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The Problem
 State-of-the-art speech recognizers look at speech in 

just one way

 Frame-by-frame

 With one kind of feature

 And often the output is wrong
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Recognizer Output words

“Oh but he has a big challenge”

“ALREADY  AS  a big challenge”

What we want (what was said)

What we get



The Goal
 Look at speech in multiple ways

 Extract information from multiple sources

 Integrate them in a segmental, log-linear model
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States represent whole words (not phonemes)
Baseline system can constrain possibilities

Log-linear model relates
words to observations

Multiple information sources,
e.g. phoneme, syllable detections



Data Sets
 Wall Street Journal
 Read newspaper articles

 81 hrs. training data

 20k open vocabulary test set

 Broadcast News
 430 hours training data

 ~80k vocabulary

 World class baselines for both
 7.3% error rate WSJ (Leuven University)

 16.3% error rate BN (IBM Attila system)
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Main Accomplishments (1)
Integrating Framework for New Research
 Developed SCARF toolkit
 SCARF integrates

 Multiple types of information
 Binary event detections, e.g. phoneme detections
 Real valued scores, e.g. Point Process Model scores

 Information across granularities
 Word, syllable, phoneme scales

 Information of variable completeness and quality
 Baseline: (~12% PER)
 MSR Word detectors: (~15% PER)
 Phoneme detectors: (~30% PER)
 Point Process Model: (Partial annotation only)

 Difficult to do this conventionally
 Segment level scores, correlated features
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Integrating Framework, High Level View
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PPM, Duration,
TF-IDF scores

Deep NN,
MLP Phoneme
Detections

Baseline (IBM Attila) constraints on search space

114.9 Missing 22.3

1-3.2 0.86 -1.7

…

…

and he said

and she says said

AE N

AE N D
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Features measure consistency
between observations & hypothesis

W IY

IY

MSR Word
Detections



Integrating Framework, High Level View
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MSR Word
Detections

PPM, Duration,
TF-IDF scores

Deep NN,
MLP Phoneme
Detections

Baseline (IBM Attila) constraints on search space

114.9 Missing 22.3

1-3.2 0.86 -1.7

…

…

and he said

and she says said

AE N

AE N D

we
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Features measure consistency
between observations & hypothesis

W IY

IY



Main Accomplishments (2)
Improved on State-of-The-Art Baselines

7/29/2010

Broadcast News WER % Possible Gain

Baseline (Attila w/ VTLN, HLDA, 
fMLLR, fMMI, mMMI, MLLR)

16.3% 0%

+ SCARF, word, phoneme 
detectors, scores

15.0 25

(Lattice Oracle – best achievable) 11.2 100

Wall Street Journal WER % Possible Gain

Baseline (SPRAAK / HMM) 7.3%               0%

+ SCARF, template features 6.7 14

(Lattice Oracle – best achievable) 2.9 100
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Main Accomplishments (2)
Improved on State-of-The-Art Baselines
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Broadcast News WER % Possible Gain

Baseline (Attila w/ VTLN, HLDA, 
fMLLR, fMMI, mMMI, MLLR)

16.3% 0%

+ SCARF, word, phoneme 
detectors, scores

15.0 25

(Lattice Oracle – best achievable) 11.2 100
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Note improvement on top of 
discriminatively trained 

baseline !



Main Accomplishments (3)
Advanced Cutting Edge Research
 Modulation Models of Speech

 Compared the two most advanced approaches wrt LVCSR
 Better scientific understanding of pitch-harmonic sampling

 Deep Neural Networks
 From TIMIT to benefits in LVCSR
 Developed architecture for running on standard CPU clusters

 MLP Posteriors
 First use in LVCSR outside of Tandem NN+MFCC features

 Template Based Recognition
 Showed benefits from spectrum of new features – e.g.

 How many of the best matching examplars originated from the word to 
be recognized ?

 Point Process Phone Detectors
 Showed benefit of word-level scores
 Speedy, scalable implementation to scan large data sets
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Outline of Remainder
 SCARF Introduction (Patrick Nguyen) 10 min.
 Wall Street Journal / Template Results (Dirk Van Compernolle) 

15 min.
 Broadcast News Fundamentals (Damianos Karakos) 5 min.
 Using Cohort Information (Damianos Karakos) 1o min.
 MLP Phoneme Detectors (Samuel Thomas) 15 min.
 Deep NN Phoneme Detectors (Fei Sha) 15 min.
 TF-IDF Acoustic Scores (Sam Bowman) 5 min.
Break
 Modulation Features (Pascal Clark) 15 min.
 Duration Models (Justine Kao) 10 min.
 Window-Based Detectors (Aren Jansen) 15 min.
 Summary (Geoffrey Zweig) 5 min.
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Model Structure

Observations blocked into groups corresponding
to words. Observations typically detection events.

o1 on

States represent whole words (not phonemes)

Log-linear model relates
words to observations

sl sr

e

o(e)

For a hypothesized word sequence s, 
we must sum over all possible segmentations q of observations
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Training done to maximize product of label probabilities in the training data (CML).
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Inputs (1)
 Detector streams

 (detection time) +

 Optional dictionaries

 Specify the expected sequence of detections for a word
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on
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Inputs (2)
 Lattices to constrain search
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Inputs (3)

7/29/2010

 User-defined features
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Detector-Based Features
 Array of features automatically constructed

 Measure forms of consistency between expected and 
observed detections

 Differ in use of ordering information and generalization 
to unseen words

 Existence Features

 Expectation Features

 Levenshtein Features

 Baseline Feature
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on
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 Match of u

 Substitution of u

 Insertion of u

 Deletion of u

 Align the detector sequence in a hypothesized word’s 
span with the dictionary sequence that’s expected

 Count the number of each type of edits

 Operates only on the atomic units

 Generalization ability across words!

