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ABSTRACT

We present two methods for the construction of quantum circuits for quantum error-

correcting codes (QECC). The underlying quantum systems are tensor products of sub-
systems (qudits) of equal dimension which is a prime power. For a QECC encoding k

qudits into n qudits, the resulting quantum circuit has O(n(n − k)) gates. The running
time of the classical algorithm to compute the quantum circuit is O(n(n − k)2).

Keywords: Quantum circuits, quantum error correction.

1. Introduction

Most quantum error-correction codes (QECC) have been constructed for quan-

tum systems that are composed of two-dimensional subsystems—quantum bits or

short qubits. At first glance, the size of the alphabet used to encode the information

to be processed seems to be irrelevant. But already in the context of classical infor-

mation processing and communication this is not true. For example, the entropy of

a message depends on the alphabet used for the encoding, and increasing the size

of the alphabet allows the construction of better error-correcting codes [22, 27].

In the context of quantum information, a quantum system consisting of two

three-dimensional subsystems—qutrits—shows new features when compared to a

two-qubit system. For example, bound entanglement exists only for the former

[15], and for two qutrits there is even “nonlocality without entanglement” [3].

In this paper, we consider quantum systems which have subsystems of dimension

d = pm, where p is prime. As a shorthand, we will use the term “qudit”. Quantum

codes for qudit systems have been studied, e. g., in [1, 2, 10, 24]. The question of

encoding and decoding these codes, however, was not explicitly addressed. Here
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we present efficient (classical) algorithms to compute efficient quantum networks

for the encoding process. The method applies to qubit codes as well, for which

encoding algorithms have been discussed, e. g., in [6, 11, 12, 13, 14].

In the following section, we present the mathematical framework of quantum

information processing using composed quantum systems. In Section 3 we recall

the basic concepts and constructions of quantum error-correcting codes. A first

encoding algorithm for the class of CSS codes is presented in Section 4. The main

result, an encoding algorithm for stabilizer codes over higher dimensional quantum-

systems, is derived in Section 5 and illustrated in Section 6.

2. Non-binary Quantum Systems

2.1. Quantum States and Registers

In the context of classical information processing, information is encoded using

words over some finite alphabet A, most often A = {0, 1}. The elementary “sym-

bols” of quantum information processing are states of a finite dimensional quantum

system. Those can be modeled by normalized vectors in a complex Hilbert space

H = Cd. Again, the simplest case of H = C2 is considered most often. Then the

orthonormal basis states of such a quantum bit, or short qubit, are written as |0〉
and |1〉. (The notation of quantum states as “ket vectors” | · 〉 is attributed to Dirac

[7]). A general state of a qubit is given by

|φ〉 = α|0〉+ β|1〉, where α, β ∈ C and |α|2 + |β|2 = 1.

If both α and β are non-zero, the state |φ〉 is a so-called superposition of |0〉 and

|1〉 with amplitudes α and β. For a d-dimensional system, we label the orthonor-

mal basis states by the elements of some alphabet of size d, e. g., the numbers

{0, 1, . . . , d− 1} or the elements of a finite field, if d is a prime power. The general

state of a qudit is given by

|ψ〉 =
d−1
∑

i=0

αi|i〉, where αi ∈ C and

d−1
∑

i=0

|αi|2 = 1.

Combining several qudits, we obtain a quantum register. The canonical basis states

of a quantum register of length n are tensor products of the basis states of the single

qudits. Hence we can label them by words x ∈ An of length n. For the basis states

of a quantum register we use the following notations:

|x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xn〉 = |x1〉|x2〉 . . . |xn〉 = |x1, x2, . . . , xn〉 = |x〉.

A general state of a quantum register of length n is a normalized vector in the

exponentially large Hilbert space H = (Cd)⊗n ∼= C
dn

, given by

|Ψ〉 =
∑

x∈An

αx|x〉, where αx ∈ C and
∑

x∈An

|αx|2 = 1.
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When writing states of quantum registers, normalization factors may be omitted.

The elements of the dual space H∗ will be denoted by “bra vectors” 〈y|. Then

the inner product of two vectors |x〉 and |y〉 reads 〈x|y〉, and linear operators M

can be written in the form

M = (Mi,j) =
∑

i,j

Mij |i〉〈j|.

As the operations have to preserve the normalization of the vectors, the admissible

operations are unitary operators, which we will discuss next.

2.2. Elementary Gates

In the following we will consider qudit systems where each qudit corresponds to

a q-dimensional Hilbert space where q = pm is a prime power.

