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ABSTRACT

Speaker verification is a technology of verifying the claimed iden-
tity of a speaker based on the speech signal from the speaker (voice
print). To learn the score of similarity between each pair of target and
trial utterances, we investigated two different discriminative learn-
ing frameworks: fisher mapping followed by SVM learning and ut-
terance transform followed by Iterative Cohort Modeling (ICM). In
both methods, a mapping is applied to map speech utterance from
a variable-length acoustic feature sequence into a fixed dimensional
vector. SVM learning constructs a classifier in the mapped vector
space for speaker verification. ICM learns a metric in this vec-
tor space by incorporating discriminative learning methods. The
obtained metric is then used by a Nearest Neighbor classifier for
speaker verification. The experiments conducted on NIST02 corpus
show that both discriminative learning methods outperform the base-
line GMM-UBM system. Furthermore, we observe that the ICM-
based method is more effective than the SVM-based method, indi-
cating that the metric learning scheme is more powerful in construct-
ing a better metric in the mapped vector space.

1. INTRODUCTION

Speaker verification is a technology of verifying the claimed iden-
tity of a speaker based on the speech signal from the speaker (voice
print). The fundamental task of speaker verification is to assign a
similarity score for each speech utterance pair, namely target utter-
ance and trial utterance. To construct the similarity scoring func-
tion, many approaches are proposed in the literature. Among them,
a generative probabilistic model – Gaussian Mixture Model (GMM)
is a widely adopted method [1]. With this method, the likelihood
of trial utterance on target GMM serves as a similarity between the
pair. The likelihood ratio of trial between target model and Universal
Background Model (UBM) is the similarity score in the GMM-UBM
framework [2]. This ratio operation normalizes the range of the sim-
ilarity score and results in a substantial performance improvement
over the GMM method. Besides the normalization due to ratio op-
eration, feature level normalization [3, 4] turns out to be also very
effective for the system performance, as well as the score level nor-
malization [5].

Although the generative method is rather successful in speaker

verification task, the combination of generative and discriminative
methods gains more and more research effort in recent years. This
is one of the new trends in speaker verification literature. Among
all different discriminative machine learning methods, Support Vec-
tor Machine (SVM) is a well established learning method to achieve
optimal classification according to a predefined criterion. In addi-
tion to solid theoretical foundation, there are many successful prac-
tical applications of SVM on regular classification problems such
as text classification, speech recognition, face detection and pedes-
trian detection. At the early stage, researchers tried to classify frame
by frame and average the results for the final decision [6, 7], this
scheme turns out not efficient for speaker recognition task. S. Fine
and J. Navŕatil [8] adopt thefisher mappingto map a whole utterance
into a fixed dimensional vector and perform classification in this new
vector space. The mapping step is a very crucial point for the success
of the later SVM-based method. The underlying motivation of this
mapping is to treat the utterance as a whole object, which leads to a
similarity score on utterance pairs instead of frame pairs. V. Wan [9]
extends the fisher mapping to score space mapping and achieves bet-
ter improvement. Based on the same idea of obtaining similarity be-
tween an utterance pair, W. Campbell [10] uses generalized linear
discriminant sequence kernels. J. Louradour and K. Daoudi [11] use
a VQ-based kernel function for SVM learning. D. E. Sturim [12]
maps the speaker utterance into a fixed dimensional score vector.
Each element of this score vector is the likelihood on one anchor
model. In this paper, we compare a metric learning-based frame-
work – Iterative Cohort Modeling (ICM) [13] to the well known
fisher mapping followed by SVM learning framework. In stead of
fisher mapping, [13] adopted the sufficient statistics of speech utter-
ance as a mapping function, which has similar formulation as fisher
mapping. However, the major difference is that the soft count and
sample mean are separated in sufficient statistics (see Sect. 4), which
gives more flexibility in designing an optimal similarity function. In
the ICM framework, the global similarity of an utterance pair is a
weighted combination of local similarities which compare the sta-
tistics belong to the same component. Also, each local similarity
is thresholded to normalize its contribution to the global similarity.
The experimental results on NIST 2002 corpus show the effective-
ness of our framework: the EER drops from10.98% to 8.07% and
the DCF drops from52.23(10−3) to 34.36(10−3).



