfer matrix is minimal). It is clear, however, that the proof of the

analog of Theorem 4.1 requires a substantial extension of the methods used so far, since the

a priori assumption |µ− µ∗|Lν ≤ O(1) which was used to resum ordinary contours is not

valid anymore. Note, however, that such a condition is only needed for ordinary contours

which touch the boundary, while ordinary contours not touching the boundary may in fact

be resummed as long as |µ|L ≤ bβ for some b < 1. Using a procedure of inductively defining

suitable finite-L free energies f±(L, µ) (as sketched in the appendix just before equation

(A.2)) should then make it possible to actually resum the ordinary contours which touch

the boundary if |µ− µ∗(L)|Lν ≤ O(1) (where µ∗(L) is now inductively defined as well).
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Appendix

In this appendix we fill in the technical details left out in the last section. In order to

avoid lengthy repetitions, we assume that the reader has some familiarity with [9] and only

comment on the differences which appear due to the presence of free boundary conditions

(b.c).

For preciseness, we distinguish between the lattice V = A × T , the set V1 of nearest

neighbor (n.n.) bonds in V , their duals V ∗ and V ∗1 , and the continuum cylinder V :=

[1/2, L + 1/2]ν × (R/tZ). We introduce contours, long contours, interfaces and ordinary

contours as in Section 3 of this note, considering the set ∂σV as a subset of V by taking the

closed union of all faces dual to a bond 〈xy〉 for which σx 6= σy. Observing that each short

contour may be embedded into the infinite cylinder V∞ := [1/2, L+ 1/2]ν ×R, we define,

for each contour Y which is either an interface or an ordinary contour, the interior IntY

of Y as the union of all finite components of V∞ \ Y . Note that the interior of a contour

may have several connected components with our definitions where we did not include a

“rounding of edges” procedure to produce contours with connected interiors4.

First, we want to comment on the consequences of the condition |µ|Lν ≤ 1 on the

resummation of ordinary contours. To this end we recall that the resummation of ordinary

contours involves activities K(Y ) (see equation (3.4) of [9]) which contain ratios of partition

functions

Z−(W,µ)
Z+(W,µ)

or
Z−(W,µ)
Z+(W,µ)

where W is a connected component of IntY and Z±(W,µ) is defined as

Z±(W,µ) :=
∑
σW

′
exp

−β ∑
〈xy〉∈W1

|σx − σy|+ µ
∑
x∈W0

σx

 , (A.1)

where the sum goes over all configurations σW : W0 → {−1
2 ,

1
2} which are perturbations

of the plus ground state (or of the minus ground state, if the sign - is chosen) by ordinary

contours (see below), W0 = V ∩W is the set of lattice points which lie in W , and W1 is

the set of nearest neighbor bonds 〈xy〉 ∈ V1 for which both x and y lie in W0. Here — and

in the following — σW is called a perturbation of a ground state m ∈ {− 1
2 ,

1
2} by ordinary

4 For the same reasons, interfaces may also have an interior with several components.
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contours if all contours corresponding to σW are ordinary contours, if none of them touches

∂W \ ∂V , and if σx = m for all points x in the set Ext := W \ ∪iIntYi (where the union

runs over all contours Yi of σW ).

In order to bound the activities K(Y ), we have to bound the above ratios of partition

functions. Following the strategy used for periodic b.c., we would assume inductively that

K(Y ) ≤ e−(β−O(1))|Y | and then use this assumption to bound

|logZ±(W,µ) + |W |βf±(µ)| ≤ |∂W |O(e−β)

in the next step. Assuming |µ|Lν ≤ 1, which implies that β|f+(µ) − f+(µ)| |IntY | ≤
β|f+(µ)− f+(µ)|Lν |Y | ≤ O(1)|Y |, we then get

|K(Y )| ≤ e−(β−O(1))|Y |
∏
W

e|∂W |O(e−β) ,

where the product goes over the connected components of IntY . Unfortunately, this bound

is not good enough, since |∂W | may now have huge parts which are made of the free

boundary ∂V , so that |∂W | may be much larger then |Y | (the ratio may in fact be as large

as O(Lν−1)).

One should therefore try to inductively construct an L-dependent free energy f±(L, µ)

which takes the boundary effects with the free boundary into account, leaving only an error

term |∂W ∩ Y |O(e−β). Fortunately, we do not have to follow this strategy in the present

case, where the +/− symmetry implies that

Z−(W,µ = 0) = Z+(W,µ = 0) . (A.2)

Combined with the fact that∣∣∣∣dkZ±(W,µ)
dµk

∣∣∣∣ ≤ (|W |/2)kZ±(W,µ) (A.3)

since the sum in (A.1) is a sum of positive terms and |σx| = 1
2 , we conclude that

∣∣∣∣Z−(W,µ)
Z+(W,µ)

∣∣∣∣ ≤ e|W ||µ| and
∣∣∣∣Z+(W,µ)
Z−(W,µ)

∣∣∣∣ ≤ e|W ||µ| .
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Bounding now |IntY | ≤ |I(Y )|Lν ≤ |Y |Lν , where I(Y ) denotes the smallest interval such

that Y ⊂ [1/2, L+ 1/2]ν × I(Y ), we find that the activities K(Y ) may be bounded by

K(Y ) ≤ e−(β−|µ|Lν)|Y | . (A.4)

The condition |µ|Lν ≤ 1 therefore guaranties that the resummation of the ordinary con-

tours in Zres can be analyzed by a convergent expansion.

