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Abstract— We show that any stabilizer code over a finite field
is equivalent to a graphical quantum code. Furthermore we
prove that a graphical quantum code over a finite field is a
stabilizer code. The technique used in the proof establishes a
new connection between quantum codes and quadratic forms.
We provide some simple examples to illustrate our results.

Index Terms— Graphs, quadratic forms, quantum error-cor-
recting codes.

I. GRAPHICAL QUANTUM CODES

Let A be the additive group of a finite fieldFpm . Denote by
H the complex vector spaceCα of dimensionα = |A|. Let B
be an orthonormal basis ofH⊗n consisting of basis vectors
|y〉 labeled by elements of the groupAn. Let K ∼= Ak and
N ∼= An be subgroups ofAk+n such thatAk+n = K × N .

Following the definition of Schlingemann and Werner in [9],
a graphical quantum code is an αk-dimensional subspaceQ
of H⊗n, which is spanned by the vectors

|x〉 =
1√
αn

∑

y∈N

( k+n∏

i,j=1
i<j

χ(zi, zj)
Γij

)
|y〉, (1)

where x ∈ K and z = x + y ∈ K × N ∼= Ak+n. The
coefficients on the right hand side are given by the values
of a non-degenerate symmetric bicharacterχ on A × A. The
exponentsΓij are given by the adjacency matrixΓ of a
weighted undirected graph with integral weights,Γij ∈ Z.
As (1) is independent of the diagonal elementsΓii, we can
assume without loss of generality that the graph has no loops.

In [9] the authors raised the question whether or not every
stabilizer code is equivalent to a graphical quantum code. Our
main result gives an affirmative answer to this question:

Theorem 1: Any stabilizer code over the alphabetA = Fpm

is equivalent to a graphical quantum code. Conversely, any
graphical quantum code overA is a stabilizer code.

In the sequel, we will prove this theorem. First, we show
that any graphical code over an extension fieldFpm can be
reformulated as a graphical code over the prime fieldFp. Then
we compute the stabilizer associated with a graphical code,
followed by the construction of a graphical representationof
a stabilizer code. We conclude by giving examples which
illustrate both directions of our main theorem.
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Lemma 1: Any symmetric bicharacterχ over the abelian
groupA ∼= Fm

p can be written as

χ(h, g) = exp

(
2πi

p
b(h, g)

)
, (2)

whereb is a symmetric bilinear form overFp, i.e.,

b(h, g) = htMg

whereM is a symmetric matrix overFp.
Proof: For fixed h ∈ A, the mappingg 7→ χ(h, g) is

a character ofA. Any characterζ of A can be written as
ζ(g) = exp(2πi/p ·htg) wherehtg denotes the inner product
of the group elementg identified with a vector inFm

p and the
vectorh ∈ Fm

p . As χ(h1 + h2, g) = χ(h1, g)χ(h2, g) and the
groupA is (non-canonically) isomorphic to its character group
A∗, the bicharacterχ can be written as

χ(h, g) = exp

(
2πi

p
(Mh)tg

)
,

where M is an m × m matrix over Fp. Symmetry of the
bicharacter implies symmetry ofM .

Using this lemma, eq. (1) can be rewritten as

|x〉 =
1√
αn

∑

y∈N

( k+n∏

i,j=1
i<j

exp(2πi/p · (zti Mzj))
Γij

)
|y〉

=
1√
αn

∑

y∈N

exp

(
2πi

p
q(v)

))
|y〉. (3)

Here we identifyx + y ∈ F
k+n
pm with v = (vi) ∈ F

m(k+n)
p .

Furthermore,q is the quadratic form

q(v) :=

m(k+n)∑

i,j=1
i<j

Γ′
ijvivj (4)

on F
m(k+n)
p defined by the symmetric matrixΓ′ := Γ ⊗ M .

Hence the states (1) of the graphical quantum codeQ can be
expressed in the form

|x〉 =
1√
αn

∑

y∈N

ζ(q(x + y))|y〉, (5)

whereζ is a non-trivial additive character ofFp and q is the
quadratic form (4) onFm(k+n)

p . We will take advantage of this
presentation in the following sections.

Finally, identifying the vector spaceCpm

with (Cp)⊗m

allows us to reformulate (1) in the form

|x〉 =
1√
αn

∑

y∈Fmn
p

(m(k+n)∏

i,j=1
i<j

χ̃(vi, vj)
Γ′

ij

)
|y〉, (6)
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where χ̃ is a (non-trivial) bicharacter onFp and x ∈ Fmk
p ,

v = (x, y) ∈ F
m(k+n)
p . Therefore, it is sufficient to study

graphical quantum codes over the prime fieldFp.