2. BASELINE SYSTEM

The GMM-UBM framework is a very successful method in the liter-
ature of text-independent speaker verification. The UBM is a Gaussian
Mixture Model (GMM) which serves as a background distribution of
human acoustic feature space. It can be represented as follows:
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wherex is the feature vector withD dimension andλ is the parame-
ter of Gaussian Mixture Model.M is the number of Gaussian com-
ponents in the model. Parameterλ includes the prior probability of
each componentwi, the mean vector of each componentµi and the
covariance matrix of each componentΣi. Pi(·|λ) denotes the likeli-
hood function of theith component which is a multivariate Gaussian
in a GMM. For simplicity, the covariance matrixΣi is usually set
to be a diagonal matrix to lower the computation load. The maxi-
mum likelihood(ML) estimation of the parameters can be obtained
via EM algorithm In the UBM-MAP framework, the target speaker
model is generated by the Maximum A Posterior (MAP) adaptation.
The mean-only MAP adaptation was the best method compared with
other types of MAP adaption such as the fully MAP adaptation. Af-
ter the target speaker model is generated, a log-likelihood ratio be-
tween the target speaker model and the UBM model is then used to
evaluate testing utterances. The log-likelihood ratio is computed as
follows
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where(xT
1 ) are the feature vectors of the observed utterance – trial

utteranceU , λ0 is the parameter of UBM andλ1 is the parameter
of the target model. In GMM-UBM framework, the verification task
is essentially to construct a generalized likelihood ratio test between
hypothesisH1 (observation drawn from the target) and hypothesis
H0 (observation not drawn the target). As the background model
provides a description of acoustic feature space, therefore the like-
lihood of a trial utterance on this background modelP (xT

1 |λ0) can
be used as an estimation ofP (xT

1 |H0).
Although, the ratio operation reduces the variance of the likeli-

hood, feature level normalization and score level normalization are
still effective. Standard speech feature, such as MFCC, may be dis-
torted in channel mismatch conditions. Feature warping is to map
these MFCC features to an new feature space according to a non-
linear function. In this new feature space, each dimension of the
feature vector will have an identical distribution, such as the stan-
dard normal distribution. T-Norm is a score normalization to reduce

the dependence of the final score on different sessions. It is closely
related to the cohort-base modeling. The T-Norm estimates the mean
and variance of the impostor scores for each trial utterance based on
a large pool of impostor speakers. Ideally, with this estimation, the
T-Norm is able to normalize all the impostor scores into a standard
normal distribution.

3. FISHER MAPPING AND SVM LEARNING

In a conventional GMM-UBM framework, the UBM is a background
model to describe acoustic feature space of human speech. Instead of
this traditional probabilistic model interpretation, several researchers
[8, 9, 13] suggest a different viewpoint about the function of UBM
model: it defines a mapping function from variable-length speech
utterance into a fixed dimensional vector. Fisher mapping is applied
in [8] to map speech utterance, while score space mapping is used in
[9]. TheFisher mappingof a observation sequence is defined as

φ(U) = ∇λ log P (xT
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which is very similar to the utterance mapping. However, in utter-
ance mapping, the soft countγ(i) and adjustmentδ(i) are separated,
with carefully designed similarity measure, it has more flexibility
than fisher mapping.

3.1. Learning with Support Vector Machine

A Support Vector Machine is a learning algorithm for pattern recog-
nition and regression problems. SVM aims to maximize the margin
between positive and negative training samples with penalty term of
complex hypothesis (high VC dimension). Based on this principle,
the SVM adopts a systematic approach to find a linear function that
belongs to a set of functions with lowest VC dimension. With the
kernel method, the SVM can also approximate a non-linear function.