Levenshtein Features
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ax  k or d
ih k or  *
Sub-ax = 1
Match-k = 1
Match-or = 1
Del-d = 1
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Detected:

Expected:



The Baseline Feature
 The baseline feature treats the 1-best output of a baseline 

system as a detector stream
 The baseline feature is:

 +1 if a hypothesized word covers exactly one baseline 
detection, and words are the same

 Otherwise it is -1

 To maximize,
 Hypothesis must have the same number of words as baseline,
 And their identities must be the same

 With a high enough weight, the baseline output is 
guaranteed

 In practice, the weight is learned along with all the others
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S=1
dog

S=6
nipped

S=7
the. . .

Embedding a Language Model
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“the dog” “dog barked”

“dog wagged”

“dog” “dog nipped”

“hazy”

“the”

“ ”

“nipped”

1

2

3

6

7

At minimum, we can use the state sequence
to look up LM scores from the finite state
graph. These can be features.

And we also know the actual arc sequence.
A 0/1 feature for each arc followed results in a
discriminatively trained LM.



Testing The Setup (1)

7/29/2010

Setup WER

Starting Point 16.0%

+ Oracle Detections 11.8

Lattice Oracle Error Rate 11.2

Yes - give it correct detections and you get correct words

(Modulo “break through” vs “breakthrough”, “Mohammed” vs “Muhammed”, etc.)

Can SCARF learn from correct detections?
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Testing The Setup (2)

7/29/2010

Can SCARF combine complementary information?

-Divide the phonemes into two sets
-Corrupt the baseline stream phonemes
-Detector stream 1 has all phonemes from set 1 corrupted
-Stream 2 has the others corrupted
-Train and decode with a unigram LM 

17.4%

17.5%

16.9%16.9%

Original 
uncorrupted
stream

Stream 1 only

Stream 2 only

Both corrupt streams

C
o

rr
u

p
ti

o
n

Multiple uncorrelated
corrupt streams
exploited.
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Kris Demuynck Dirk Van Compernolle Dino Seppi
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Achievements

 basic improvements on our reference template based 
speech recognizer

 vast speedup of the template based system

 extracting & integrating multiple template based 
features  via the SCARF framework

 improve on the HMM baseline with added phone 
detectors via the SCARF framework

 combining HMM, DTW, KNN features via SCARF into 
a top performing system
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Template Based Recognition - Example

IH T S T IHL AX N K L IY R

Input Signal

Selected

Templates

Templates after

Dynamic Time Warping

Speech Database

pre-segmented in templates 

(phones)

(12 x 2sec segments shown

of hrs of speech and

millions of templates )
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Template Based Speech Recognition
– Motivation & Concepts

 Motivation for a Template(=Example) Based Recognition:

 doing away with the 1st order Markov assumption

 exploit detail information available in the original data that gets blurred in the HMM density 
estimation

 no assumption about the shape of the parametric densities

 SCARF: 

 WHY: 

 convenient framework to bring many diverse ‘evidence streams’ together

 also breaks away from the ‘sub-phonemic’ HMM-state

 HOW:

 annotating the word lattices with novel parameterizations

 Challenges:

 memory and CPU intensive

 sensitivity to outliers

 non-trivial integration of intermediate KNN  info into single best decoding strategy
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How it Works

7/29/2010

n0
3

MAIN Structure: word graph with score annotation

- words are the basic unit in SCARF

SUB structure: phone graph with score annotation

- phones are used as units in the template system for further processing

CONSTRAINTS:  word arcs are unique taking cross-word context dependency into account
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Template Expansion and Feature Annotation
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t0 t1 t2 t3DH:126 IY:147 T:108

Word/Phone Graph 
generation (HMM)

Minimizing as Phone 
Graph

KNN (50)Template 
expansion of the arcs

Extracting 
KNN Features

Annotating phone 
arcs with KNN Ft’s

Annotating word arcs 
with KNN Ft’s

DH#14375:203

DH#12011:175

DH#423:117

DH#35:101

…
…

.
IY#25465:193

IY#16781:177

IY#477:157

IY#145:143
…

…
.

T#937:155

T#8771:144

T#143:102

T#11:98

…
…

.

[F1(DH), F2(DH) … ]               [F1(IY), F2(IY) … ]                 [F1(T), F2(T) … ]

THE:273/[F1, F2… ]



Features Added at Workshop
 Word ID:

 did the template originate from the same word ?

 Position Dependency (PD):
 word initial, word final
 having it as a feature favorably impacts granularity of the CD phone 

models vs. having CD and PD phones

 Averaged Score
 Top-5 weighted average score

 Speaker ID entropy
 it’s taken as positive evidence that multiple speakers contribute to the 

KNN list

 Boundary Scores
 How good is the match just beyond the boundaries of the current 

segment?