Definition 1 (Elementary Gates) Let q be a prime power, i. e., q = pm where

p is prime. By ω we denote a primitive complex p-th root of unity, i. e., ω =

exp(2πi/p). Furthermore, let tr(α) denote the trace of an element α ∈ Fq = Fpm

which is defined as tr(α) :=
∑m−1

i=0 αpi ∈ Fp. Then we define the following opera-

tions:

(i) Xα :=
∑

x∈Fq

|x+ α〉〈x| for α ∈ Fq

(ii) Zβ :=
∑

z∈Fq

ωtr(βz)|z〉〈z| for β ∈ Fq

(iii) Mγ :=
∑

y∈Fq

|γy〉〈y| for γ ∈ Fq \ {0}

(iv) DFT :=
1√
q

∑

x,z∈Fq

ωtr(xz)|z〉〈x|

(v) ADD(1,2) :=
∑

x,y∈Fq

|x〉1|x+ y〉2〈y|2〈x|1

(vi) HORNER(1,2,3) :=
∑

a,x,b∈Fq

|a〉1|x〉2|ax+ b〉3〈b|3〈x|2〈a|1

Here, when writing ωtr(βz), we identify Fp and Z/pZ, the integers modulo p. Then

the function χβ : z 7→ ωtr(βz) is an additive character of Fq. Different values of β

yield the q different additive characters of Fq (see, e. g., [17, 21]).

Xα Zβ Mγ DFT

k

•

k

•

•

(i) (ii) (iii) (iv) (v) (vi)

Fig. 1. Graphical representation of the elementary gates of Definition 1.

A graphical representation of these elementary operations—so-called quantum
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gates—is given in Figure 1. Each horizontal line corresponds to one qudit. The first

three operations operate on single qudits. A superscript in brackets indicates on

which subsystem the transformation acts, e. g., X
(2)
α = id⊗Xα⊗ id⊗ . . .⊗ id. The

operations Xα and Mγ correspond to the addition of a fixed element α ∈ Fq and

the multiplication with a fixed element γ 6= 0, respectively. The operation Zβ has

no direct classical analogue, it changes the phases of the basis states. The Fourier

transformation DFT can be used to transform the state |0〉 to a superposition of all

basis states with equal amplitudes, i.e.,

DFT|0〉 = 1√
q

∑

α∈Fq

|α〉.

Starting from this superposition, a quantum computation can, e. g., evaluate a

function in parallel for all possible inputs. Arbitrary classical functions over Fq

can be implemented using the gates ADD(1,2) and HORNER(1,2,3). The former

corresponds to the reversible implementation of the addition of two elements. The

first qudit is called “control”, the second “target”. The latter is a universal reversible

gate over Fq, as any function over Fq corresponds to a polynomial which can be

evaluated using the Horner scheme. It is the generalization of the so-called Toffoli

gate [26] for qubits, which is universal gate for reversible boolean functions, as well

as the Fredkin gate [8].

3. Quantum Error-Correcting Codes

3.1. Unitary Error Bases

In the following, we will recall the basic properties and constructions of quantum

error-correcting codes. In order to construct an error-correcting code, one has to

specify an error model. The error model can be specified by a (finite) set E of error

operators. In [20], the following characterization of error-correcting codes is given.

Theorem 1 Let C be a subspace of the Hilbert space H with orthonormal basis

{|c1〉, . . . , |cK〉}. Then C is a quantum error-correcting code for the error-operators

E = {E1, . . . , Eµ} if and only if there exists αk,l ∈ C such that for all |ci〉, |cj〉 and

Ek, El ∈ E
〈ci|E†

kEl|cj〉 = δi,jαk,l. (1)

Most quantum error-correcting codes are designed to correct local errors, i. e., errors

that effect only some subsystems. The error acting on a single subsystem can be

any linear transformation. It is sufficient that condition (1) holds for a basis of the

linear space of error operators. For qudit systems of prime power dimension q, we

consider the following set of unitary operators:

E = {XαZβ : α, β ∈ Fq}. (2)

It is not hard to show that those q2 operators are an orthogonal basis with respect to

the inner product 〈A,B〉 = tr(A†B). Furthermore, they generate an error group G1
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of size pq2 with center ζ(G1) = 〈ωI〉 (see [18, 19]). Any element of G1 can uniquely

be written as ωγXαZβ where γ ∈ {0, . . . , p − 1} and α, β ∈ Fq. The commutation

relations of two elements are derived from

XαZβX
−1
α =

∑

x∈Fq

|x+ α〉〈x|
∑

z∈Fq

ωtr(βz)|z〉〈z|
∑

y∈Fq

|y〉〈y + α|

=
∑

z∈Fq

ωtr(βz)|z + α〉〈z + α|

=
∑

z∈Fq

ωtr(β(z−α))|z〉〈z|

= ω− tr(αβ)Zβ.

Hence commuting two elements results in a phase factor, i. e.,

(XαZβ)(Xα′Zβ′) = ωtr(α′β−αβ′)(Xα′Zβ′)(XαZβ). (3)

For an n-qudit system, the error basis and the error group are the n-fold tensor prod-

ucts E⊗n and Gn := G⊗n
1 , respectively. The weight of an error-operator E ∈ E⊗n

is the number of tensor factors that are different from identity. If a K-dimensional

subspace C of (Cq)⊗n can correct all errors of weight no greater than t, C is a

t-error-correcting code with minimum distance 2t+ 1, denoted by ((n,K, 2t+ 1)).