Given a set of samples(x1, y1), (x2, y2), ..., (xn, yn) wherexi

(xi ∈ Rd) is the input vector of ad-dimensional space andyi is its
label(yi ∈ {−1, 1}), for classification, SVM is to find the optimal
hyperplane that leaves the largest possible fraction of data points of
the same class on the same side while maximizing the distance of
either class from the hyperplane (margin). Vapnik[14] shows that
finding the optimal hyperplane is equivalent to a constrained opti-
mization problem and can be solved using quadratic programming
techniques. The optimal hyperplane is in the form

f(x) =
X

i=1

nyiαik(x, xi) + b (7)

wherek(, ) is a kernel function and the sign off(x) determines the
label of x. Any vectorxi which corresponds to a nonzeroαi is a



support vector (SV) of the optimal hyperplane. One desirable fea-
ture of SVM is that the number of support vectors is usually small,
thereby producing a compact classifier.

For a linear SVM, the kernel function is just the simple dot prod-
uct of vectors in the input space while the kernel function in a non-
linear SVM projects the samples to a feature space with higher (pos-
sible infinite) dimensions via a nonlinear mapping function:

Φ : Rd → Rp, p >> d (8)

and construct a hyperplane inRp. The motivation is that it is more
likely to find a linear function, as done in linear SVM, in the high
dimensional feature space. Using Mercer’s theorem, the expensive
calculations in projecting samples into high dimensional space can
be reduced significantly by using a suitable kernel function

k(x, xi) =< Φ(x), Φ(xi) > (9)

whereΦ() is a nonlinear projection function. Several kernel func-
tions, such as polynomial functions and radial basis functions, have
been shown to satisfy Mercer’s theorem and been used in nonlin-
ear SVMs. In this paper, libsvm[15] is used to train a linear SVM
classifier in the transformed vector space.

4. UTTERANCE MAPPING AND ITERATIVE COHORT
MODELING

Instead of treating all the dimensions of the vector in a single shot,
the utterance mapping in [13] firstly defines a local scoring function
over each component and a combination of all local scores is used
as the final similarity score. This similarity function is similar to the
kernel function defined in [11] which applies a VQ model to define
a kernel in the concatenated mean space. However, the similarity
function in [13] also takes account of the number of observations to
handle the lack of observations for some components.

Based on sufficient statistics of speech utterance, the mapping
from variable-length speech utterance into a fixed dimensional vec-
tor space is defined as

Φ(U) = (γ(i), δi)
M
i=1 (10)
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whereγ(i|xt) is the posterior probability ofith component given the
observationxt. γ(i) is the soft count of observations which belong
to ith component.̄µi is the sample mean ofith component given the
observations sequenceU = (xt)

T
t=1. δi = µ̄i−µi is the adjustment

of theith component.

4.1. Iterative Cohort Modeling

The similarity in the mapped vector space is a weighted combination
of thresholded local similarity of each component.

S(U, V ) =
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θi(U, V ) = (θi(U) + θi(V ))/2 (17)

whereU andV are the speech utterances. The three main parts of
this similarity measure are local scoresi(U, V ), thresholdθi(U, V )

and weighting factorαi(U, V ). And ρ is a smoothing factor to re-
duce the dynamic range of the soft countγi. In this paper we set
ρ = 16.

To estimate the thresholdθi(U), a cohort set is selected for the
speech utteranceU and the average local similarity over this cohort
set is used as a threshold. After estimation of thresholdθi(U), the
similarity is refined. Another cohort set is selected based on this re-
fined similarity which leads to a new estimation of thresholdθi(U).
This iteration can go further, but the empirical finding is that the
improvement becomes marginal after four iterations.

5. EXPERIMENTS AND RESULTS

In order to show the effectiveness of the novel framework, the exper-
iments are conducted on the NIST 2002 Speaker Recognition corpus
[16]. The frontend processing is done with HTK toolkit[17] to ex-
tract MFCC+DeltaMFCC feature. The total dimension is 24. Fea-
ture warping[3] is applied after MFCC extraction. The UBM is a
1028 component Gaussian Mixture Model trained on NIST01 train-
ing set which contains 174 speakers and roughly 2 minute of speech
per speaker. These 174 speakers also serves as cohort speaker pool.
For T-Norm [5], these 174 speakers serves as the T-Norm Speaker
pool. The NIST 2002 corpus contains 330 speakers and 39105 tri-
als. The training utterance of each speaker is a telephone conversa-
tion that lasts from 60 sec. to 120 sec. The testing utterance lasts
from 3 sec. to 120 sec.