 Path constraints
 fraction of non-diagonal moves in the DTW
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WSJ setup & HMM Baseline
 WSJ0+1 database:

 81hrs, 284 speakers

 644k words

 HMM Reference system:

 feature extraction: mel spectra, VTLN, mean-norm 

 feature shaping: phone based MIDA (Mut. Info. DA)

 shared pool of 32k gaussians components

 5875 cross-word CD triphones using on avg. 94 components

 WER: 7.27 %

 multiple variants in feature extraction and feature shaping (all 
in the range 7.27…7.58% WER)
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Template System - pre-workshop
 WSJ0+1 database:

 81hrs, 284 spkrs

 2.8 M phone templates

 Implementation choices:

 ~ 5k CD phone classes

 feature extraction: cfr. HMM

 single best decoding

 WER: 9.8 %
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Template System (New Results)
 Pre-Workshop WER: 9.80%

 Improved implementation: ~ 1o% relative better

 Contributions in the SCARF framework: ~ 10% relative
 Word ID:

 Position Dependency:

 Improved KNN List Generation:

 Speaker ID entropy:

 Averaged Score:

 Path constraints:

 Signal Continuity Score:

 Combined System: 8.1%

7/29/2010 33



System Combination Results

7/29/2010 34

Wall Street Journal WER

Template System pre-workshop 9.8 %

Template System DTW score only 9.1 %

+ SCARF, multiple features 8.1 %

Baseline HMM 7.3 %               

+ SCARF, phone detectors 6.8 %

+ SCARF, template features 
and phone detectors

6.7 %

(Lattice Oracle – best achievable) 2.9 %
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The BN Corpus
 Training Data

 430 hours of audio (HUB4)

 ~5 million words

 Development Data (Dev04f)

 2 hours (Dev04f)

 ~22K words

 Test Data

 4 hours (RT04f)

 ~50K words

7/29/2010 36



Attila Baseline
 Attila: state-of-the-art speech recognizer by IBM

 Based on Hidden Markov Models with Gaussian 
mixtures

 Consists of a series of steps:

 Maximum Likelihood + Linear Discriminant Analysis

 Vocal Tract Length Normalization

 Speaker-adapted training (MLLR and fMLLR)

 Discriminative training (Boosted MMI)
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Attila Baseline Error Rates

7/29/2010

Dev04f WER RT04f WER

ML + LDA 30.6% 28.4%

+ VTLN 23.3 21.9

+ fMLLR 21.2 20.3

+ MLLR 20.5 19.8

+ fMMI 17.0 16.3

+ mMMI 16.5 15.9

+ open beams 16.3 15.7

Gains from
some
standard
methods 
~1%

All the standard methods are in it
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SCARF Baseline Error Rates
 Attila (IBM recognizer) output was used as the 

“baseline feature” of SCARF.

 Time-annotated word string.

 Essentially a discretized AM score

 Provides a “safety net” for SCARF 

7/29/2010

Dev04f WER

Attila Baseline 16.3%

SCARF with baseline 16.0
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SCARF Baseline Error Rates
 Attila (IBM recognizer) output was used as the 

“baseline feature” of SCARF.

 Time-annotated word string.

 Essentially a discretized AM score

 Provides a “safety net” for SCARF 

7/29/2010

Dev04f WER

Attila Baseline 16.3%

SCARF1 16.0
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Adding MSR Word Detectors

7/29/2010

Dev04f WER

Attila Baseline 16.3%

SCARF1 16.0

+ MSR Word Detectors 15.3

41

This system often referred to in later talks.
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Experiments with SCARF
 Key Research 

 Cohort set based detections

 Comparison with ROVER

 Contrastive Attila systems for ROVER: (i) with triphone
decision tree, (ii) with reduced question set.

 ROVER did not exploit the information sources

 Comparison with LM Rescoring

 SCARF exploited multiple LMs effectively
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Experiments with SCARF
 Key Research 

 Cohort set based detections

 Comparison with ROVER

 Contrastive Attila systems for ROVER: (i) with triphone
decision tree, (ii) with reduced question set.

 ROVER did not exploit the information sources

 Comparison with LM Rescoring

 SCARF exploited multiple LMs effectively
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Cohort-set based detectors
 Cohort set of a word w: the set of words which are 

found frequently confused with w in the training data 
(or some other untranscribed corpus).

 Confusion networks can be used to compute cohort 
sets.
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Examples of cohort sets
 accept except (152) accepted (22) accepts (18) 

accepting (5) exit (4) expect (3) set (2) exception (2) …

 party's parties (139) party (31) parties' (30) part (4) 
authorities (4) partisan (2) …

 tails tales (22) details (6) talese (6) tells (5) entails (3) 
sales (2) tail (2) hills (2) tailed (2) tale (2) motels …

 yield field (9) deal (6) feel (4) yields (3) heeled (3) 
sealed (3) deals (3) healed (3) appealed (3) know (2) 
yielded (2) guild (2) heal (2) reveal (2) …

 …
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Using cohorts to build word 
detectors

 For each word w we built a binary classifier (detector) 
using n-gram features.

 The classifier of w gives the probability that the word 
following a n-gram history is w.

