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Feature-Based Facial Expression Recognition: Sensitivity

Analysis and Experiments With a Multi-Layer Perceptron

Zhengyou Zhang

Abstract

In this paper, we report our experiments on feature-based facial expression recognition within

an architecture based on a two-layer perceptron. We investigate the use of two types of features

extracted from face images: the geometric positions of a set of fiducial points on a face, and a

set of multi-scale and multi-orientation Gabor wavelet coefficients at these points. They can be

used either independently or jointly. The recognition performance with different types of features

has been compared, which shows that Gabor wavelet coefficients are much more powerful than

geometric positions. Furthermore, since the first layer of the perceptron actually performs a

nonlinear reduction of the dimensionality of the feature space, we have also studied the desired

number of hidden units, i.e., the appropriate dimension to represent a facial expression in order

to achieve a good recognition rate. It turns out that five to seven hidden units are probably

enough to represent the space of feature expressions. Then, we have investigated the importance

of each individual fiducial point to facial expression recognition. Sensitivity analysis reveals

that points on cheeks and on forehead carry little useful information. After discarding them,

not only the computational efficiency increases, but also the generalization performance slightly

improves. Finally, we have studied the significance of image scales. Experiments show that facial

expression recognition is mainly a low frequency process, and a spatial resolution of 64 pixels�

64 pixels is probably enough.

Keywords: Facial expression recognition, learning, Gabor wavelets, multilayer perceptron,

sensitivity analysis, image scale.
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1. Introduction

There are a number of difficulties in facial expression recognition (FER) due to the variation

of facial expression across the human population and to the context-dependent variation even

for the same individual. Even we human beings may make mistakes [9]. On the other hand,

FER by computer is very useful in many applications such as human behavior interpretation and

human-computer interface.

An automatic FER system needs to solve the following problems: detection and location of

faces in a cluttered scene, facial feature extraction, and facial expression classification.

Face detection has been studied by many researchers, and it seems that most successful sys-

tems are based on neural networks [24, 22]. Once a face is detected in the image, the correspond-

ing region is extracted, and is usually normalized to have the same size (for example, the same

distance between two eyes) and the same gray level. In this paper, we do not address the face

detection problem.

Facial feature extraction attempts to find the most appropriate representation of the face im-

ages for recognition. There are mainly two approaches: holistic template-matching systems and

geometric feature-based systems [4]. In holistic systems, a template can be a pixel image or a

feature vector obtained after processing the face image as a whole. In the latter, principal com-

ponent analysis and multilayer neural networks are extensively used to obtain a low-dimensional

representation. In geometric feature-based systems, major face components and/or feature points

are detected in the images. The distances between feature points and the relative sizes of the ma-

jor face components are computed to form a feature vector. The feature points can also form a

geometric graph representation of the faces. Feature-based techniques are usually computation-

ally more expensive than template-based techniques, but are more robust to variation in scale,

size, head orientation, and location of the face in an image. The work to be described in this

paper is, to some extent, an hybrid approach. We first locate a set of feature points, and then

extract a set of Gabor wavelet coefficients at each point through image convolution.
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Compared with face recognition, there is relatively a small amount of work on facial expres-

sion recognition. The first category of previous work uses image sequences. Suwa et al. [23]

did a preliminary analysis of facial expressions by tracking the motion of twenty identified spots.

Mase [17] uses the means and variances of optical flow data at evenly divided small blocks.

Yacoob and Davis [28] use the inter-frame motion of edges extracted in the area of the mouth,

nose, eyes, and eyebrows. Bartlett et al. [2] use the combination of optical flow and principal

components obtained from image differences. Essa and Pentland [10] builds a dynamic para-

metric model by tracking facial motion over time, which can then be used for analyzing facial

expressions. The second category of previous work tries to classify facial expressions from

static images. Turk and Pentland [26] represent face images by eigenfaces through linear prin-

cipal component analysis. Padgett and Cottrell [19] use an approach similar to eigenfaces but

with seven pixel blocks from feature regions (both eyes and mouth). Cottrell and Metcalfe [5]

use holistic representations based on principal components, extracted by feed forward networks.

Rahardja et al. [20] also use holistic representations with neural networks, but the images are

represented in a pyramid structure. Lanitis et al. [14] use parameterized deformable templates

(flexible models) which take into account both variations in shape and grey-level appearance.