In order to obtain a representation of the form (4.17), we now use that the resumma-

tion of ordinary contours brings Zres(V, µ) into the form

Zres(V, µ) =Z+(V, µ) + Z−(V, µ)

+
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

[
e−β|Yi|

∏
W⊂IntY

ZmW (W,µ)

] ∏
i

Zmi(Vi, µ) , (A.5)

where the sum over Y1, . . . , Yn goes over interfaces Y1, . . . , Yn that are chronologically

ordered, the product
∏
W⊂IntY runs over the connected components of IntY , and Vi is

the region between Yi and Yi+1; Z±(·, µ) are the partition functions introduced in (A.1),

mi = + if Vi is in the + phase and mi = − otherwise, and, in the same way, mW = ±,

depending on whether W is in the phase + or −. The factor 1/n in the above sum counts

for the fact that cyclic permutations of Y1, . . . , Yn correspond to the same configuration in

Zres(V, µ).

Using W ∗ and V ∗i to denote the set of cubes dual to the lattice points in W and Vi,

respectively, we now use the fact that Z±(·, µ) can be analyzed by a convergent cluster

expansion, to write its logarithm in the form

logZ±(W,µ) = ±µ|W ∗|+
∑

X⊂W∗
k±(X) , (A.6)

where the sum goes over connected subsets X of W ∗, and |k±(X)| ≤ e−(β−O(1))|X|. We

then rewrite

logZ±(W,µ) =
∑
c∈W∗

±µ+
∑
X⊂W∗
X3c

k̃±(X)

 ,
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where k̃±(X) = k±(X)/|X|, and introduce position dependent free energies

βfc± := ∓µ−
∑
X⊂V ∗∞
X3c

k̃±(X) , (A.7)

noting that

βfc± = βf(µ) +O(e−(β−O(1))dist(c,∂V ∗∞) . (A.8)

Using these free energies, logZ±(W,µ) may be written as β
∑
c∈W∗ fx± plus a sum of

the form (A.6), where X now goes over sets X ⊂ V ∗∞ which intersect ∂W \ ∂V ∗∞. As a

consequence, Zres(V, µ) may be rewritten as

Zres(V, µ) = e−βf+(L,µ)|V | + e−βf−(L,µ)|V |

+
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

κ̃(Yi) eg(Yi,Yi+1) exp (−
∑
c∈V ∗

i

βfxmi) , (A.9)

where

f±(L, µ) =
1
tLν

∑
c∈V ∗

fc± ,

κ̃(Y ) = e−β|Y |+g(Y )
∏

W⊂IntY

exp(−
∑
c∈W∗

βfcmW ) .

Here g(Y ) may be rewritten as a sum of terms X intersecting Y and hence can be bounded

by |Y |O(e−β), and g(Y, Y ′) can be written as a sum of terms intersecting both Y and Y ′,

and hence can be bounded by min{|Y |, |Y ′|}e−dist(Y,Y ′)(β−O(1)).

In order to bring (A.9) into the form (4.17), we note that

Vi = (Ā× I) \
[
(Ā× I(Yi)) \ V+(Yi) ∪ (Ā× I(Yi+1)) \ V−(Yi+1)

]
, (A.10)

where Ā = [1/2, L + 1/2]ν , I(Y ), V−(Y ) and V+(Y ) are the smallest interval such that

Y ⊂ Ā× I(Y ), the part of I(Y ) which lies below Y and the part of I(Y ) which lies above

Y , respectively. Finally I is the interval which extends from the lowest endpoint of I(Yi) to
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the highest endpoint of I(Yi+1). Using (A.10) and the fact that the translation invariance

in the time direction implies that

∑
c⊂Ā×Ĩ

fc± = |Ā× Ĩ|f±(L, µ)

for Ĩ = I, I(Yi) and I(Yi+1), we now rewrite (A.9) as

Zres(V, µ) =e−βf+(L,µ)|V | + e−βf−(L,µ)|V |

+
∞∑
n=1

1
n

∑
Y1,···,Yn

∏
i

κ(Yi) e−βfi(L,µ)|Vi| eg(Yi,Yi+1) , (A.11)

where, for an interface Y which describes the transition from a state m− below Y to a

state m+ above Y ,

κ(Y ) := κ̃(Y ) exp

−β ∑
c∈V ∗+

(fcm+ − fm+(L, µ))− β
∑
c∈V ∗−

(fcm− − fm−(L, µ))

 . (A.12)

In order to bound κ(Y ), we note that

κ(Y ) = eg(Y )−β|Y |e−β∆F (Y )
∏

W⊂IntY

e−βfmW (L,µ)|W | , (A.13a)

where

∆F (Y ) =
∑
c∈V ∗+

(fcm+ − fm+(L, µ)) +
∑
c∈V ∗−

(fcm− − fm−(L, µ))

+
∑

W⊂IntY

∑
c∈W∗

(fcmW − fmW (L, µ)) .
(A.13b)

Using the fact that |d∆F (Y )/dµ| ≤ |I(Y )|LνO(e−β) and that ∆F (Y ) = 0 if µ = 0, we

conclude that

|κ(Y )| ≤ e−β|Y |eO(1)(|Y |+|I(Y )|) ≤ e−(β−O(1))|Y | , (A.14)
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provided |µ|Lν ≤ 1.