 Training data: all occurrences of w in the language 
modeling text (BN corpus) and all occurrences of its 
cohort words.
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Example

7/29/2010

… THE TWO THOUSAND ELECTION CYCLE …
… GOING TO BE AN ELECTION IN …

… HERE TO AN ELECTION IS …
… MEMBERS SHOW UP ON ELECTION DAY …

Positive examples
for ELECTION

… WINNING ALL OF THE ELECTIONS AND …
… COUNTRIES THAT HOLD ELECTIONS BUT …

… TAKE ADVANTAGE OF A COLLECTION OF …
… HOME TO AN EXTRAORDINARY COLLECTION OF …

Negative examples
for ELECTION
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Example

7/29/2010

… THE TWO THOUSAND ELECTION CYCLE …
… GOING TO BE AN ELECTION IN …

… HERE TO AN ELECTION IS …
… MEMBERS SHOW UP ON ELECTION DAY …

Positive examples
for ELECTION

… WINNING ALL OF THE ELECTIONS AND …
… COUNTRIES THAT HOLD ELECTIONS BUT …

… TAKE ADVANTAGE OF A COLLECTION OF …
… HOME TO AN EXTRAORDINARY COLLECTION OF …

Negative examples
for ELECTION

3-gram features

Used a max-ent classifier (developed by P. Nguyen)
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Using cohorts to build word 
detectors
 At any particular position in the lattice (confusion network), apply the 

detectors for all words in competition  binary features for SCARF.

 Note: we only focus on non-function word confusions.

7/29/2010

240 261 HELD f1=1,f2=0
262 289 KEY f1=1,f2=0
263 290 KEY f1=1,f2=0
290 327 LOCAL f1=1,f2=0
291 327 LOCAL f1=1,f2=0
328 340 AND f1=1,f2=0
341 388 PROVINCIAL f1=1,f2=0
341 389 PROVINCIAL f1=1,f2=0
389 439 ELECTION f1=0,f2=-1
389 443 ELECTIONS f1=1,f2=0
390 443 ELECTIONS f1=1,f2=0
440 491 SUNDAY f1=1,f2=0

1185 1227 MAYORS f1=1,f2=0
1185 1228 MAYORS f1=1,f2=0
1228 1247 AND f1=1,f2=0
1229 1246 AND f1=1,f2=0
1247 1275 TOWN f1=1,f2=0
1248 1276 TOWN f1=1,f2=0
1276 1323 COUNCIL f1=1,f2=0
1277 1322 COUNCIL f1=1,f2=0
1323 1373 MEMBERS f1=1,f2=0
1323 1376 MEMBERS f1=1,f2=0
1323 1376 MEMBERS' f1=0,f2=-1
1324 1376 MEMBERS f1=1,f2=0
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Results

7/29/2010

Without word-det With word-det

SCARF with 1-gram 21.3 19.0

SCARF with 2-gram 19.2 18.4

SCARF with 3-gram 17.8 17.7

51

• Consistent gain from using cohort based detectors
• Good results from training with lattice confusions also 
observed in later talk by Aren

Discard baseline feature to emphasize language model
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Detecting Phonetic Events

1st Pass 
Recognizer

Hypotheses

Detector Events

SCARF Correct
Hypothesis
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Detecting Phonetic Events

1st Pass 
Recognizer

Hypotheses

Phonetic
Detectors

Phonetic
Events

SCARF Correct
Hypothesis
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 Phoneme recognizers using posteriors from MLPs

 Phoneme recognizers from Deep NNs (next talk)

How do we build phonetic 
detectors?
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Detecting Phonetic Events
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Detecting Phonetic Events
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Detecting Phonetic Events
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Detecting Phonetic Events
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Detecting Phonetic Events
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Phn - 1



Detecting Phonetic Events

7/29/2010

Phn - 2 Phn - N
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Phn - 1



Detecting Phonetic Events

7/29/2010 62



Detecting Phonetic Events

7/29/2010

PLP (Perceptual Linear Prediction)
- Conventional Feature Extraction Techniques
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Detecting Phonetic Events

7/29/2010

PLP (Perceptual Linear Prediction)
- Conventional Feature Extraction Techniques

FDPLP (Frequency Domain Perceptual Linear Prediction)
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Detecting Phonetic Events

7/29/2010

Speech DCT
Critical
Band

Windowing
FDPLP

Sub-band
Envelopes
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Detecting Phonetic Events

Speech FDPLP Adaptive
Comp.

Static
Comp.

Statically compressed envelopes

Adaptively compressed envelopes

Sub-band envelopes

FDLP-M
features

FDLP-S
features

MLP

MLP

Posterior
probabilities

Posterior
probabilities
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Detecting Phonetic Events

7/29/2010

ANN

Acoustic
Features

4
frames
after

4
frames
before

.

.

.

.

Posterior
vector

11
frames
after

.

.

.

.