In this paper, we extract two types of features from face images in order to recognize facial

expressions (Sect. 2). The first type is the geometric positions of a set of fiducial points on a face.

The second type is a set of multi-scale and multi-orientation Gabor wavelet coefficients extracted

from the face image at the fiducial points. They can be used either independently or jointly.

The architecture we developed is based on a two-layer perceptron (Sect. 3). The recognition

performance with different types of features will be compared in Sect. 4. Since the first layer

of the perceptron actually performs a nonlinear reduction of the dimensionality of the feature

space, we will also study the desired number of hidden units, i.e., the appropriate dimension to

represent a facial expression in order to achieve a good recognition rate. The importance of each

individual fiducial point to facial expression recognition is studied in Sect. 5 through sensitivity

analysis. Finally, we investigate the significance of image scales for facial expression recognition
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in Sect. 6.

The use of Gabor waveletts was motivated by the study of Lyons et al. [16]. Through the

analysis based on nonmetric multidimensional scaling (nMDS) [25], Lyons et al. show that there

exists a significant similarity between Gabor coding and human ratings for facial expressions.

We also note that a similar representation of faces has been developed in Wiskott et al. [27]

for face recognition, where they use a labeled graphs, based on a Gabor wavelet transform, to

represent faces, and face recognition is done through elastic graph matching.

2. Data Set and Representation

The database we use in our experiments contains 213 images of female facial expressions.

They were collected by Kamachi and Gyoba at Kyushu University, Japan. Ten expressors were

asked to pose several different facial expressions. Each expressor, when ready, took pictures

of herself, through remote control, while looking towards the camera through a semi-reflective

plastic sheet. Original images have been rescaled and cropped such that the eyes are roughly at

the same position with a distance of 60 pixels in the final images (resolution: 256 pixels� 256

pixels). The number of images corresponding to each of the 7 categories of expression (neutral,

happiness, sadness, surprise, anger, disgust and fear) is roughly the same. A few of them are

shown in Fig. 1. For details on the collection of these images, the reader is referred to [16].

Each image is represented in two ways. The first uses 34 fiducial points as shown in Fig. 2.

They have been selected manually. Development of a technique for automatically extracting

these points is under way. This is a not-yet-completely-solved solved problem, and a technique

for building a similar representation has been reported in the literature [13, 27]. The image

coordinates of these points (geometric positions) will be used as features in our study. Therefore,

each image is represented by a vector of 68 elements.

The second way is to use features extracted with 2-D Gabor transforms [6, 15]. A 2-D Gabor

function is a plane wave with wavevectork, restricted by a Gaussian envelope function with
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Figure 1. Facial expression database: Examples
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Figure 2. Geometric representation: 34 �ducial points to represent the facial geometry
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We set� = � for our256� 256 images. We use a discrete set of Gabor kernels which comprise

3 spatial frequencies, i.e., scales, (with wavenumberk = kkk = (�=4; �=8; �=16) in inverse

pixels) and 6 distinct orientations from 0� to 180�, differing in 30� steps. Each image is convolved

with both even and odd Gabor kernels at the location of the fiducial points as shown in Fig. 2. We

have therefore 18 complex Gabor wavelet coefficients at each fiducial point. In our study, only

the magnitudes are used, because they vary slowly with the position while the phases are very

sensitive. In summary, with Gabor wavelet coefficients, each image is represented by a vector of

612 (18� 34) elements.

3. The Architecture and Training

The architecture of our FER system is based on a two-layer perceptron (see Fig. 3). As de-

scribed in Sect. 2, an image is first preprocessed, and two sets of features (geometric positions

and Gabor wavelet coefficients) are extracted. These features are fed in the input units of the

two-layer perceptron. The objective of the first layer is to perform a nonlinear reduction of the

dimensionality of feature space, depending on the number of hidden units. Note that there are

no interconnections in the first layer between geometric and Gabor-wavelet parts, because they

are two pieces of information very different in nature. The second layer makes a statistical de-

cision based on the reduced set of features in the hidden units. An output unit is associated with

a particular facial expression, so our system contains 7 output units. Each output unit gives an

estimate of the probability of the input image belonging to the associated facial expression.

