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NEC Labs America, Inc.

4 Independence Way
Princeton, NJ 08540, USA

Email: mroetteler@nec-labs.com

Abstract— We present a construction of self-orthogonal codes
using product codes. From the resulting codes, one can construct
both block quantum error-correcting codes and quantum convo-
lutional codes. We show that from the examples of convolutional
codes found, we can derive ordinary quantum error-correcting
codes using tail-biting with parameters [[42N, 24N, 3]]2. While it
is known that the product construction cannot improve the rate
in the classical case, we show that this can happen for quantum
codes: we show that a code[[15, 7, 3]]2 is obtained by the product
of a code [[5, 1, 3]]2 with a suitable code.

I. I NTRODUCTION

Quantum convolutional codes are motivated by their classi-
cal counterparts [3]. As in the classical case the idea is to allow
for the protection of arbitrary long streams of informationin
such a way that as many errors as possible can be corrected.
To achieve this the information is “smeared out” to the output
stream by adding a certain amount of redundancy, but at
the same time meeting the requirement to be local,i. e.,
encoding/decoding can be done by a processes which needs
only a constant amount of memory. In [13] the basic theory
of quantum convolutional codes has been developed. There it
has been shown that, similar to the classical codes, quantum
convolutional codes can be decoded by a maximum likeli-
hood error estimation algorithm which has linear complexity.
However, the authors only gave an example of one (rate1/5)
quantum convolutional code. This research was motivated by
the question to find new examples of quantum convolutional
codes. The construction presented in this paper resorts on the
idea of product codes. An extra requirement imposed by the
applicability to quantum codes is that the dual distance hasto
be high. The main source of the examples presented at the end
of the paper are two-dimensional cyclic codes (sometimes also
called “bicyclic codes”). We apply this to the situation where
the code is a product code of two Reed-Solomon codes.

II. SELF-ORTHOGONAL PRODUCT CODES

A. Quantum error-correcting codes from classical codes

Most of the constructions for quantum error-correcting
codes (QECCs) for a quantum system of dimensionq (qudits),
whereq = pℓ is a prime power, are based on classical error-
correcting codes overGF (q) or GF (q2). The so-called CSS

codes (see [5], [14]) are based on linear codesC1 and C2

overGF (q) with C⊥
2 ⊆ C1. HereC⊥

2 is the dual code ofC2

with respect to the Euclidean inner product. In particular,if
C = C1 = C2 this implies thatC⊥ is a weakly self-dual code.
The construction can be summarized as follows:

Lemma 1:Let C = [n, k, d]q be a weakly self-dual linear
code,i. e., C ⊆ C⊥ = [n, n− k, d⊥]q. Then a quantum error-
correcting code encodingn−2k qudits usingn qudits, denoted
by C = [[n, n − 2k, dq ≥ d⊥]]q exists.
Another class of quantum codes can be obtained from codes
over GF (q2) which are self-orthogonal with respect to the
Hermitian inner product, denoted byC ⊆ C∗. Both cases can
be generalized to a construction of QECCs based on additive
codes overGF (q2) which are self-orthogonal with respect to
the symplectic (trace) inner product,i. e. C ⊆ C⋆ [1].

B. Inner products on vector spaces overGF (q) andGF (q2)

In this paper, we will use three different inner products on
vector spaces overGF (q) andGF (q2) which are defined as
follows:

Euclidean:

v · w :=

n∑

i=1

viwi for v, w ∈ GF (q)n (1)

Hermitian:

v ∗ w :=

n∑

i=1

viw
q
i for v, w ∈ GF (q2)n (2)

symplectic:

v ⋆ w :=

n∑

i=1

tr(viw
q
i ) for v, w ∈ GF (q2)n, (3)

where tr(x) denotes the trace ofGF (q2) over its prime
field GF (p). Both the Euclidean and the Hermitian inner
product are bilinear overGF (q) respectivelyGF (q2), but the
symplectic inner product is onlyGF (p)-bilinear because of
the trace map. For codes which are linear overGF (q), linear
over GF (p2), or additive (i. e. GF (p)-linear), one can define
a dual code with respect to the inner products (1), (2), or (3),
respectively. The three cases are summarized in Table I.