11
frames
before

ANN

Posterior
vector

Posterior
Features
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Detecting Phonetic Events

7/29/2010

o1 on

Phoneme
Detections
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Putting everything into SCARF

Baseline – primary hypothesis

the cat ran

t1 t2 t3 t4

a

the cat ran

DH IY D AO G R AA N

Detectors

the 
dog 
ran

SCARF

dog

Reference:  The dog ran

Constrained
search space Language

Model

69
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Putting everything into SCARF

Baseline – primary hypothesis

the cat ran

t1 t2 t3 t4

a

the cat ran

Constrained
search space

DH IY D AO G R AA N

Detectors

the 
dog 
ran

SCARF

dog

Reference:  The dog ran
Language

Model
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Phoneme Detectors as
Acoustic models

Acoustic
Information

PER WER

None -- 17.9%

Perceptual Linear Prediction 
(PLP)

32.5% 17.2%

PLP-Sparse 31.0% 17.3%

FDLP-S 31.1% 17.0%

FDLP-M 28.9% 16.9%

Phoneme detectors  capture information in the acoustic signal –
new feature extraction techniques improve over conventional

feature extraction techniques
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Phoneme Detectors in Full System

7/29/2010

Acoustic
Information

WER

SCARF1 + MSR 15.3%

+ MLP based 
Phoneme Detectors

15.1 %

MLP based phoneme detectors  are able to correct errors  
in the baseline hypothesis and hence decrease WERs
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 We have investigated a new technique – Frequency 
Domain Perceptual Linear Prediction (FDPLP) to 
derive features for speech recognition

 Posteriors from MLPs have been traditionally 
integrated into LVCSR system using the TANDEM 
approach – We have now successfully integrated 
posterior information as phoneme detectors  
using SCARF

 Sharper posteriors derived using novel features have 
been used as input to other acoustic modeling 
techniques - Point process models

7/29/2010

Summary
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Motivation

 Scientifically novel

 Combining several contemporary ideas in machine 
learning:  semi-supervised learning, regularization, 
stochastic optimization

 Empirically successful

 Achieving state-of-the-art results: computer vision, 
natural language processing, phoneme recognition

7/29/2010

Goal: examine the utility of deep nets in
standard large-vocabulary speech recognition
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Deep neural nets are

 Similar to multilayer perceptron

 Propagate inputs through feed-
forward layers

 Compute posterior probabilities of 
categorical output variables

7/29/2010

Inputs
(Acoustic features)

Labels
(phoneme classes)
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Deep neural nets are
 Very different from multi-layer perceptron

 Supervised globally, unsupervised locally

7/29/2010

W1 Unsupervised learning

W2 Unsupervised learning
(while fixing W1)

W3
Unsupervised learning

(while fixing W1 and W2)

W4
Supervised learning
(all weights adjusted)
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Apply deep nets to LVCSR, how?
 Build deep nets based phoneme detectors

 Leverage on SCARF to integrate detection results

7/29/2010

Does ay appear 
in this segment?
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Current setup of deep nets

7/29/2010

11 frames of fMMI features (dim = 440)

2048 units

2048 units

2048 units

State labels from 
forced alignments

Bigram phone decoding SCARF
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Main accomplishments (a)
 Successful application to large-vocabulary speech 

recognition

 Existing work is on TIMIT (3-hour data).

 Our work is on Broadcast News (430-hour data).

 Improvement over state-of-the-art baseline systems 

 Use SCARF to integrate deep net results as well as other useful 
features and systems

 Reduce WER from 15.3% to 15.1%
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Main accomplishments (b)
 Implementation of deep nets on clusters

 Existing approach: sequential processing on single GPU

 Our approach: parallel training on CPU clusters

 Impact:  deep nets become mainstream
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Acoustic
Information

Phone error rate Word error rate

None -- 17.9

Deep Net 20hr * 28.8 17.1

Deep Net 40hr * 28.2 17.0

FDLP-M
430hr

28.9 16.9

1% absolute improvement

82

More training
data helps

Use much 
less data,
but starts
from 
fMMI
features

Use deep nets as acoustic model

* fMMI input features trained on 430 hrs



Integrating all detectors

7/29/2010

Acoustic
Information

WER
Trigram LM

SCARF1 + MSR 15.3%

+ FDLP-M 15.1

+ Deep Net 20hr 15.1

+ Deep Net 40hr 15.2

8 Streams 15.0

Take-home messages
Every detector improves a bit. 

Integration improves too , but not additively.

Preliminary diagnosis
high correlations with baselines

0.3%
absolute
improvement
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Pronunciation Variation
 There is no guarantee that speakers will produce the 

dictionary-form pronunciations of words…

 …nor is there a guarantee that our detectors will correctly 
identify the segments that they do produce.

 I worked on two novel models that address that variation 
within SCARF. 

 Decision-Tree modeling & TF-IDF

 Focusing on TF-IDF here (time constraints)
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TF-IDF in ASR

 The SCARF toolkit contains a TF-IDF–based decoder 

which models the correspondence between words and 

observed pronunciations, and can learn systematic 

variation.

 We borrow the Term Frequency–Inverse Document 

Frequency (TF-IDF) metric from the information retrieval 

community: 

 TF-IDF scores quantify the degree to which a phone n-

gram is characteristic of the known pronunciations of a 

word.

7/29/2010 86



TF-IDF
 Intuitively, TF-IDF weights the frequency of n-gram (term) 

j in tokens of word (document) w against the overall 
frequency of j in all words (W).