3.2. Stabilizer Codes

A particular class of quantum error-correcting codes are so-called stabilizer codes

(see [2, 4, 9]). The basic idea is to consider an Abelian subgroup S of the error

group Gn such that its intersection with the center of Gn is trivial. The stabilizer

code C is defined as the common eigenspace of the operators in S. Stabilizer codes

can be described in terms of certain classical codes over finite fields.

Any element E of the error group Gn can uniquely be written as

E = ωγ(Xα1
Zβ1

)⊗ (Xα2
Zβ2

)⊗ . . .⊗ (Xαn
Zβn

) =: ωγXαZβ ,

where γ ∈ {0, . . . , p − 1} and α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Fn
q . The

weight of an element XαZβ is the number of indices i for which not both αi and

βi are zero. From the commutation relation (3), it follows that for (α, β), (α′, β′) ∈
Fn

q × Fn
q

(XαZβ)(Xα′Zβ′) = ω(α,β)∗(α′,β′)(Xα′Zβ′)(XαZβ),

where the inner product ∗ is defined by

(α, β) ∗ (α′, β′) :=

n
∑

i=1

tr(α′
iβi − αiβ

′
i). (4)

This shows that the group Gn := Gn/〈ωI〉 is isomorphic to Fn
q × Fn

q . Furthermore,

two elementsXαZβ andXα′Zβ′ commute if and only if (α, β)∗(α′, β′) = 0. Hence an

Abelian subgroup S of Gn corresponds to a subspace C of Fn
q ×Fn

q that is contained

in its dual C∗ with respect to the inner product (4).
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Definition 2 (Stabilizer Matrix) Let S be an Abelian subgroup of Gn which has

trivial intersection with the center of Gn. Furthermore, let {g1, g2, . . . , gn−k} where

gi = ωγiXαi
Zβi

with γi ∈ {0, . . . , p− 1} and (αi, βi) ∈ Fn
q × Fn

q be a minimal set of

generators for S. Then a stabilizer matrix of the corresponding stabilizer code C is

a generator matrix of the (classical) linear code C ⊆ Fn
q × Fn

q . We will write this

matrix in the form










α1 β1

α2 β2

...
...

αn−k βn−k











∈ F
(n−k)×2n
q .

Any error operator E that does not commute with all elements S ∈ S will change

the eigenvalue of an eigenstate |ψ〉 of S which can be detected by a measurement.

Recall that E = XαZβ does not commute with all S ∈ S if and only if (α, β) /∈ C∗.

Finally, the minimum distance of a stabilizer code is the minimum weight of the

vectors (α, β) ∈ C∗ \C, since the errors corresponding to C∗ are those that cannot

be detected, and the operators corresponding to C have no effect on the code.

4. Encoding CSS Codes

A special class of stabilizer codes are so-called CSS codes named after Calder-

bank, Shor [5] and Steane [25]. Originally, they have been designed for qubit sys-

tems, but they can easily generalized to any dimension (see, e. g., [1]). Given two

linear codes C1 = [n, k1, d1]q and C2 = [n, k2, d2]q over Fq with C⊥
2 ⊆ C1, the basis

states of the corresponding CSS code are

|ψw〉 :=
1

√

|C⊥
2 |

∑

c∈C⊥
2

|c+ w〉, where w ∈ C1. (5)

Two states |ψw〉 and |ψw′〉 are identical if and only if w −w′ ∈ C⊥
2 , otherwise they

are orthogonal. As the dimension of C⊥
2 is n−k2, there are qk different cosets where

k = k1 + k2− n. Hence the dimension of the CSS code is qk. Its minimum distance

is d ≥ min(d1, d2).

We illustrate the encoding of a CSS code for the code [[7, 3, 3]]8 over seven 8-

dimensional quantum systems. Let α ∈ F8 be a primitive element of F8 with

minimal polynomial µα(X) = X3 +X + 1. The code C = [7, 2, 6]8 with generator

matrix

G =

(

1 0 α3 1 α3 α α
0 1 α4 1 α5 α5 α4

)

is contained in its dual C⊥ = [7, 5, 3] with generator matrix

H =













1 0 α3 1 α3 α α
0 1 α4 1 α5 α5 α4

0 0 1 0 0 α3 α5

0 0 0 1 0 α α5

0 0 0 0 1 α α4













.
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The first two rows of H are equal to G. The cosets of C⊥/C are given by linear

combinations of the last three rows. Denoting the rows of H by h1, h2, . . . , h5, we

can rewrite equation (5) as

|ψa,b,c〉 =
1

√

|C|
∑

i,j∈F8

|ih1 + jh2 + ah3 + bh4 + ch5〉,

where a, b, c ∈ F8. Applying a Fourier transformation to the first and second qudit

of the initial state |00〉|a〉|b〉|c〉|00〉, we obtain

1

8

∑

i,j∈F8

|i〉|j〉|a〉|b〉|c〉|00〉. (6)