The FER problem is considered as a statistical classification problem. The training is done by
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Figure 3. The architecture: There are no interconnections in the �rst layer between geometric

and Gabor-wavelet parts

minimizing the cross-entropy for multiple classes [3]:

E = �
X
n

cX
k=1

tnk ln
�ynk
tnk

�
(1)

wheretnk andynk are respectively the pattern target value and network output value, representing

the probability that inputxn belongs to classCk. The error function (1) is non-negative, and

reaches the absolute minimum, which is equal to zero, whenynk = tnk for all k andn, i.e., when

the perceptron outputs the same value as the target for each pattern. The activation function of

the output units is thesoftmaxfunction:

yk =
exp(ak)Pc

k0=1 exp(ak0)
(2)
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whereak =
P

j wkjzj andzj is the output of hidden unitj. This is the soft version of thewinner-

takes-allactivation model in which the unit with the largest input has output+1 while all other

units have output 0. The hidden units use the widely adopted ‘tanh’ activation function:

zj = g(aj) = tanh(aj) �
eaj � e�aj

eaj + e�aj
(3)

whereaj =
P

iwjixi andxi is the value of input uniti.

The two-layer perceptron is trained through Rprop (Resilient propagation) [21], which is a

local adaptive learning scheme, performing supervised batch learning. The idea is to eliminate

the harmful influence of the size of the partial derivative on the weight step. In consequence,

the weight update depends only the sign of the derivative, and is exclusively determined by a

weight-specific, so-called “update-value”�(t)
ij :

�w(t)
ij =

8>>>>><
>>>>>:

��(t)
ij if @E

@wij

(t)
> 0

+�
(t)
ij if @E

@wij

(t)
< 0

0 otherwise

where @E
@wij

(t)
denotes the summed gradient information over all patterns of the pattern set. There-

fore, we increase a weight by its update-value if that direction contributes to the reduction of the

overall errorE, and decrease it, otherwise. The update-value�
(t)
ij itself is adapted based on a

sign-dependent learning process:

�
(t)
ij =

8>>>>><
>>>>>:

�+ ��
(t�1)
ij if @E

@wij

(t�1)
� @E

@wij

(t)
> 0

�� ��
(t�1)
ij if @E

@wij

(t�1)
� @E

@wij

(t)
< 0

�(t�1)
ij otherwise

where0 < �� < 1 < �+. In words, each time the partial derivative of the corresponding weight
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(a) Geometric positions (b) Gabor coefficients (c) Combined information

Figure 4. Recognition rate with respect to the number of hidden units

wij changes its sign, indicating that the last uodate was too big and that the algorithm has jumped

over a local minimum, the update-value�(t)
ij is decreased by the factor��; otherwise, it is slightly

increased by a factor�+ in order to accelerate convergence. We use�� = 0:5, �+ = 1:2.

4. Experiments on the number of hidden units

4.1. Computer Recognition Results

Our goal is to develop a recognition system which not only works well on the training data but

also gives good predictions for new data. Since the size of our database is limited (213 images),

we use the cross-validation technique to test different configurations of our FER architecture.

Cross-validation technique is a variant of the test protocols (Jack Knife) used in statistical classi-

fication [8]. Many people have used it in order to improve the statistical reliabilities of the tests

in general [3] and in face recognition in particular [7], More precisely,

� We partition the data set at random intoS distinct segments (we setS = 10).

� We then train a two-layer perceptron using data fromS � 1 of the segments and test

its performance, by evaluating the error function (recognition rate), using the remaining

segment.
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Figure 5. Comparison of the generalized recognition rates

� The above process is repeated for each of theS possible choices of the segment to be

omitted from the training process.

� Finally, we average the results over allS trained two-layer perceptrons.

Since the training is a nonlinear optimization problem, the final result depends on the initial

guess of the weights of the perceptrons. So, each perceptron is furthermore trained ten times

with randomly initialized weights. Thus, the result for each configuration shown below is the

average of the results produced by 100 trained two-layer perceptrons.

We have carried out experiments on the FER using the developed architecture by using geo-

metric positions alone, using Gabor wavelet coefficients alone, and by using the combination of

the two pieces of information. In order to investigate the appropriate dimension to code the facial

expression, we vary the number of hidden units from 1 to 20. The perceptrons with geometric

positions alone were trained by running 250 cycles through all the training data, while other per-

ceptrons were trained by running only 100 cycles. The recognition rates on the training data and

on the test data (generalization) with respect to the number of hidden units are shown in Fig. 4.