 Adapted from Zweig, Nguyen, Droppo and Acero 2010:

for the position corresponding to segment j in word w:

 These values are computed for every (word, phone n-

gram) pair:

EITHER(01): AA : 0.6, AE : 0.1, AO : 0.0, AY : 2.2…

(unigrams are used here for simplicity)
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TF-IDF
• When hypotheses are scored, the hypothesis is 

converted to an analogous vector, and the two vectors 

are compared by the cosine similarity heuristic:

• N-grams indirectly but effectively capture the ordering of 

sub-word units within the words.

• This produces a score from 0 (no match) to 1 (perfect).

• We can use these scores in a freestanding recognizer, or 

to annotate existing lattices.Variation
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The Dictionary
 Our TF-IDF vectors are derived from observed 

pronunciations.

 Our most successful dictionary incorporates canonical 

pronunciations from a conventional dictionary and 

observed pronunciation variants from training data.

EITHER  AY DH ER        12       AY DH AH
EITHER  AY DH ER        203      AY DH ER
EITHER  AY DH ER        2        AY TH AO T
EITHER  AY DH ER        2        AY V
...
EITHER  IY DH ER        2        IH Z
EITHER  IY DH ER        486      IY DH ER
EITHER  IY DH ER        2        L IY D ER
…
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TF-IDF: WER Results

WER

Direct Recognition 22.9%

SCARF1 + MSR 15.3

+ TF-IDF 15.2 

• Direct recognition from detections possible with TF-IDF!
• Some improvement from using TF-IDF scores  as additional information
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Why use modulators?

•Modulators capture salient long-term speech 

components (2 – 50 Hz syllabic and phonetic rates)

•Modulators are bandlimited and robust to carrier 

interference (e.g., pitch)

•Modulators can provide new and complementary 

information for speech recognition via SCARF

Low frequency 

modulator

Higher frequency 

carrier

][ ]] [[m ns n c n 

0.95 1 1.05 1.1 1.15 1.2
-0.1

-0.05

0

0.05

0.1

Time (s)
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•Two novel, complementary approaches

•Convex Demodulation

•Coherent Demodulation

•Both approaches start with a sum-of-products model:

How to find modulators

Speech signal Subband signals Modulators Carriers

[ ] [] [ ]][k k

k

k

k

ms n s n n c n   
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Method 1 - Convex Demodulation

Modulator is 

constrained by 

local maxima and 

smoothness, and 

stored in an array:

Carrier fine structure is discarded 

so SCARF sees speech information 

from the modulators only

Accomplishment:

Training Samuel’s MLP phoneme recognizer on these features led to 0.4% 

word-error rate improvement using a trigram language model in SCARF.

Each subband:

Convex modulator 

feature array:

Bandlimited across frames
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Method 2 – Coherent Demodulation

0.47 0.48 0.49 0.5

-1

0

1

Time (s)

Pitch-driven high-

frequency carrier 

used to detect 

modulator

X
0.47 0.48 0.49 0.5

-1

0

1

Time (s)

Slowly-varying 

bandlimited 

modulator

For more demos: http://isdl.ee.washington.edu/projects/modulationtoolbox/

Bandlimited across frames

Pitch-invariant 

representation 

(after cross-

channel 

resampling)

Coherent modulator 

feature array:

k-th harmonic
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Convex Coherent Conventional 
(Hilbert, 

full/half-wave 
rectification

Bandlimited 
m[n] and c[n]?

Yes Yes No

Modulator 
Constraints

Non-negative, 
Real

None Non-negative, 
Real

Carrier Constraints None Complex, 
Narrowband 

None

Method Comparison
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Linear regression: 

On average, 
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Error rates are 

highly correlated 

(91%)

(Chance is 50%)
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On average, 
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error-prone than 

Hilbert (91% 

relative error rate)

Data spread: 

Error rates are 

highly correlated 

(96%)

(Chance is 50%)
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Highly complementary to the 

baseline features: possible new 

viewpoints to add to SCARF

Error rates are 

uncorrelated (–0.6%)

Error rates are also 

uncorrelated (–2.4%)

Max. entropy-based unit classification error: 
Convex, Coherent vs. fMMI features
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Standard Features Modulation Features

Mean Normalization Mean Normalization

MFCC Mean subtraction Applicable

Speaker Adaptation Speaker Adaptation

VTLN Spectral warping Spectral resampling

fMLLR Move features 
toward phoneme 

Gaussians

Applicable

Discriminative Transforms Discriminative Transforms

HLDA Dimensional 
reduction

Applicable

fMMI Region-dependent 
feature offsets

Applicable

Comparison to Standard Features
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 We introduced two bandlimited modulation signal models 
for speech recognition: Coherent and Convex

 Convex shows a preliminary improvement over 
conventional Hilbert envelopes

 Potential for further development as a new bandlimited 
foundation for MFCCs and fMMI features

 Both Coherent and Convex are highly complementary to 
the baseline features in a speech classification task

Summary
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• Introduction to duration modeling

• Duration features
• Probability density function features

• Phone duration features

• Word span confusion features

• Log probability density function features

• Discretized (bucketed) features

• Pre- and post-pausal features

• Summary of results

• Discussion and Questions 

Outline
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• What is a good feature?