II. ORTHONORMAL BASIS OF A GRAPHICAL QUANTUM

CODE

In general, the vectors defined by (1) need not form a basis
of the graphical quantum code. In this section, we derive
conditions for the bicharacterχ and the graphΓ under which
the vectors form an orthonormal basis of the code.

From the preceding it is sufficient to consider a graphical
quantum codeQ defined over the additive groupA of the
prime field Fp. The code is spanned by the vectors|x〉
according to (6). We can associate with the quadratic form
q of (4) a symmetric bilinear formb on An+k given by

b(v1, v2) = q(v1 + v2) − q(v1) − q(v2).

For v1 = x ∈ K and v2 = y ∈ N , this implies a block
structure of the adjacency matrixΓ, namely

Γ =

(
Mx B
Bt My

)
, (7)

where the symmetric matricesMx andMy correspond to the
restriction of the quadratic formq to K andN , resp., and the
k × n matrix B corresponds to the bilinear formb(x, y) =
xtBy. From (5) we get

|x〉 =
1√
αn

∑

y∈N

ζ(q(x + y))|y〉

=
1√
αn

∑

y∈N

ζ(b(x, y) + q(x) + q(y))|y〉

=
ζ(q(x))√

αn

∑

y∈N

ζ(b(x, y) + q(y))|y〉. (8)

Notice thatζ(q(x)) yields an insignificant phase factor and
thus we can assume without loss of generality thatK is totally
isotropic, i.e.,q(x) = 0 for all x ∈ K. For the adjacency
matrix Γ, this impliesMx = 0. If ζ is the trivial character,
the coefficients of the right hand side are independent ofx. In
this case the code is one-dimensional. Hence we requireζ to
be non-trivial, sayζ(g) = exp(2πi/p · g).

The inner product of two base states|x〉 and |x′〉 of the
code is given by

〈x′|x〉 =
1

|N |
∑

y∈N

ζ(b(x′, y) + q(y))ζ(b(x, y) + q(y))

=
1

|N |
∑

y∈N

ζ(b(x, y) − b(x′, y))

=
1

|N |
∑

y∈N

ζ(b(x − x′, y)).

This sum is either zero or one, that is, the vectors are either
orthogonal or identical. The sum vanishes unlessb(x−x′, y) =
(x − x′)tBy = 0 for all y ∈ N , that is, unlessx − x′ lies
in the kernel ofB. Imposing orthogonality of different states,
i.e., 〈x′|x〉 = 0 unlessx′ = x, implies that this kernel needs
to be trivial. In other words, if we viewB as a matrix over
Fp then the rank of this matrix isk.

III. T HE STABILIZER OF A GRAPHICAL QUANTUM CODE

For a, d ∈ F
n
p , we define the following operators:

Xa :=
∑

y∈Fn
p

|y + a〉〈y|

and Zd :=
∑

y∈Fn
p

ωdty|y〉〈y|,

whereω ∈ C is a primitivepth root of unity. The set of unitary
operatorsE := {XaZd : a, d ∈ F

n
p} is an orthonormal basis

for the vector space ofpn × pn matrices with respect to the
trace inner product〈A|B〉 = tr(A†B)/pn. What is more,E
defines anice error basis [6]. The groupG generated byE
is an extra-specialp-group. The elementsXaZd andXa′

Zd′

commute up to scalars as follows [1]

(XaZd)(Xa′

Zd′

) = ω〈a,d′〉−〈a′,d〉(Xa′

Zd′

)(XaZd), (9)

where we have used the standard inner product〈a, d〉 :=∑n

i=1 aidi ∈ Fp. Equivalently, two elements of the groupG
commute if the vectors(a, d), (a′, d′) ∈ F2n

p are orthogonal
with respect to the symplectic inner product [7]

〈a, d′〉 − 〈a′, d〉. (10)

Hence, the elements ofG are given by{ωγXaZd : γ ∈
Fp, a, d ∈ Fn

p}.
A stabilizer code Q ⊆ H⊗n with respect to the nice error

basisE corresponds to a joint eigenspace of an abelian normal
subgroup ofG. In order to compute the stabilizer group of the
graphical code, we consider the action of an operatorωγXaZd

on the states (5). Recall thatωγXaZd belongs to the stabilizer
of the graphical quantum codeQ if and only if ωγXaZd|x〉 =
|x〉 for all x ∈ K. We claim that the stabilizer of the graphical
quantum codeQ is given by the following set of operators

SQ = {ωq(a)XaZaMy | a ∈ N such thatBa = 0}, (11)

whereMy denotes then×n submatrix of the adjacency matrix
Γ defined in (7). Indeed, using the characterζ(γ) := ωγ in
(5), straightforward calculation shows that

ωγXaZd|x〉
=

1√
αn

∑

y∈N

ζ(γ + b(x, y − a) + q(y − a) + dt(y − a))|y〉.