Now we sequentially add the corresponding multiple of the rows of H in reverse

order, i. e., starting with h5. As H is in row echelon form, this corresponds to a

sequence of modified ADD gates—instead of adding the first qudit to the second,

we have to add a multiple of it. The resulting encoding circuit is shown in Figure 2.

|0〉

|0〉

|φin〉































|0〉

|0〉

F

F

α-1

α-4

f
•

f

•

α
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f
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f

•

α
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f

•

f

•
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α-5

α-5
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f
•

f
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f
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f

•
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α4

α-3

α-3

α-1

α-1

f

•

f

•

f

•

f

•

f

•

α3

α3

α

α











































































































|φenc〉

Fig. 2. Encoding circuit for the CSS code [[7, 3, 3]]8. The Fourier transformation
DFT is abbreviated by F , and for the gate Mα we give only the value of α.

For each row hk of H , we have a sequence of gates ADD(k,l) corresponding to the

non-zero entries Hkl for k 6= l. The gate ADD(k,l) is conjugated by a multiplication

gate Mγ where γ = Hkl. Note that we have not combined adjacent multiplication

gates. In general, G is a generator matrix of C⊥
2 ⊆ C1, and H is its completion to

a generator matrix of C1. Using the construction illustrated above, we get

Proposition 1 Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be linear codes over Fq

with C⊥
2 ⊆ C1. Then there exists a quantum circuit to encode the resulting CSS code

C = [[n, k, d]]q over qudits of dimension q, where k = k1 + k2− n, using n− k2 DFT

gates, at most A := k1n−
(

k1+1
2

)

ADD gates, and at most A+(n−1) multiplication

gates.

Proof. To create a state similar to (6), we need dimC⊥
2 = n − k2 DFT gates. A

generator matrix H for C1 has k1 rows. Hence the number A of ADD gates is at

most k1n. As H can be chosen to be in row echelon form, we have k1 entries that

are one. Those correspond to the control qudits. Furthermore, at least
(

k1

2

)

entries

of H are zero, reducing the number of ADD gates further. Finally, each ADD gate

is conjugated by a multiplication gate. Adjacent multiplication gates between the

7



ADD gates can be combined, so we count only the multiplication gates before the

ADD gates, plus at most n− 1 multiplication gates at the end. 2

As the rôle of C1 and C2 in the construction of CSS codes is completely symmet-

ric, one has the freedom to choose the matrices G and H to be generator matrices

of either C⊥
2 and C1, respectively C⊥

1 and C2. This may reduce the number of gates

by a constant factor, as well as optimizing the particular generator matrices.

5. Encoding Qudit Stabilizer Codes

In this section we derive an encoding algorithm for general stabilizer codes over

qudit systems of prime power dimension q = pm. The main idea is to transform

the Abelian stabilizer group S ⊆ Gn of the stabilizer code C = [[n, k, d]]q into a

stabilizer group S0 for which encoding is particularly easy. Up to a permuta-

tion π ∈ Sn of the qudits—which we may ignore in the sequel—, that group is

S0 := 〈Z(1)
1 , Z

(2)
1 , . . . , Z

(n−k)
1 〉. The corresponding stabilizer code C0 cannot cor-

rect single qudit errors at arbitrary positions as the common eigenstates of S0 are

tensor products of the fixed (n − k)-qudit state |00 . . . 0〉 and the unencoded state

|φin〉 ∈ (Cd)⊗k, i. e., they are of the form

|00 . . . 0〉|φin〉 ∈ (Cd)⊗n. (7)

As the stabilizer groups S and S0 are conjugated to each other there exists a trans-

formation D such that

D−1SD =π 〈Z(1), Z(2), . . . , Z(n−k)〉 = S0, (8)

where =π denotes equality up to the permutation π of the qudits. Combining (7)

and (8), it follows that the states D−1(|00 . . . 0〉|φin〉) are common eigenstates of

S. Hence the transformation D−1 can be used to encode that states of C. In the

following, we show that the transformation D can be efficiently decomposed into

single qudit transformations and ADD-gates.

5.1. Conjugating the Error Basis

First we consider the operation of the Fourier transformation over the additive

group of the field Fq (see Definition 1 (iv)) on the error group modulo the center.

The action on Zβ is given by

DFT−1ZβDFT =
1√
q

∑

i,j∈Fq

ω− tr(ij)|i〉〈j|
∑

z∈Fq

ωtr(βz)|z〉〈z| 1√
q

∑

k,l∈Fq

ωtr(kl)|k〉〈l|

=
1

q

∑

i,l∈Fq

d−1
∑

j∈Fq

ω− tr(ij)ωtr(βj)ωtr(jl)|i〉〈l|

=
1

q

∑

i,l∈Fq

∑

j∈Fq

ωtr((l−i+β)j)|i〉〈l|

=
∑

l∈Fq

|l + β〉〈l| = Xβ .