• Something that measures the consistency between a word 
hypothesis and the underlying acoustics

• Duration features

– Word duration should  be able to provide information about 
word identity

– HMM 

• Duration of a state (word, phone, etc) modeled as 
probability of remaining in that state  exponential model

• Difficult to model true duration distributions

Duration models
Motivation and background

THE
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• If there are differences between the duration distributions of 
correct and incorrect word hypotheses, then word duration could 
be a useful feature to discriminate between them

• Model this difference to come up with duration features

Duration models
Discriminative Duration Models

• Are they different?
• Find all hypotheses of 

“TWO” that are 
correct

•  positive examples

• Plot their durations
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• Are they different?
• Find all hypotheses of 

“TWO” that are 
incorrect

•  negative examples

• Plot their durations

The duration 
distributions of words 
that are correctly or 
incorrectly
hypothesized look 
different.

Duration models
Discriminative Duration Models

• If there are differences between the duration distributions of 
correct and incorrect word hypotheses, then word duration could 
be a useful feature to discriminate between them

• Model this difference to come up with duration features
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• Are they different?
• Find all hypotheses of 

“TWO” that are 
incorrect

•  negative examples

• Plot their durations

The duration 
distributions of words 
that are correctly or 
incorrectly
hypothesized look 
different.

Duration models
Discriminative Duration Models

• If there are differences between the duration distributions of 
correct and incorrect word hypotheses, then word duration could 
be a useful feature to discriminate between them

• Model this difference to come up with duration features
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• Focus on the top 100 most frequent words seen in the training 
transcripts

Duration models
Investigating word durations

• Large portion of data: The 
top 100 most frequent words 
account for 47.5% of all word 
occurrences in the training 
set transcript

• Large portion of important
data: The top 100 most 
frequent words account for 
48.58% of all errors in the 
test set

• Function words, shorter
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P(D+ = 14)

P(D- = 14) 

dur1 = P(D+ = 14) = 
num (D+ = 14)

num (“TWO” +)

dur2 = P(D- = 14) = 
num (D- = 14)

num (“TWO” -)

Duration as feature
Probability density function scores for high-frequency words

• Task: given the duration of a word hypothesis, capture the 
likelihood of it being in the correct or incorrect distribution

• Suppose a word hypothesis “TWO” is  14 frames long
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Duration as feature 
Results: take 1

No. System Dev

t.0 SCARF1 + MSR 15.3%

t.1 t.0 + word duration scores 15.2%
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• Phonedur1 = sum of log likelihood of 
each phone being in a positive 
distribution

• Phonedur2 = sum of log likelihood of 
each phone being in a negative 
distribution

Phone durations as feature 
Probability density functions for each phone in a word
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• Phones of correctly and incorrectly hypothesized words also 
have different duration distributions



Phone durations as feature
Results: take 2

15.1%
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No. System Dev

t.0 SCARF1 + MSR 15.3%

t.1 t.0 + word duration scores 15.2%

t.2 t.1 + phone duration scores



• Long words are sometimes confused with a sequence of shorter, 
more high-frequency words

Duration as feature
Word span confusions

• Find word hypotheses confused with longer-span or shorter-
span hypotheses

• System should learn to penalize low scores in these categories 
more heavily than hypotheses with no word span confusions
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Duration as feature
Results: take 3

15.0%
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No. System Dev

t.0 SCARF1 + MSR 15.3%

t.1 t.0 + word duration scores 15.2%

t.2 t.1 + phone duration scores 15.1%

t.3 t.1 + word span confusion 
scores



Summary
Main accomplishments

• Up to 0.3 % gain on 15.3% WER (SCARF1 + MSR system)

• Word and phone durations can help SCARF discriminate between 
correct and incorrect word hypotheses

• Word durations may help resolve confusion between competing 
hypotheses

No. System Dev

t.0 SCARF1 + MSR 15.3%

t.1 t.0 + word duration scores 15.2%

t.2 t.1 + phone duration scores 15.1%

t.3 t.1 + word span confusion scores 15.0%
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Window-Based Acoustic Models

1. Collect examples of each unit (words, syllables, 
multi-phone units [MPUs])
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Window-Based Acoustic Models

2. Compute some representation for each example

7/29/2010

or
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Window-Based Acoustic Models

3. Build a model/classifier for each unit

7/29/2010

the
or

or
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Window-Based Acoustic Models

4. Detect or classify units in presented windows

7/29/2010

the

?
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Representations
Acoustic Feature Vectors MLP-Based Phonetic Events

7/29/2010
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Window Types
Fixed Windows Elastic Windows

 Extract training examples with 
fixed sized windows (per unit)

Benefit:

Admits fixed-dimension vector 
space unit representation

Drawback: 

No compensation for speaking 
rate variability

 Normalize all examples to unit 
duration

Benefit: 

Allows modeling of unit as a 
whole, regardless of duration

Drawback:

Normalization is difficult to get 
right, esp. with frames
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SCARF Integration Modes
MPU Detector Streams Word Lattice Annotations

 Slide detectors for each multi-phone 
unit over speech

 Combine detections into  a single 
SCARF stream (unit-time pairs)

 Build window-based word models

 Provide alternative score as SCARF 
feature for each lattice link
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STRF MPU Detectors
 Fixed window size for each multi-phone unit (median unit duration)
 Stacked acoustic feature vectors (VTLN+fMMI, Coherent/Convex modulation 

features [MF]) across window

7/29/2010

In-Class Examples

Out-of-Class Examples

Max-Ent
Classifier

STRF for  MPU:
ME Weight Matrix

x 951: One for 
each unit
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STRF MPU Detectors