Next, we consider inner products on tensor products of
vector spaces.
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TABLE I

NOTATION USED FOR THE THREE DIFFERENT INNER PRODUCTS AND THE

CORRESPONDING DUAL CODES.

dual code inner product linear over
Euclidean C⊥

v · w GF (q)
Hermitian C∗

v ∗ w GF (q2)
symplectic C⋆

v ⋆ w GF (p)

Lemma 2:For all v, v′ ∈ GF (q)n andw, w′ ∈ GF (q)m,
we have

(v ⊗ w) · (v′ ⊗ w
′) = (v · v′)(w · w′), (4)

i. e., the Euclidean inner product is compatible with the tensor
product of vector spaces overGF (q). Furthermore, for all
v, v′ ∈ GF (q2)n andw, w′ ∈ GF (q2)m, we have

(v ⊗ w) ∗ (v′ ⊗ w
′) = (v ∗ v

′)(w ∗ w
′), (5)

i. e., the Hermitian inner product is compatible with the tensor
product of vector spaces overGF (q2).

Proof: The tensor product of two vectors is given by
(v ⊗ w) = (viwj)i,j . Then for the Euclidean inner product
we get

(v ⊗ w) · (v′ ⊗ w
′)

=
n∑

i=1

m∑

j=1

viwjv
′
iw

′
j =

( n∑

i=1

viv
′
i

)( m∑

j=1

wjw
′
j

)

= (v · v′)(w · w′).

Similarly, for the Hermitian inner product we get

(v ⊗ w) ∗ (v′ ⊗ w
′)

=

n∑

i=1

m∑

j=1

viwj(v
′
iw

′
j)

q =
( n∑

i=1

viv
′
i
q
)( m∑

j=1

wjw
′
j
q
)

= (v ∗ v
′)(w ∗ w

′).

For the symplectic inner product, the situation is a bit more
complicated as it is onlyGF (p)-linear. ConsideringGF (q)m

only as vector space overGF (p), we may define theGF (p)
tensor product ofV1 = GF (p)n andV2 = GF (q)m, denoted
by V1 ⊗p V2.

Lemma 3:For all v, v′ ∈ GF (p)n andw, w′ ∈ GF (q)m,
we have(v ⊗p w) ⋆ (v′ ⊗p w

′) = (v · v′)(w ⋆ w
′), i. e., the

symplectic inner product on theGF (p) tensor product space
is the product of the Euclidean inner product on the first space
and the symplectic inner product on the second.

Proof: Similar to the proof of Lemma 2, we compute

(v ⊗ w) ⋆ (v′ ⊗ w
′) =

n∑

i=1

m∑

j=1

tr
(
viwj(v

′
iw

′
j)

q
)

= tr





( n∑

i=1

viv
′
i
q
)( m∑

j=1

wjw
′
j
q
)



 .

As v and v
′ are vectors over the prime field, the left factor

equals their Euclidean inner productv · v′ which takes values
in GF (p) only. Using theGF (p)-linearity of the trace map,
the proof is completed.

C. Product codes

Next we present the fundamental properties of the product
of two codes which combines two codes (seee. g. [2], [11]).

Lemma 4:Let C1 = [n1, k1, d1]q and C2 = [n2, k2, d2]q
be linear codes overGF (q) with generator matricesG(1) and
G(2), respectively. Then the product codeCπ := C1 ⊗C2 is a
linear codeCπ := [n1n2, k1k2, d1d2]q generated by the matrix
G := G(1) ⊗ G(2), where⊗ denotes the Kronecker product,
i. e.

G :=









g
(1)
11 G(2) g

(1)
12 G(2) . . . g

(1)
1,n1

G(2)

g
(1)
21 G(2) g

(1)
22 G(2) . . . g

(1)
2,n1

G(2)

...
...