8



Similarly,

DFT−1XαDFT =
1√
q

∑

i,j∈Fq

ω− tr(ij)|i〉〈j|
∑

x∈Fq

|x+ α〉〈x| 1√
q

∑

k,l∈Fq

ωtr(kl)|k〉〈l|

=
1

q

∑

i,l∈Fq

∑

x∈Fq

ω− tr(i(x+α))ωtr(xl)|i〉〈l|

=
1

q

∑

i,l∈Fq

ωtr(−iα)
∑

x∈Fq

ωtr(x(l−i))|i〉〈l|

=
∑

i∈Fq

ωtr(−iα)|i〉〈i| = Z−α

As any element of G1 corresponds to a row vector (α, β), we can describe the action

of DFT on G1 as the linear transformation DFT :=
(

0 −1
1 0

)

.

Next we investigate the action of the matrix Mγ corresponding to the multipli-

cation with γ ∈ Fq, γ 6= 0 (see Definition 1 (iv)). We compute

M−1
γ XαZβMγ =

∑

y∈Fq

|y〉〈γy|
∑

x∈Fq

|x+ α〉〈x|
∑

z∈Fq

ωtr(βz)|z〉〈z|
∑

v∈Fq

|γv〉〈v|

=
∑

y∈Fq

|y〉〈γy|
∑

x∈Fq

|x+ α〉〈x|
∑

v∈Fq

ωtr(βγv)|γv〉〈v|

=
∑

y∈Fq

|γ−1y〉〈y|
∑

v∈Fq

ωtr(βγv)|γv + α〉〈v|

=
∑

v∈Fq

ωtr(βγv)|v + γ−1α〉〈v|

=
∑

x∈Fq

|x+ γ−1α〉〈x|
∑

z∈Fq

ωtr(βγz)|z〉〈z|

= Xγ−1αZγβ.

Hence, Mγ acts on (α, β) as Mγ :=
(

γ−1 0
0 γ

)

.

For the next operation, we have to distinguish the cases whether q is odd or q

is even. If q is odd, we define the operator

Pγ :=
∑

y∈Fq

ω− tr( 1

2
γy2)|y〉〈y| (9)

which commutes with Zβ . Furthermore, Xα acts on P−1
γ as follows:

X−1
α P−1

γ Xα =
∑

x∈Fq

|x〉〈x + α|
∑

y∈Fq

ωtr( 1

2
γy2)|y〉〈y|

∑

z∈Fq

|z + α〉〈z|

=
∑

y∈Fq

ωtr( 1

2
γ(y+α)2)|y〉〈y|

= ωtr( 1

2
γα2)

∑

z∈Fq

ωtr(γαz)|z〉〈z|
∑

y∈Fq

ωtr( 1

2
γy2)|y〉〈y|

= ωtr( 1

2
γα2)ZγαP

−1
γ .

9



Equivalently, we get

P−1
γ XαPγ = ωtr( 1

2
γα2)XαZγα.

Hence Pγ acts on (α, β) as P γ :=
(

1 γ
0 1

)

.

If q is even, we have to use another definition for the operator Pγ as we cannot

divide by two. For this, we fix an arbitrary self-dual basis B = {b1, . . . , bm} of

Fq = F2m over F2 (see e. g., [17]). Hence, by definition, tr(bibj) = δi,j . Any element

α ∈ Fq can uniquely be written as
∑m

i=1 αibi where αi ∈ F2. The coefficients αi are

given by αi = tr(biα) since

tr(biα) = tr(bi

m
∑

j=1

αjbj) =

m
∑

j=1

αj tr(bibj) =

m
∑

j=1

αjδi,j = αi.

Lemma 1 Let q = 2m and let B = {b1, . . . , bm} be an arbitrary self-dual basis of

Fq over F2. Furthermore, we define an integer-valued function on Fq as

wgt: Fq → Z, α 7→ |{j : j ∈ {1, 2, . . . ,m}| tr(αbj) 6= 0}|.

Then the following holds for all α, y ∈ Fq:

iwgt(y+α) = iwgt(α)iwgt(y)(−1)tr(αy),

where i ∈ C with i2 = −1.

Proof. First we observe that wgt(y+α) = wgt(y) + wgt(α)− 2|{j : yj = αj = 1}|.
Second, the size of this set modulo two is given by

tr(αy) = tr





( m
∑

j=1

αjbj

)( m
∑

k=1

ykbk

)



 =
m

∑

j,k=1

αjyk tr(bjbk) =
m

∑

j=1

αjyj,

which completes the proof. 2

Now we are ready to define an operator P1 as

P1 :=
∑

y∈Fq

(−i)wgt(y)|y〉〈y| =
∑

y∈Fq

m
∏

j=1

(−i)tr(ybi)|y〉〈y|.

Again, P1 commutes with all matrices Zβ . The action on Xα is derived from

X−1
α P−1

1 Xα =
∑

x∈Fq

|x〉〈x + α|
∑

y∈Fq

iwgt(y)|y〉〈y|
∑

z∈Fq

|z + α〉〈z|

=
∑

y∈Fq

iwgt(y+α)|y〉〈y|

= iwgt(α)
∑

z∈Fq

(−1)tr(αz)|z〉〈z|
∑

y∈Fq

iwgt(y)|y〉〈y|

= iwgt(α)ZαP
−1
1 .