7/29/2010

Activation Threshold

o1 on

sl sr
e

o(e)
Symbolic
Stream

Detections

STRF
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 Elastic windows normalized to unit duration (3982 units)

 Contained phone events modeled as inhomogeneous Poisson processes

7/29/2010

PPM MPU Detectors

An Aside: Keith built a “zero resource” PPM-based keyword 
spotter  that runs ~1000x faster than real time.
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MPU Detector Performance
Short Unit: Me Longer Unit: Twenty
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MPU Detector Performance (cont’d)

Lessons learned:
 VTLN+fMMI does adequate job of speaker normalization
 Fixed windows are adequate for shorter units
 Sparse representations are adequate for longer units
 Discriminative training is a good thing
 Our detectors did not improve upon SCARF baseline

7/29/2010

Features/Model No. of Units Avg. EER (%)

fMMI/STRF 951 6.1

Coherent MF/STRF 951 20.8

Convex MF/STRF 951 18.2

Phone Events/PPM 3982 8.2
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STRF-Based Lattice Annotations

 607 of the 1000 most frequent multi-phone units are words

 Use STRFs to classify the acoustics within each lattice arcs 
containing these 607 units

 Use classifier scores as an additional SCARF feature for 
those arcs

Note: These one-vs-all classifiers are trained across all 
units
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PPM-Based Lattice Annotations

 Collect pos/neg point 
patterns for each word from 
training lattices

 Normalize all times to [0,1]

 Accumulate phone events in 
10 bins  420-dim space

 Rescore lattices with 
RLS+RBF classifiers for top 
72 error words

7/29/2010
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Word Lattice Annotator Performance
fMMI/STRF Scores: “the” PPM Scores: “the”

7/29/2010

EER: 34.4% EER: 26.0%
(trained on everything) (trained on lattice competitors only)
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SCARF Lattice Annotation Results
Language Model Dependence (dev04f)

7/29/2010

# Words Unigram LM Trigram LM

SCARF1 --- 16.9% WER 16.0% WER

+ fMMI/STRF Annotations 607 16.3 15.9

+ PPM Annotations 72 16.2 15.8

Notice: Lattice annotations provide from the acoustics 
most of what trigram LM does
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SCARF Lattice Annotation Results

7/29/2010

Features dev04f rt04 (eval)

Baseline (Attila) 16.3% WER 15.7% WER

+ SCARF retraining (SCARF-1) 16.0 15.4

+ MSR HMM word annotations 15.3 14.5

+ PPM 72 word annotations 15.0 14.3

(Lattice Oracle) 11.2 10.1

8.0% relative gain
25% of possible gain

SCARF+MSR+PPM 

In Conjunction with MSR HMM Features (dev04f & rt04)

8.9% relative gain
25% of possible gain

dev04f

rt04
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Summary
 Investigated the role of window-based models in the SCARF 

framework

 Acoustic features + fixed window maximum entropy classifiers 
especially good for short, syllable-sized units

 Phone events + elastic window point process models especially 
good for longer multi-syllable units

 Discriminative training directly on the lattice competitors is a 
successful strategy for reducing errors

 Window-based lattice annotations led to improvements 
comparable to other workshop efforts
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Recap of Basic Idea

 SCARF enables us to unify the application of powerful 
new scientific approaches to ASR– e.g.

 Template detections [Van Compernolle et al. 03]

 Deep neural net features [Mohammed & Hinton 09]

 Coherent modulation features [Atlas 09]

 Point Process word models [Jansen 10]

 Sparse Representation Phoneme Detectors [Hermansky et 
al. 10]

 At the workshop we pulled all this together and improved 
performance on two widely studied datasets
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Summary of Experiments

7/29/2010

Broadcast News Dev04f

Baseline (Attila) 16.3% WER

SCARF1 16.0

+MSR word detectors 15.3

+ TF-IDF, Duration, PPM, STRF, 
Phoneme detectors

15.0

(Lattice Oracle – best achievable) 11.8

Wall Street Journal Nov92

Baseline (SPRAAK/HMM) 7.3% WER

+ SCARF, template features 6.7

(Lattice Oracle – best achievable) 2.9

137

Significant
gains on top of
state-of-the-art
systems



Summary of Experiments

7/29/2010

Broadcast News Dev04f RT04f

Baseline (Attila) 16.3% WER 15.7% WER

SCARF1 16.0 15.4

+MSR word 
detectors

15.3 14.5

+TF-IDF, 
Duration, PPM, 
STRF, Phoneme 
detectors

15.0 14.2

(Lattice Oracle) 11.8 10.2

138

And results hold 
up on unseen 
test data –
9.6% relative
improvement;

27% of possible
gain achieved



Summary of Accomplishments 
 Created new framework of integrating diverse scientific 

advances in ASR

 Showed improvement on State-of-the-Art baselines for 
both Wall Street Journal and Broadcast News

 Fostered and integrated novel research on real-world tasks

 Sparse Representation Phoneme Detectors

 Deep Neural Nets

 Point Process Models

 Template features

 Modulation representations
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Thank You
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