. . .
...

g
(1)
k1,1G

(2) g
(1)
k1,2G

(2) . . . g
(1)
k1,n1

G(2)









. (6)

If C1 = [n1, k1, d1]p is a linear code over the prime field
GF (p) and C2 = (n2, p

k2 , d2)q is an additive code over
GF (q), then Cπ,p := C1 ⊗p C2 is an additive code with
parametersCπ,p = (n1n2, p

k1k2 , d1d2)q.
The following theorem is valid for all compatible choices of
inner products on the component spaces of a tensor product
space and the tensor product space itself.

Theorem 5:Let Cπ = C1 ⊗C2 be the product code of the
codesC1 = [n1, k1, d1] andC2 = [n2, k2, d2]. By H1 andH2

we denote generator matrices of the corresponding dual codes.
Furthermore, letA1 andA2 be matrices of sizek1 × n1 and
k2 × n2, respectively, such that the row span of the matrices
H1 andA1 is the full vector space and similar forH2 andA2.
Then a generator matrixH of the dual code ofCπ is given
by

H :=





H1 ⊗ H2

A1 ⊗ H2

H1 ⊗ A2



 . (7)

Proof: Let V1 andV2 be the full vector spaces containing
the codesC1 and C2. Furthermore, byD1 and D2 we
denote the dual code ofC1 andC2 with respect to the inner
product onV1 and V2, respectively. Using the properties of
the inner products on tensor product spaces (see Lemma 2 and
Lemma 3), it is obvious that the dual codeDπ of Cπ contains
bothV1⊗D2 andD1⊗V2. The intersection of these spaces is
D0 := D1⊗D2, spanned byH1⊗H2. The complement ofD0

in V1 ⊗ D2 is spanned byA1 ⊗ H2, and analogously for the
complement ofD0 in D1⊗V2. HenceDπ can be decomposed
as

Dπ =
(

D1 ⊗ D2

)

⊕
(

〈A1〉 ⊗ D2

)

⊕
(

D1 ⊗ 〈A2〉
)

.

Here〈A〉 denotes the row span of the matrixA. Considering
the dimension of the spaces, the result follows.
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Corollary 6: The minimum distance of the dual of the
product codeCπ = C1 ⊗ C2 cannot exceed the minimum
of the dual distance ofC1 and the dual distance ofC2.

Proof: The dual codeDπ of Cπ containsV1 ⊗D2, i. e.,
the product of the trivial code[n1, n1, 1] andD2. Hence the
minimum distance ofDπ cannot be larger than that ofD2.
The result follows by interchanging the role ofC1 andC2.
Note that despite their poor behavior in terms of minimum
distance, the dual of product codes can be used for burst error
correction (see [6], [15]). For the construction of QECCs, we
will make use of the following property.

Theorem 7:Let CE ⊆ C⊥
E , CH ⊆ C∗

H , and Cs ⊆ C⋆
s

denote codes which are self-orthogonal with respect to the
inner products (1), (2), or (3), respectively. Furthermore, let
C denote an arbitrary linear code overGF (q), respectively
GF (q2), and letCp be a linear code overGF (p). Then

(i) C ⊗ CE is Euclidean self-orthogonal.
(ii) C ⊗ CH is Hermitian self-orthogonal.
(iii) Cp ⊗p Cs is symplectic self-orthogonal.

Proof: The result directly follows using Lemma 2,
Lemma 3, and Theorem 5.

III. PRODUCT CODES FROMCYCLIC CODES

In this section we investigate the product of two cyclic codes
(see [2, Chapter 10.4], [3, Chapter 10.2]).