The baseline system is a GMM-UBM system with log-likelihood
ratio scoring. The performance was measured with two criteria:
equal error rate (EER) and minimum Detection Cost Function (DCF)
[16]. The compared systems are fisher mapping followed by SVM
modeling and utterance transform followed by ICM modeling.

Table 5 shows the experimental results. Compared with the
GMM-UBM baseline, fisher mapping-SVM system achieves better
EER on both T-Norm and without T-Norm scenarios. The improve-
ment is16.75% relative reduction in EER. However, the baseline
does achieve better DCF at T-Norm scenario. With different itera-
tions, the ICM-based method has different performance. The ICM



EER/DCF w/o T-Norm w T-Norm
GMM-UBM 10.98%/52.23(10−3) 9.21%/34.64(10−3)
Fisher-SVM 9.14%/38.27(10−3) 8.62%/35.30(10−3)

ICM0 14.61%/65.47(10−3) 11.15%/43.71(10−3)
ICM2 8.28%/36.35(10−3) 8.38%/33.58(10−3)
ICM4 8.07%/34.36(10−3) 8.21%/33.51(10−3)

Table 1. System Performance Comparison on NIST02 corpus

at4th iteration is the best performer in term of EER and DCF. Com-
pared with the baseline system, the ICM at4th iteration achieves
the relative improvement of26.5% in term of EER. Furthermore,
the T-Norm procedure is least effective inICM4 system, indicating
that the ICM-based method is a very effective score normalization
scheme that can be used without T-Norm procedure. Thus, the com-
putation of T-Norm can be saved in the ICM-based method.

6. CONCLUSION AND FUTURE DIRECTION

In this paper, we compare two discriminative learning frameworks
for text-independent speaker verification. The framework based on
fisher mapping and SVM learning achieves better performance in
term of EER than the GMM-UBM baseline. While the framework
based on utterance transform and Iterative Cohort Modeling is able
to outperform the GMM-UBM system and fisher-mapping system
on NIST02 task. The ICM based method achieves26.5% relatively
improvement on EER (10.98% → 8.07%). In both fisher mapping
and ICM based methods, the universal background model defines a
mapping function from variable-length speech utterance to a fixed
dimensional vector space. The Gaussian Mixture Model trained
with conventional EM algorithm may not be the optimal background
model for this purpose. In the near future, we will investigate differ-
ent training methods of the background model and different struc-
tures of the background for searching a better mapping function.
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[8] S. Fine, J. Navŕatil, and R. A. Gopinath, “A hybrid gmm/svm
approach to speaker identification,” inProc. ICASSP, 2001,
pp. 417–420.

[9] Vincent Wan and Steve Renals, “Speaker verification using
sequence discriminant support vector machines,”IEEE Trans-
actions on Speech and Audio Processing, pp. 203–210, March
2005.

[10] W. Campbell, “Generalized linear discriminant sequence ker-
nels for speaker recognition,” inProc. International Confer-
ence on Acoustics Speech and Signal Processing, 2002, pp.
161–164.

[11] J. Louradour and K. Daoudi, “Svm speaker verification using
a new sequence kernel,” inProc. European Signal Processing
Conference, 2005.

[12] D. E. Sturim, D. A. Reynolds, E. Singer, and J. P. Campbell,
“Speaker indexing in large audio databases using anchor mod-
els,” in Proceedings of ICASSP, 2001, pp. 429–432.

[13] Ming Liu, Zhengyou Zhang, and Thomas S. Huang, “Robust
local scoring function for text-independent speaker verifica-
tion,” in Proc. International Conference of Pattern Recogni-
tion, 2006.

[14] V. Vapnik, Statistical Learning Theory, Wiley, New York,
1998, forthcoming.

[15] Chih-Chung Chang and Chih-Jen Lin,LIBSVM: a library for
support vector machines, 2001.

[16] “http://www.nist.gov/speech/tests/spk/,” .

[17] “http://htk.eng.cam.ac.uk/,” .