For comparison, the generalized recognition rates of the three configurations are displayed in
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Label: Surprise NN outputs Label: Happiness NN outputs
Neu. 0.000
Hap. 0.000
Sad. 0.000
Sur. 1.000
Ang. 0.000
Dis. 0.000
Fear 0.000

Neu. 0.122
Hap. 0.720
Sad. 0.000
Sur. 0.000
Ang. 0.000
Dis. 0.000
Fear 0.158

Label: Disgust NN outputs Label: Fear NN outputs
Neu. 0.001
Hap. 0.000
Sad. 0.428
Sur. 0.000
Ang. 0.016
Dis. 0.555
Fear 0.000

Neu. 0.002
Hap. 0.000
Sad. 0.022
Sur. 0.000
Ang. 0.001
Dis. 0.005
Fear 0.970

Figure 6. Examples of correct labeling

Fig. 5.

From the experimental results, we have the following observations:

� Gabor coefficients are much more powerful than geometric positions;

� At least two hidden units are necessary to code reasonably facial expressions;

� Probably from 5 to 7 hidden units are sufficient to code precisely facial expressions;

� Adding geometric positions improves the recognition rate only for low dimensional coding

(with less than 5 hidden units). No improvement is observed when 5 or more hidden units

are used.

The recognition rate (i.e., the agreement with the labeling provided by the expressors) achieved

by our system is 90.1% with 7 hidden units. This should be compared with the agreement be-

tween human subjects and expressors’ labeling. In the study of Lyons et al. [16], 60 human

non-expert subjects were asked to rate each facial image for content of the six basic facial ex-

pressions. In 20.5% of all cases, the category which received the highest rating (averaged over all
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Label: Anger NN outputs Label: Fear NN outputs
Neu. 0.000
Hap. 0.000
Sad. 0.091
Sur. 0.000
Ang. 0.224
Dis. 0.685
Fear 0.000

Neu. 0.010
Hap. 0.000
Sad. 0.502
Sur. 0.000
Ang. 0.001
Dis. 0.007
Fear 0.479

Label: Sadness NN outputs Label: Happiness NN outputs
Neu. 0.099
Hap. 0.846
Sad. 0.052
Sur. 0.000
Ang. 0.000
Dis. 0.002
Fear 0.002

Neu. 0.822
Hap. 0.017
Sad. 0.150
Sur. 0.011
Ang. 0.000
Dis. 0.000
Fear 0.000

Figure 7. Examples of disagreement

subjects) disagreed with the expression label of the image. This is similar to the results reported

in the literature but with different image database [2, 14]. Several sources of this disagreement

may be identified. The expressor may have posed the expression inaccurately or even incorrectly

in some cases. The experimental subjects may have confused one expression with another when

performing the rating task (for example, fear may be confused with surprise and anger with dis-

gust). Therefore, the agreement between the computer (i.e., our technique) and the expressors is

higher than that between the human subjects and the expressors.

In order to give the reader a concrete feeling of the FER results, we show a few examples in

Fig. 6 and Fig. 7. The original labeling in the database and our system outputs are both shown.

Note that, our system provides the probability it believes that an image belongs to each of the

facial expression classes. The examples shown in Fig. 6 have obtained a consistent labeling from

our system, while for those in Fig. 7, our system does not agree with the labeling given in the

database. Note that even in the latter case, our system usually (except the last example in Fig. 7)

gives a reasonable result, because the expressor may have posed an incorrect expression.
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4.2. Experiments After Excluding Fear Images

The expressors found it most difficult to pose fear expressions accurately. In addition, human

has more difficulty in recognizing fear. There is some evidence supporting the hypothesis that

fear expressions are processed differently from the other basic facial expressions [1]. If we

exclude the fear images from the database, an experiment with 30 human non-experts shows that

in 85.6% of all cases, human subjects agree with the expressors’ labeling, about 6% higher than

when fear images are included. Hence, we have repeated exactly the same analysis as in the last

subsection but with a dataset in which all fear images were excluded. The results are shown in

Fig. 8. The same general observations can be made. When 7 hidden units are used, our system

achieves a generalized recognition rate of 73.3% with geometric positions alone, 92.2% with

Gabor wavelet coefficients alone, and 92.3% with combined information, all higher than when

fear images are included (63.5%, 89.6% and 90.1%, respectively; see Fig. 5).
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Figure 8. Comparison of the generalized recognition rates when the fear images have been

excluded from the database
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5. Sensitivity Analysis of Individual Fiducial Points

In this section, we shall study the importance of each fiducial point. We have used 34 fiducial

points together with their Gabor wavelet coefficients. It is conceivable that each point does not

play the same role, e.g., the points on the cheek should not be very informative.