Let C1 = [n1, k1] and C2 = [n2, k2] be cyclic linear
codes with generator polynomialsg1(X) and g2(Y ). Then
Cπ = C1 ⊗ C2 is a bicyclic code generated byg1(X)g2(Y ).
The codewords ofCπ correspond to all bivariate polynomials
c(X, Y ) = i(X, Y )g1(X)g2(Y ) modulo the ideal generated
by Xn1 −1 andY n2 −1, wherei(X, Y ) ∈ GF (q)[X, Y ] is an
arbitrary bivariate polynomial. The two-dimensional spectrum
of c(X, Y ) is then1 × n2 matrix (ĉi,j) with entries

ĉi,j := c(αi, βj), (8)

whereα and β are primitive roots of unity of ordern1 and
n2, respectively. The spectrum̂c is zero in all vertical stripes
corresponding to the rootsαi of g1(X) and in all horizontal
stripes corresponding to the rootsβj of g2(X) (see Fig. 1 a)).
The generator polynomialh1(X) of the Euclidean dualC⊥

1

is the reciprocal polynomial of(Xn1 − 1)/g1(X). Hence its
one-dimensional spectrum is zero at the negative of those
positions where the spectrum of the codeC1 takes arbitrary
values (cf. Fig. 2). For the generator polynomialh2(Y ) of
C⊥

2 the analogous statement is true. Therefore the Euclidean
dual code(C1 ⊗ C2)

⊥ of the product codeC1 ⊗ C2 consists
of all polynomials that are multiples ofh1(X) or h2(Y ).
Interchanging the zeros and blanks in the two-dimensional
spectrum of the product code and applying the coordinate map
(cf. Fig. 2) to both the rows and columns, we obtain the two-
dimensional spectrum of the dual code(C1 ⊗ C2)

⊥.
For the Hermitian dual code, we get analogous results.

As the Hermitian inner product involves the Frobenius map
x 7→ xq, the transformation on the coordinates now reads
i 7→ −qi mod nj .
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Fig. 1. Two-dimensional spectrum of a) the product of two cyclic codes and
b) the dual code. Blank entries may take arbitrary value.
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spectrumĉ of c ∈ C

spectrumĉ
′ of c

′
∈ C⊥

| {z }

N−δ+1

| {z }

δ−2

Fig. 2. Relation between the spectra of a Reed-Solomon codeC and its
dual. Positions taking arbitrary values (marked with∗) and positions being
zero are interchanged using to the mapi 7→ −i mod (q − 1) [9].

For Reed-Solomon codes, the picture simplifies. The two-
dimensional spectrum of the product of two Reed-Solomon
codes with minimum distanceδ1 and δ2 corresponds to a
vertical stripe of zeros of widthδ1 − 1 and a horizontal stripe
of height δ2 − 1. Without loss of generality, the stripes can
be shifted such that the rectangle of arbitrary values is in the
upper right corner (see Fig. 3 a). Then for the dual code, the
spectrum is zero in a rectangle (see Fig. 3 b) whose width and
height is determined by the dual distances(q−δ1) and(q−δ1).
Using the BCH-like lower bound for bicyclic codes (see [3,
p. 320]), we conclude that the minimum distance of the dual
of the product code ismin(q − δ1, q − δ2). In summary, we
get the following theorem:

Theorem 8:The product code of two Reed-Solomon codes
C1 = [q − 1, q − δ1, δ1]q and C2 = [q − 1, q − δ2, δ2]q over
GF (q) is

C1 ⊗ C2 = [(q − 1)2, (q − δ1)(q − δ2), δ1δ2]q. (9)

The Euclidean dual code(C1 ⊗ C2)
⊥ = [(q − 1)2, K⊥, d⊥]q

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0
0
0

0 0 0
0 0 0

0 0 0

0 0 0 0
0

0

0 0

0 1 2 δ1−2 q−2j/i

0

1

2

δ2−2

q−2

0 0
0 0

0
0

0 0 0

0 1 2 δ′

1−1 q−2j/i

0

1

2

δ′

2−1

q−2

a) b)

Fig. 3. Two-dimensional spectrum of a) the product of two Reed-Solomon
codesC1 andC2 with minimum distanceδ1 and δ2, and b) the dual code,
whereδ′1 andδ′2 denote minimum distance of the dual codesC⊥

1 andC⊥

2 .
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has parameters

K⊥ = q(d1 + d2 − 2) − d1d2 + 1

d⊥ = min(q − δ1, q − δ2).