(12)
Comparing equations (12) and (8) yields

ζ(γ + b(x, y− a)+ q(y− a)+ dt(y − a)) = ζ(b(x, y)+ q(y))

for all x ∈ K andy ∈ N . As the characterχ is faithful, we
can simplify this to

γ − b(x, a) − b(a, y) + q(a) + dt(y − a) = 0. (13)

This formula holds for any choice ofx ∈ K, thusb(x, a) = 0
for all x ∈ K. Whence the argumenta ∈ N satisfies the
constraintb(x, a) = xtBa = 0 for all x ∈ K, implying Ba =
0 as claimed. Moreover, equation (13) can be simplified to

γ − b(a, y) + q(a) + dt(y − a) = 0. (14)

Since this holds for ally ∈ N , we get−b(a, y) + dty = 0
for all y ∈ N ; hence−b(a, y) + dty = (d − aMy)

ty = 0 for
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all y ∈ N . This shows thatZd = ZaMy . Finally, substituting
y = a in (14) yieldsγ = q(a), which proves the claim.

Two different elementsωq(a)XaZaMy , ωq(a′)Xa′

Za′My ∈
SQ commute, since the symplectic inner product (10) of
(a, aMy) and (a′, a′My) vanishes as the matrixMy is sym-
metric. As the rank of the matrixB is assumed to bek, there
aren− k different vectorsa that satisfy the constraint. Hence
the group generated bySQ has at leastpn−k elements.

A projection onto the joint eigenspaceE1 ⊆ H⊗n with
eigenvalue1 of the operators inSQ generating the groupS is
given by

P =
1

|S|
∑

M∈S

M.

The dimension ofE1 is bounded from above bydimE1 =
trP = pn/|S| ≤ pn/|SQ| = pk. SinceE1 containsQ and
dimQ = pk, this shows thatE1 = Q. We can conclude that
Q is a stabilizer code.

Omitting the phase factorsωq(a), we obtain an equivalent
codeQ′ whose stabilizer group is

SQ′ := {XaZaMy : a ∈ 〈B〉⊥ = 〈D〉}. (15)

Here〈B〉⊥ = 〈D〉 denotes the linear space of elementsa ∈ N
such thatBa = 0, and the(n−k)×n matrix D is formed by
a basis of that space. The stabilizer groupSQ′ gives rise to a
symplectic code overFp × Fp [7]. This code is generated by
the matrixD(I +α ·My) where{1, α} is a basis ofFp2 over
Fp. Additionally, we have used the isomorphism ofFp × Fp

andFp2 as vector spaces.

IV. T HE GRAPH OF A STABILIZER CODE

In [1] it is shown that any stabilizer code that is defined via
a code overFpm can be regarded as a stabilizer code overFp.
Hence it is sufficient to consider stabilizer codes over a space
H of prime dimension. Those codes correspond to symplectic
codes overFp2 [7].

Let C be a symplectic code overFp2 which is generated by
the matrixX + αZ =: (X |Z) where{1, α} is a basis ofFp2

over Fp and X, Z ∈ F
(n−k)×n
p . Furthermore, letC⊥ denote

the orthogonal code ofC with respect to the symplectic inner
product onF

n
p2 . As C ≤ C⊥, there exists a self-dual code

D with C ≤ D = D⊥ ≤ C⊥. Identifying Fn
p2 and F2n

p and
rearranging the coordinates, we can choose a generator matrix
for D of the form

G′ := (X ′|Z ′) =

(
X Z

X̃ Z̃

)
. (16)

The group of isometries of the symplectic spaceF
n
p2 that addi-

tionally preserve the Hamming weight is given by the wreath
product of the symplectic groupSp2(p) and the symmetric
group Sn [7]. The symmetric group acts on the generator
matrix (16) by simultaneously permuting columns ofX ′ and
Z ′. The elements ofSp2(p) operate from the right on the
ith column of the submatrixX and the ith column of the
submatrixZ. On the rows ofG′ operates the full linear group.
Similar to Gauß’ algorithm,G′ can assumed to be of the
form G′ = (I|P ) [4]. As D is self-dual with respect to the

symplectic inner product (10), we haveI · P t − P · I = 0,
i. e., P is symmetric.