Hence

P−1
1 XαP1 = iwgt(α)XαZα.
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Finally, for any γ ∈ Fq, γ 6= 0, we define Pγ as

Pγ := M−1
γ0
P1Mγ0

where γ2
0 = γ. (10)

(Note that γ0 is uniquely defined as x 7→ x2 is an automorphism of Fq = F2m .) The

matrix Mγ is a permutation matrix, hence Pγ is diagonal and commutes with Zβ.

The action of Pγ on Xα is given by

P−1
γ XαPγ = M−1

γ0
P−1

1 Mγ0
XαM

−1
γ0
P1Mγ0

= M−1
γ0
P−1

1 Xαγ0
P1Mγ0

= M−1
γ0
iwgt(αγ0)Xαγ0

Zαγ0
Mγ0

= iwgt(αγ0)XαZαγ2

0

= iwgt(αγ0)XαZαγ .

Summarizing, the operators Pγ (defined by (9) for q odd and (10) for q even)

acts on (α, β) always as P γ :=
(

1 γ
0 1

)

.

Altogether, we have shown

Theorem 2 The group JFq
:= 〈DFT, Pγ ,Mγ : γ ∈ F∗

q〉 acts on G1, the error group

G1 modulo the center, as SL(2,Fq).

Proof. The action of the matrices DFT, Pγ , Mγ on the error group G1 is given by

DFT :=

(

0 −1
1 0

)

, P γ :=

(

1 γ
0 1

)

, and Mγ :=

(

γ−1 0
0 γ

)

,

respectively. These matrices generate SL(2,Fq) (see, e. g., [23]). 2

As SL(2,Fq) acts transitively on the non-zero vectors (see, e. g., [16]), we obtain

Corollary 1 The group JFq
acts transitively on the non-trivial elements of G1.

So far, we have only considered the action of single qudit operations on the error

group Gn. Our goal is to transform an arbitrary Abelian stabilizer group S ⊆ Gn

into S0 which corresponds to the code C0 = [[n, k, 1]]. As C0 cannot correct errors and

single qudit operations do not change the error-correcting properties of a stabilizer

code, we need additional transformations which are ADD-gates acting on pairs of

qudits. Combining the definitions of Xα and ADD(1,2) (see Definition 1 (i) and

(v)), we can rewrite the ADD-gate as

ADD(1,2) :=
∑

x,y∈Fq

|x〉1|x+ y〉2〈y|2〈x|1

=
∑

α∈Fq

|α〉〈α| ⊗Xα. (11)

Using (11), it is easy to show that ADD(1,2) commutes with all matrices of the form

Zβ1
⊗Xα2

.

11



For elements of the form Xα1
⊗ Zβ2

we get

(ADD(1,2))−1(Xα1
⊗ Zβ2

)ADD(1,2)

= (ADD(1,2))−1
∑

v,w∈Fq

ωtr(β2w)|v + α1〉1|w〉2〈w|2〈v|1
∑

x,y∈Fq

|x〉1|x+ y〉2〈y|2〈x|1

= (ADD(1,2))−1
∑

x,y∈Fq

ωtr(β2(x+y))|x+ α1〉1|x+ y〉2〈y|2〈x|1

=
∑

v,w∈Fq

|v〉1|w〉2〈v + w|2〈v|1
∑

x,y∈Fq

ωtr(β2(x+y))|x+ α1〉1|x+ y〉2〈y|2〈x|1

=
∑

x,y∈Fq

ωtr(β2x)ωtr(β2y)|x+ α1〉1|y − α1〉2〈y|2〈x|1

= (Xα1
Zβ2

)⊗ (X−α1
Zβ2

).

This proofs

Lemma 2 The transformation ADD(1,2) acts on ((α1, β1), (α2, β2)) as

ADD
(1,2)

:=

(

1 0 −1 0
0 1 0 0
0 0 1 0
0 1 0 1

)

,

i. e., β2 is added to β1 and α1 is subtracted from α2.

5.2. Encoding Algorithms

With this preparation, we can formulate our algorithm to efficiently compute

efficient quantum circuits for the encoding of stabilizer codes.

Theorem 3 Let C = [[n, k, d]]q be a stabilizer code for a qudit system of prime

power dimension q = pm with Abelian stabilizer group S ⊆ Gn and stabilizer matrix

(X |Z) ∈ F
(n−k)×2n
q .

Then the algorithm shown in Figure 3 (on page 13) computes a decoding circuit

D for C with at most n(n− k)−
(

n−k+1
2

)

ADD gates and O(n(n− k)) single qudit

gates of type DFT, Pγ , or Mγ.