Moreover, the product code is self-orthogonal ifC1 or C2 is
self-orthogonal.
Note that the result is still true when replacing the Reed-
Solomon code overGF (q) of length (q − 1) by a cyclic
code C = [n, k, d]q with generator polynomialg(X) =
∏d−2

i=0 (X − αi) where n is a divisor of q − 1 and α is a
primitive n-th root of unity.

IV. QUANTUM CODES FROMPRODUCT CODES

A. Quantum Block Codes

In the previous section we have seen that the product of a
self-orthogonal Reed-Solomon code with an arbitrary Reed-
Solomon codes yields a self-orthogonal product code. Using
Lemma 1, we can construct quantum error-correcting codes.

Theorem 9:Let C1 = [q − 1, µ1, q − µ1]q and C2 = [q −
1, µ2, q−µ2]q be Reed-Solomon codes whereµ1 < (q−1)/2.
Then a quantum error-correcting code

C = [[(q − 1)2, (q − 1)2 − 2µ1µ2, 1 + min(µ1, µ2)]]q (10)

exists.
Proof: Forµ1 < (q−1)/2, the codeC1 is Euclidean self-

orthogonal [10]. The dual distance ofC1 and C2 is µ1 + 1
and µ2 + 1, respectively. By Theorem 8, the product code
Cπ = C1 ⊗ C2 = [(q − 1)2, µ1µ2, (q − µ1)(q − µ2)]q is self-
orthogonal. Its Euclidean dual has parametersC⊥

π = [(q −
1)2, (q − 1)2 − µ1µ2, 1 + min(µ1, µ2)]q. Hence by Lemma 1
a QECC with the parameters given in eq. (10) exists.
Note that fromC1 andC2 (providedµ2 < (q−1)/2), one can
construct optimal QECCs with parameters[[q − 1, q − 2µ −
1, µ + 1]]q (see [10]). The product of the rates of these codes
is
(

1 −
2µ1

q − 1

) (

1 −
2µ2

q − 1

)

= 1 −
2(µ1 + µ2)

q − 1
+

4µ1µ2

(q − 1)2

The rate of the code of Theorem 9 is

1 −
2µ1µ2

(q − 1)2
.

If we chooseµ1 = µ2, we will obtain a QECC of squared
length and the same minimum distance, but higher rate pro-
vided µ1 = µ2 < 2(q − 1)/3.

Note that we can obtain good QECCs by this construc-
tion using other codes than Reed-Solomon codes. LetC =
[5, 2, 4]4 be the Hermitian dual of the quaternary Hamming
code. UsingC ⊆ C∗ = [5, 3, 3]4, an optimal QECCC =
[[5, 1, 3]]2 can be constructed. The codeC is not a Reed-
Solomon code, but its spectrum fulfills the conditions for
Theorem 8. Hence the product ofC with itself is a Hermitian
self-orthogonal codeC ⊗ C = [25, 4, 16]4 ⊆ (C ⊗ C)∗ =
[25, 21, 3]4. This yields a QECCC(2) = [[25, 17, 3]]2, whose
rate is more than three times higher than that ofC.

The product code ofC, considered as additive code, with the
binary simplex codeC1 = [3, 2, 2]2 is an additive codeC2 :=
C1 ⊗p C = (15, 28, 8)2 which is contained in its symplectic
dual C⋆ = (15, 222, 3)2. Hence we obtain a QECCCπ =
[[15, 7, 3]]2.

V. QUANTUM CONVOLUTIONAL CODES

Following [13], an (n, k, m) quantum convolutional code
can be described in terms of a semi-infinite stabilizer matrix
S. The matrixS has a block band structure where each block
M has size(n − k) × (n + m). All blocks are equal. In the
second block, the matrixM is shifted byn columns, hence any
two consecutive blocks overlap inm positions. The general
structure of the matrix is as follows:

S :=














n
︷ ︸︸ ︷

m
︷ ︸︸ ︷

M
}

n − k

M

M

. . .