In the next step we perform column operations in order to
obtain a matrix of the form(I|C) whereC is symmetric and
all entries on the diagonal ofC are zero. The code generated
by (I|C) is equivalent toD, and in particular, it contains a
subcode that is equivalent toC. Let this subcode be generated
by D ·(I|C). Furthermore, letB be ak×n parity check matrix
for the linear code[n, n − k] over Fp generated byD. Then
the matrix

Γ =

(
0 B

Bt C

)

is of the form (7). The entries ofΓ are elements ofFp which
can be interpreted as integers modulop. As Γ is symmetric
and the diagonal entries are zero,Γ is the adjacency matrix
of a weighted undirected graph. Repeating the arguments of
Section I and Section III, it can be shown that the graphical
quantum code defined byΓ is equivalent toC. Hence, for any
stabilizer code overFpm there exists an equivalent graphical
quantum code.

V. EXAMPLES

A. The stabilizer of a graphical quantum code

Consider the highly symmetric graph depicted in Fig. 1.
This graph is called the wheelW7. All edges in this graph
have the same weight, hence its adjacency matrix is given by

ΓW7
=




0 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
1 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1
1 1 0 0 0 0 1 0




,

where we have indicated the block structure as in eq. (7). The
7 × 1 submatrixB corresponds to the repetition code, so the
matrix D (cf. eq. (15)) generates the even weight code of
length7. Using the notation of (16), we obtain

G = D · (I|My)

=




1 0 0 0 0 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 0
0 0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 1




,

where My is the lower right7 × 7 submatrix ofΓW7
. The

corresponding additive code overGF(4) [2] is generated by

G4 :=




α2 α 0 0 0 α α2

0 1 α 0 0 α 1
α α 1 α 0 α 1
α 0 α 1 α α 1
α 0 0 α 1 0 1
α 0 0 0 α α2 α2




,

whereα denotes a primitive element ofGF(4). The additive
codeC4 = (7, 26) generated byG4 is notGF(4)-linear asG4
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Fig. 1. The wheelW7 with 7 vertices of degree 3 yields a[[7, 1, 3]] QECC.

has rank6 overGF(4). The weight distribution ofC4 and its
dual C⊥

4 are

WC4
(x, y) = x7 + 21x3y4 + 42xy6

W
C⊥

4

(x, y) = x7 + 21x4y3 + 21x3y4 + 126x2y5 + 42xy6 + 45y7.

Thus the corresponding stabilizer code has minimum dis-
tance3.

B. The graph of a stabilizer code

Consider the CSS code (cf. [3], [10])[[7, 1, 3]] derived
from the [7, 4, 3] Hamming code overF2. The corresponding
additive codeC7 is generated by

G =




1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1




,

which has block diagonal form. In order to obtain a generator
matrix G′ for the self-orthogonal codeD with C ≤ D ≤ C⊥,
we have to add a non-zero vector of the complement ofC in
C⊥ to G. In our example, we choose the all-ones vector. Next
we transformG′ into the form(I|C) whereC is symmetric.
We obtain

(I|C) = T · G′ · S

=




1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0




,

(17)
whereS ∈ Sp2(2) ≀ S7, andT ∈ GL7(2) is given by

T =




1 0 1 1 0 1 0
1 0 0 1 0 0 1
0 0 0 1 1 1 0
0 0 0 1 0 0 0
0 0 0 1 1 0 0
1 1 0 1 1 0 1
1 1 1 1 1 1 1




.

Fig. 2. Four non-isomorphic graphs which yield graphical quantum codes
that are equivalent to the CSS code[[7, 1, 3]].

In our example, the matrixBt is given by the last column of
T . This leads to the adjacency matrix

ΓHamming =




0 0 1 0 0 0 1 1
0 0 0 1 1 1 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 1
0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0




.

Note that the “normal” form (17) is not unique, wherefore the
corresponding graph is not unique either. In Fig. 2 we have
depicted four obviously non-isomorphic graphs which all lead
to graphical quantum codes that are equivalent to the CSS
code[[7, 1, 3]]. The lower right graph is a permuted version of
ΓHamming. As in Fig. 1, the first node is drawn as an open circle.
Furthermore, none of the graphs reflects the cyclic symmetry
of the quantum code.

VI. CONCLUSIONS

We have shown that any stabilizer code over a finite field
has an equivalent representation as a graphical quantum code.
Unfortunately, this representation is not unique, neitherdoes
it reflect all the properties of the quantum code. However, the
construction of good quantum codes with the help of graphs
is a promising avenue for further research. It should be noted
that independent of this work, Dirk Schlingemann has also
established the equivalence of graphical quantum codes and
stabilizer codes [8].
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