The running time of the algorithm itself is O(n(n− k)2).
Proof. We show that the algorithm computes a transformation D such that

D−1SD =π S0 (see eq. (8)). Instead of operating on the stabilizer group S itself,

we use the stabilizer matrix representation. So our goal is to find a transformation

D such that

(X |Z)D =π (0|A0), where A ∈ F
(n−k)×(n−k)
q has full rank. (12)

In order to obtain a more compact graphical representation of the final quantum

circuit, we will first transform the stabilizer matrix first into the form

(X |Z)D
′
=π (A0|0), where A ∈ F

(n−k)×(n−k)
q has full rank, (13)

and use (n − k) local Fourier transformations to exchange the X- and the Z-part

of the stabilizer matrix.
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Input: a stabilizer matrix (X |Z) ∈ F
(n−k)×2n
q

Output: a decoding transformation D := F · An−kTn−k · . . . · A2T2 ·A1T1

1 L← ∅
2 foreach row i = 1 to n− k do
3 foreach column j = 1 to n do
4 if (Xij , Zij) 6= (0, 0) then
5 find a transformation Tij ∈ JFq

such that (Xij , Zij) · T ij = (1, 0)
6 foreach row l = i to n− k do
7 (Xlj , Zlj)← (Xlj , Zlj) · T ij

8 end for
9 else

10 Tij ← id
11 end if
12 end for

13 Ti ← T
(1)
i,1 ⊗ T

(2)
i,2 ⊗ . . .⊗ T

(n)
i,n

14 find the first column l /∈ L where Xil 6= 0
15 include l into L
16 Ai ← id
17 foreach column j = 1 to n do
18 if l /∈ L and Xij = 1 then

19 Ai ← Ai ·ADD(l,j)

20 foreach row µ = i to n− k do
21 (Xµj , Zµj)← (Xµj −Xlj , Zµj + Zlj)
22 end for
23 end if
24 end for
25 end for

26 F ←∏

l∈L DFT(l)

27 return (F,An−k, Tn−k, . . . , A2, T2, A1, T1)

Fig. 3. Algorithm to compute a decoding circuit for a qudit stabilizer code.

We prove the correctness of our algorithm by induction over i, corresponding

to the loop steps 2–25. The induction hypothesis is that the first i − 1 rows of

the stabilizer matrix are, again up to a permutation of the columns, in the form

(Ai−10|0), where A is an (i− 1)× (i− 1) matrix of full rank.

After the loop steps 3–12, the Z-part of the i-th row of the stabilizer matrix will

be zero. From Theorem 2 and Corollary 1 it follows that in step 5 we can always find

a transformation Tij ∈ JFq
with the desired property. The loop steps 6–8 updates

the stabilizer matrix. In step 13, we combine the transformations applied to each

qudit to a transformation on all qudits. The definition of the stabilizer matrix (see

Definition 2) implies that it has full rank. Hence in step 14, we will always find a

column l with a non-zero entry Xil. That column will be recorded in step 15. Then

the loop steps 17–24 searches for columns j /∈ L where Xij is non-zero. Applying

an ADD-gate with control l and target j will change those positions Xij to zero.

The loop steps 20–22 updates the stabilizer matrix accordingly. So after step 24,
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only the entries Xil for l ∈ L may be non-zero, all other entries in the i-th row of

the stabilizer matrix are zero. This completes the induction step from row i− 1 to

row i.

After step 25, the Z-part of the stabilizer matrix is zero, and only the n − k
columns l ∈ L of theX-part are non-zero. Applying the transformation F , i. e., local

Fourier transformations at those positions, yields the stabilizer group S0, completing

the proof of the correctness of our algorithm.

The running time of the algorithm follows directly from that fact that at most

three for-loops are nested, two of them iterating over the n − k rows, one over the

n columns.

Each of the n− k transformations Aj is a product of at most n− j ADD-gates.

Hence the total number of ADD gates is at most
∑n−k

j=1 (n−j) = n(n−k)−
(

n−k+1
2

)

.

Each of the n−k transformations Tj is the product of O(n) single qudit operations.

Together with the n − k local Fourier transformations DFT in the transformation

F , the number of single qudit gates is O(n(n− k)). 2

Note that, in contrast to the situation of qubits, for q = pm, p > 2, the ADD-

gate over Fq for q = pm, p > 2, is not its own inverse. So a different graphical

representation for ADD−1 is required. For simplicity, we have not introduced such

a representation. This is also the main reason why we do not directly compute the

transformation D of (12), but decompose it as D = F ·D′ (see eq. (13)).

It is not difficult to modify our algorithm such we may save the final n− k local

Fourier transformations. In step 5, we have to find a transformation Tij ∈ JFq
such

that (Xij , Zij) · T ij = (0, 1). Furthermore, we have to replace the ADD-gates by

inverse ADD-gates. The modified steps of the algorithm are:

5’ find a transformation Tij ∈ JFq
such that (Xij , Zij) · T ij = (0, 1)

19’ Ai ← Ai · (ADD−1)(l,j)

20’ foreach row µ = i to n− k do
21’ (Xµj , Zµj)← (Xµj +Xlj , Zµj − Zlj)
22’ end for

6. Example

We illustrate the algorithm of Figure 3 using a quantum code over qutrits. A

stabilizer matrix of the code C = [[9, 5, 3]]3 is given by

(X |Z) =









1 0 0 2 1 2 2 0 1 0 0 2 1 2 2 0 1 1
0 1 1 2 0 2 2 1 0 0 0 1 2 1 1 0 2 2
0 0 2 1 2 2 0 1 1 1 0 2 0 0 1 2 1 2
0 0 1 2 1 1 0 2 2 0 1 2 1 1 0 2 0 2









.