This study is important for several reasons. First, by removing the least important points, i.e.,

by reducing the dimension of the input space, the computational cost for training and executing

the multilayer perceptron is reduced. Second, the cost for extracting the fiducial points from

images is reduced. Furthermore, the points on the cheek, for example, are difficult to locate

precisely in the image. Third, too many input variables with respect to the training sample size

can harm the performance of a sample discriminant rule. This has been noted by a number of

researchers and practitioners in statistical data analysis [11, 18, 3].

The commonly used technique for dimensionality reduction is the principal component analy-

sis (PCA), which is a linear technique. It does reduce the redundancy between the input variables,

but has a big drawback: this dimensionality reduction is not related to the task at hand (in our

case, FER). Big variation will be retained even though it is not informative for discriminating

different classes. For example, the points on the cheek are difficult to locate precisely in the

images, and therefore, there will be a large variation in the image coordinates. That variation

is, however, not useful for facial expression recognition. On the other hand, the first layer of

our multilayer perceptron also performs reduction of dimensionality, but the reduction is non-

linear and is related to the discrimination power of the features. This nonlinear dimensionality

reduction is thus preferable over the PCA.

We are now more interested in the reduction of the number of fiducial points. We follow the

approach of sensitivity analysis. If an input variable is important in FER, removing it will cause

a significant change in the output, i.e., the derivative of the error function with respect to that

input should be high. In our case, we have a feature vector as input for each fiducial point. Let

x
(p) be the feature vector of pointp andx(p)i be itsith element. We compute the gradient of the
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error functionE, see (1), with respect tox(p) as follows:

G(p) =





 @E

@x(p)





 =
sX

i

� @E

@x(p)i

�2
(4)

where @E

@x
(p)
i

is the derivative ofE w.r.t. x(p)i , to be given in Appendix A.Points with least

gradients carry little useful information for FER, and thus can be discarded.

We have conducted exactly the same experiment as in the last section using Gabor wavelet

coefficients alone. The cross-validation technique was used. Our multilayer perceptron was

trained with a subset of data, while the gradient for each fiducial point was computed over an

independent subset of data. The results with 4, 7 and 10 units in the hidden layer are shown in

Table 1. As in the last section, the gradient value shown is also the average of 100 trials. In the

table, we also provide the order of the fiducial points according to the gradient values: a point

with order 0 has the largest gradient value; a point with order 33 has the least gradient value. We

can observe that the ordering is quite consistent for all three configurations of the perceptron. For

more direct interpretation, the result with 7 hidden units is visualized in Fig. 9, where the size of

a fiducial point is proportional to the magnitude of its gradient.

Without ambiguity, the gradients of the following 10 points: 16, 17, 18, 19, 20, 21, 23, 24,

30 and 13, are much lower than the others. The gradients of points 29 and 3 are in the middle.

They are mainly located on the forehead and on the cheeks. This is in accordance with our

intuition: These points are hardly detectable, and therefore should carry less information for

facial expression recognition. In order to validate the sensitivity analysis, we have discarded the

Gabor wavelet coefficients of the above 12 points (therefore, there are only 396, instead of 612,

input variables), and have again carried out the same experiment with different hidden units in

the perceptron. The recognition rates on the test data (generalization) is shown in Fig. 10.