The classical convolutional code generated byS must be
self-orthogonal with respect to some of the inner products of
Section II. The quantum product codes constructed in the pre-
vious section naturally lend themselves to convolutional codes
because of the following observation. LetM = G(1) ⊗ G(2)

be the generator matrix ofC1 ⊗C2 as in eq. (6). Assume that
m = tn2 is a multiple ofn2, the length ofC2. SinceC2 is self-
orthogonal, we have that the submatrix ofM which consists
of the lastm columns ofM is orthogonal to the submatrix
which consists of the firstm columns ofM . Hence, we obtain
a semi-infinite stabilizer matrixS by iterative shifting of the
block M by n1n2 − m = (n1 − t)n2 positions.

To give an example, we letC = [7, 3, 4]2 be the Euclidean
dual of the binary Hamming code. UsingC ⊆ C⊥ = [7, 4, 3]2,
a QECCC = [[7, 1, 3]]2 can be constructed. The product code
of C with itself is a codeCπ = C ⊗ C = [49, 9, 16]2
which is contained in its dualC⊥

π = [49, 40, 3]2. Hence we
obtain a QECCCπ = [[49, 31, 3]]2. The possible parameters for
quantum convolutional codes obtained from the product code
Cπ by the CSS construction (i. e., by considering the generator
matrix Cπ ⊗ GF (4)) are (49 − m, 31, m), m = 7, 14. The
free distance of these codes is3. Using tail-biting withN ≥ 2
blocks andm = 7 (see [8]) we obtain QECCs[[42N, 24N, d]]2.
Using Magma [4] we computed = 3.

From the product codeCπ = [[15, 7, 3]]2 described above
we can obtain a quantum convolutional code with parameters
(10, 7, 5), i. e., we choosem = 5.

If the matrix M defining the semi-infinite band matrixS
is the generator matrixG(1) ⊗ G(2) of a product code, the
matrix S itself can be decomposed as a tensor productS =
S(1)⊗G(2), provided the overlapm is a multiple of the length
n2 of the second code,i. e., m = tn2 (see Fig. 4). The matrix
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Fig. 4. Tensor product decomposition of the semi-infinite band matrix derived
from the generator matrix of a product code (here shown fort = 1).

S(1) is a semi-infinite band matrix withM (1) = G(1) and
overlap t. From Theorem 7 it follows that the product code
is self-orthogonal ifC2 is self-orthogonal. Hence we get the
following construction:

Theorem 10:Let C1 be a classical convolutional code. Fur-
thermore, letC2 be a self-orthogonal code. Then the product
codeC1⊗C2 defines a quantum convolutional code, provided
at least one of the following holds:

(i) Both C1 and C2 are linear overGF (q) and C2 is
Euclidean self-orthogonal.

(ii) Both C1 and C2 are linear overGF (q2) and C2 is
Hermitian self-orthogonal.

(iii) C1 is linear of GF (p) and C2 is a symplectic self-
orthogonal code overGF (pℓ).

VI. CONCLUSION

The construction of new examples of quantum convolutional
codes is a challenging task and rises several questions: what
is a general framework to describe such codes, how can
they be constructed, and what are the figures of merit to
compare the performance of such codes? While the first of
these questions has been answered in a satisfying way at

least for convolutional stabilizer codes in [13], the othertwo
questions are open (but seee. g. [7], [8], [12]). In this paper
we have contributed to the second question by establishing a
connection between product codes and convolutional codes.
We have shown that the dual distance of product codes can be
bounded from below which allows to obtain quantum codes
for which the minimum distance is at least as large as the
smaller of the minimum distances of the factors.

Concerning the third question currently not much is known,
e. g., the significance of notions such asfree distancewhich
are useful for classical convolutional codes to the quantum
case has yet to be investigated.
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