In the first step, we transform each pair (αi, βi) of the first row that is non-zero to

(1, 0). This is achieved by the transformation

T1 = id⊗ id⊗M2DFT⊗ P1M2 ⊗ P1 ⊗ P2M2 ⊗M2 ⊗DFT⊗ P2.
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The resulting stabilizer matrix is

(X |Z) =









1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 2 1 0 1 1 2 0 0 0 1 2 1 1 0 2 2
0 0 1 2 2 1 0 1 1 1 0 2 2 2 1 1 2 1
0 0 1 1 1 2 0 0 2 0 1 1 0 2 1 1 1 0









.

The first non-zero column is the first one. So using the transformation

A1 := ADD(1,3)ADD(1,4)ADD(1,5)ADD(1,6)ADD(1,7)ADD(1,8)ADD(1,9)

we obtain

(X |Z) =









1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 1 0 1 1 2 0 0 0 1 2 1 1 0 2 2
0 0 1 2 2 1 0 1 1 0 0 2 2 2 1 1 2 1
0 0 1 1 1 2 0 0 2 0 1 1 0 2 1 1 1 0









.

Note that the first column of the Z-matrix is zero. This follows from the fact that

the corresponding stabilizer elements commute with the X(1) which corresponds to

the first row.

In the next step, we use the transformations

T2 := id⊗ id⊗ P1M2 ⊗ P1 ⊗DFT ⊗ P2 ⊗ id⊗ P2M2 ⊗M2DFT

and

A2 := ADD(2,3)ADD(2,4)ADD(2,5)ADD(2,6)ADD(2,7)ADD(2,8)ADD(2,9)

to obtain

(X |Z) =









1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 1 0 2 2 0 0 0 1 1 0 1 2 1
0 0 2 1 2 2 0 0 0 0 0 1 1 2 2 1 2 2









.

Using the transformations

T3 := id⊗ id⊗M2 ⊗ P1M2 ⊗ P1M2 ⊗ id⊗DFT⊗ P2M2 ⊗ P1M2

and

A3 := ADD(3,4)ADD(3,5)ADD(3,6)ADD(3,7)ADD(3,8)ADD(3,9)

yields

(X |Z) =









1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 2 2 0 0 0 1 2 2 0 1 1









.

For the last row, we use the transformations

T4 := id⊗ id⊗ id⊗ P2 ⊗M2DFT⊗ P1 ⊗ id⊗ P1M2 ⊗ P1M2
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and

A4 := ADD(4,5)ADD(4,6)ADD(4,8)ADD(4,9)

and get

(X |Z) =









1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0









.

Note that after the first three steps, we have L = {1, 2, 3}. Hence not the third, but

the fourth qudit is the control qudit for the ADD gates of the last row. Equivalently,

we could have subtracted the third row from the fourth to obtain X4,3 = 0. The

stabilizer group would not have changed as the addition of one row to another

corresponds to multiplying one generator by another.

Finally, a Fourier transformation on the first four positions transforms the sta-

bilizer group into the form S0 = 〈Z(1)
1 , Z

(2)
1 , Z

(3)
1 , Z

(4)
1 〉.

|φenc〉
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Fig. 4. Decoding circuit for the ternary quantum code C = [[9, 5, 3]]3. The
Fourier transformation DFT is abbreviated as F .

The complete decoding circuit is shown in Figure 4. Reversing the order of the

gates and replacing each gate by its inverse yields a quantum circuit for encoding.

7. Conclusions

The quantum circuits for both CSS codes and general stabilizer codes over qudit

systems of prime power dimension resulting from our algorithms have a similar

structure. They consist of an alternating sequence of single qudit gates and ADD-

gates with the same control qudit. The total number of gates is always at most

quadratic in the number of qudits. For CSS codes, the single qudit gates are either

Fourier transformations or multiplication gates, which are trivial for the case of

qubits. Furthermore, some optimizations are possible by interchanging the rôle of

the two classical codes involved.

The algorithm of [6], respectively the modified version of [11, 12], to compute

quantum circuits for the encoding of qubit stabilizer codes can also be generalized

to non-qubit stabilizer codes. It turns out that the resulting quantum circuits have

again the same structure and complexity as those presented in this paper. The
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approach presented here, however, has the advantage that the transformation D

used to conjugate the stabilizer group S to S0 can also be used to compute “encoded

gates” which preserve the code C. Conjugating gates from the error-group which

preserve the code C0 by D results in transformations that are also in the error-

group and preserve the code C. As those transformations consist only of single

qudit operations, they can be used for fault-tolerant quantum computation.
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