For comparison, we also show in Fig. 10 the recognition result with all 34 points. We can

observe thatthe generalization performance slightly improvesafter discarding the 12 selected

points. This is a consequence of the curse of dimensionality, as mentioned at the beginning of
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4 hidden units 7 hidden units 10 hidden units
point gradient order gradient order gradient order

0 10.1936 6 7.16990 6 7.10371 6
1 13.2709 2 10.1341 2 9.93258 2
2 8.91257 8 5.67114 12 5.44258 10
3 2.21135 23 1.59910 23 1.73419 22
4 15.0430 0 10.6303 1 11.2302 0
5 4.53752 17 3.17509 19 3.01152 18
6 6.49699 13 6.07363 9 5.36752 11
7 14.9471 1 12.3932 0 10.7255 1
8 9.86957 7 6.44077 8 6.66844 7
9 5.58424 15 4.34609 15 4.34949 14
10 10.7874 3 9.02400 3 7.87800 3
11 10.3298 4 7.26315 5 7.25060 5
12 8.07026 10 5.82878 10 4.78980 13
13 0.56904 28 0.52836 27 0.52070 27
14 6.26436 14 4.84604 14 5.20799 12
15 6.80303 12 5.69166 11 4.05288 15
16 1.10122 25 0.89122 24 0.77384 25
17 0.38146 33 0.31891 33 0.31392 32
18 0.39930 32 0.32449 32 0.29637 33
19 0.45715 31 0.42730 30 0.39825 31
20 0.65773 27 0.49084 29 0.49225 29
21 0.52754 29 0.49871 28 0.49635 28
22 3.20007 20 3.96846 16 4.00260 16
23 0.66839 26 0.54490 26 0.54891 26
24 1.18916 24 0.82790 25 0.87368 24
25 4.10041 18 3.34998 18 2.52657 20
26 8.89627 9 6.67880 7 6.27436 8
27 2.92703 21 2.47474 20 2.06146 21
28 7.36040 11 5.60849 13 5.88586 9
29 2.83694 22 1.96330 22 1.72370 23
30 0.48233 30 0.38853 31 0.39990 30
31 3.49026 19 2.47427 21 2.64163 19
32 10.2121 5 8.16229 4 7.40998 4
33 4.69870 16 3.84180 17 3.50682 17

Table 1. Gradients of the error function with respect to the inputs
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Figure 9. Importance of each �ducial point according to sensitivity analysis. The importance is

illustrated by the size of a point.

this section [3]. A network with fewer inputs has fewer weights to be determined, and they are

more likely to be properly constrained by a data set oflimited size, leading to a network with

better generalization properties.

As one reviewer pointed out, most expressions are mirror symmetric. However, we observe

some significant difference between several symmetric points, for example, between points 10

and 13, and between points 3 and 8. There are two reasons. The first is due to the hair style

variation among people. In that case, points such as 13 do not carry as consistent information as

their symmetric counterparts (point 10 in this case). The second is because the facial expression

is mainly a low frequency signal, as we will show in the next section. Nearby points therefore

tend to be correlated, and one point (say, point 4) may carry sufficient information for facial

expression recognition, making the other point (point 3 in this case) less important. Correlation
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Figure 10. Comparison between the generalized recognition rates before and after deletion of

the 12 points selected through sensitivity analysis

between points is one subject of our future research.

6. Significance of Image Scales

In the above experiments, we have conducted experiments on facial expression recognition

using Gabor wavelets extracted from three image scales. It is conceivable that the Gabor wavelet

coefficients at each image scale does not play the same role, which is the objective of this section.

We will study the significance of each spatial frequency (i.e., image scale). Besides the three

spatial frequencies we used before (i.e., wavenumberk = (�=4; �=8; �=16) in inverse pixels),

we also consider one more higher scale (k = �=2) and one more lower scale (k = �=32). For

simplicity, we will call k = �=32; �=16; �=8; �=4 and�=2 scale 1, 2, 3, 4 and 5, respectively.

That is, scale 1 corresponds to the lowest spatial frequency (k = �=32); scale 5 corresponds to the
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highest spatial frequency (k = �=2). We have performed exactly the same type of experiments

as in Sect. 4 by using the Gabor wavelet coefficients of only one particular image scale (The fear

images are included). The results of the generalized recognition rates with respect to the number

of hidden units are shown in Fig. 11. A subset of the results, corresponding to 7 hidden units, is

shown in Fig. 12. It is clear that facial expression recognition by computer is mainly a low spatial

frequency process. In particular, scales 2 and 3 are most significant to the recognition. Recall

that the images we use have a spatial resolution of 256 pixels� 256 pixels. Therefore, the above

result of our study reveals that a resolution of64 pixels� 64 pixelsor lower is probably enough

for facial expression recognition, which is in accordance of the general belief that a resolution of

16 pixels� 16 pixels is the minimum resolution that allows face identification [12].