Given the representation (A.10), the bound (A.14) and its generalization to deriva-

tives, and the fact that the derivatives of f±(L, µ) are bounded by O(1), the results of

Section 4 of [9] immediately give (4.24) through (4.26). In order to prove (4.27), we note

that

Lν |I+(Y )|+ Lν |I−(Y )| − |V+(Y )| − |V−(Y )| = |IntY | ,

where I±(Y ) are the parts of I(Y ) which lie above and below the point t(Y ) defined in the

last section. Combined with the fact that ∆F (Y ) = 0 if µ = 0, we obtain that

r(Y )|µ=0 = eg(Y )−β|Y | ,

and hence

Γ(0)
+−

∣∣∣
µ=0

= lim
V→V∞

∑
Y :t(Y )=t0

eg(Y )−β|Y | .

Using the fact that g(Y ) is a sum over connected sets X ⊂ V ∗ which intersect the surface

Y , the methods introduced in [21] (see also [22]) then allow us to rewrite Γ(0)
+− as the

partition function Z̃(Y0) of a dilute gas of excitations over the flat surface Y0, where an

excitation is now a connected cluster made of the walls introduced in Section 3 and the

subsets X ⊂ V ∗ appearing in the cluster expansion for g(Y ). Expanding log Z̃(Y0) into

volume terms, surface terms, etc., we obtain equation (4.27).

We finally bound the difference Zfree(V, µ)−Zres(V, µ). Resumming ordinary contours,

we rewrite this difference as

Zfree(V, µ)− Zres(V, µ) =
∞∑
n=1

∑
{Y1,···,Yn}

∏
i

e−β|Yi|
∏
W

ZmW (W,µ) ,

where the second sum goes over sets {Y1, · · · , Yn} of long contours in V such that Yi∩Yj = ∅,
the product over W runs over the connected components of V \ ∪iYi, mW is the label of

the state in W and ZmW (W,µ) are the partition functions introduced in (A.1). Using the

bound (A.3) and the symmetry (A.2) we then bound

|Zfree(V, µ)− Zres(V, µ)| ≤ e|µ/2||V |
∞∑
n=1

∑
{Y1,···,Yn}

∏
i

e−β|Yi|
∏
W

Z+(W, 0) .
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We then note that the last product in this sum can be rewritten as

∏
W

Z+(W, 0) =
∑
σV

′ ∏
〈xy〉∈V1

e−β|σx−σy| ,

where the sum goes over configurations which are small perturbations of the plus ground

state by ordinary contours obeying the additional constraint that σx = σy = +1/2 for all

bonds 〈xy〉 which are dual to a face in ∪Yi. Summing over all configurations which are

small perturbations of the plus ground state by ordinary contours without any additional

constraints gives an upper bound, and we obtain that

|Zfree(V, µ)− Zres(V, µ)| ≤ e|µ/2||V |Z+(V, 0)
∞∑
n=1

∑
{Y1,···,Yn}

∏
i

e−β|Yi|

≤ e|µ||V |Z+(V, µ)
∞∑
n=1

∑
{Y1,···,Yn}

∏
i

e−β|Yi| . (A.15)

Using the fact that each contour in the sum over {Y1, . . . , Yn} is long, and hence larger

then t, and bounding Z+(V, µ) by e−βmin{f+(L,µ),f−(L,µ)}|V |e|V | exp(−(β−O(1))t), we obtain

that

|Zfree(V, µ)− Zres(V, µ)| ≤ e−βmin{f+(L,µ),f−(L,µ)}|V |e−(β−O(1))t , (A.16)

provided |µ|Lν ≤ 1. At this point we use the bound (4.26) to bound the smallest eigenvalue

λ0 of the matrix (F + F 1/2ΓF 1/2) from below

λ0 ≥ e−βmin{f+(L,µ),f−(L,µ)}Lν (1− exp(−(β −O(1))Lν))

≥ e−βmin{f+(L,µ),f−(L,µ)}Lνe−O(1) . (A.17)

Combining the bounds (4.25) and (A.16) with (A.17) and the fact that |V | = tLν we

obtain that ∣∣∣∣ dkdµk (Zfree(V, µ)− Tr (F + F 1/2ΓF 1/2)t)
∣∣∣∣ ≤ λt0e−(β−O(1))t . (A.18)

provided t ≥ ν logL, |µ|Lν ≤ 1 and 0 ≤ k ≤ 4. Since this bound implies that

− log λ0/(βLν) is actually the free energy f(L) defined in (4.2), the bound (4.3) is finally

proven.
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