R
ec

og
ni

tio
n 

ra
te

 (
%

)

Number of hidden units
1 2 3 4 5 6 7 8 9 10 20

0

10

20

30

40

50

60

70

80

90

100

scale 5

scale 4

scale 1

scale 3scale 2

Figure 11. Generalized recognition rates of di�erent image scales with respect to the number of

hidden units
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Figure 12. Generalized recognition rates with respect to image scales for 7 hidden units

7. Conclusion

In this paper, we have developed an architecture based on a two-layer perceptron for recog-

nizing facial expressions. We have first compared the use of two types of features extracted from

face images. The first type is the geometric positions of a set of fiducial points on a face. The

second type is a set of multi-scale and multi-orientation Gabor wavelet coefficients extracted

from the face image at the fiducial points. They can be used either independently or jointly.

Comparison of the recognition performance with different types of features shows that Gabor

wavelet coefficients are much more powerful than geometric positions and that the agreement

between computer and the expressors’ labeling is higher than that between human subjects and

the expressors’ labeling.

Furthermore, since the first layer of the perceptron actually performs a nonlinear reduction
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of the dimensionality of the feature space, we have also studied the desired number of hidden

units, i.e., the appropriate dimension to represent a facial expression in order to achieve a good

recognition rate. It turns out that at least two hidden units are necessary to code reasonably

facial expressions and that five to seven hidden units are probably enough to give a precise

representation.

Then, we have investigated the importance of each individual fiducial point to facial expression

recognition. Sensitivity analysis reveals that points on cheeks and on forehead carry little useful

information. After discarding them, not only the computational efficiency increases, but also the

generalization performance slightly improves. This has an important consequence: we only need

to extract features in the eyes and mouth regions from images. Note that we have only studied

the sensitivity of each individual fiducial point on a face. There may exist strong correlations

between the features of some points such as those on both eyes. This is one subject of our future

research.

Finally, we have studied the significance of image scales. Experiments show that facial ex-

pression recognition is mainly a low frequency process, and a spatial resolution of 64 pixels�

64 pixels or lower is probably enough.
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A Derivative Evaluation

We now calculate@E=@xi, the derivative of the error functionE given in (1) with respect to

the input variablexi. The error function (1) can be rewritten as

E =
X
n

En with En = �
cX

k=1

tnk ln
�ynk
tnk

�
(5)

Then,

@E

@xi
=
X
n

@En

@xi
(6)

Using the chain rule for partial derivatives, we have

@En

@xi
=

cX
k=1

@

@yk

�
�tnk ln

�ynk
tnk

�� @yk
@xi

= �
cX

k=1

tnk
yk

@yk
@xi

(7)

where the summation runs over all output units, andyk is the softmax function (2). Note thatyk

depends on inputxi via the hidden units. By applying the chain rule, the derivative of outputyk

with respect to inputxi, @yk=@xi, is computed as follows:

@yk
@xi

=
mX
j=1

@yk
@aj

@aj
@xi

=
mX
j=1

w
(1)
ji

@yk
@aj

(8)

where the summation runs over all units in the hidden layer. The evaluation of@yk=@aj can be

done in a recursive way:

@yk
@aj

=
cX

k0=1

@yk
@ak0

@ak0

@aj
=

cX
k0=1

@yk
@ak0

�
g0(aj)w

(2)
k0j

�

= g0(aj)
cX

k0=1

w
(2)
k0j

@yk
@ak0

(9)
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whereg0(aj) is the first derivative of the activation function (3), and from (2),@yk=@ak0 is given

by

@yk
@ak0

= yk0�kk0 � yk0yk (10)

where�kk0 is the Kronecker delta symbol, and is equal to 1 ifk = k0 and 0 otherwise.

In summary, we can compute@E=@xi as follows. First, apply the input vectorxn of pattern

n and propagate forward to obtain the activations of all of the hidden and output units in the

multilayer perceptron. Second, back-propagate the derivatives@yk
@aj

according to the recursive

formula (9), starting with (10), for all hidden units. Third, back-propagate to the inputs to obtain

the derivative@yk=@xi using (8). The second and third steps are repeated for each outputyk

and each inputxi. Finally,@En=@xi is calculated using (7). Repeat the above procedure for all

patterns and use (6) to compute@E=@xi.
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