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Abstract 

This paper explores the use of clickthrough data 
for query spelling correction. First, large amounts 
of query-correction pairs are derived by analyzing 
users' query reformulation behavior encoded in 
the clickthrough data. Then, a phrase-based error 
model that accounts for the transformation 
probability between multi-term phrases is trained 
and integrated into a query speller system. Expe-
riments are carried out on a human-labeled data 
set. Results show that the system using the 
phrase-based error model outperforms signifi-
cantly its baseline systems. 

1 Introduction 

Search queries present a particular challenge for 
traditional spelling correction methods for three 
main reasons (Ahmad and Kondrak, 2004).  First, 
spelling errors are more common in search queries 
than in regular written text: roughly 10-15% of 
queries contain misspelled terms (Cucerzan and 
Brill, 2004). Second, most search queries consist 
of a few key words rather than grammatical sen-
tences, making a grammar-based approach inap-
propriate. Most importantly, many queries con-
tain search terms, such as proper nouns and names, 
which are not well established in the language. 
For example, Chen et al. (2007) reported that 
16.5% of valid search terms do not occur in their 
200K-entry spelling lexicon. 

Therefore, recent research has focused on the 
use of Web corpora and query logs, rather than 

human-compiled lexicons, to infer knowledge 
about misspellings and word usage in search 
queries (e.g., Whitelaw et al., 2009). Another 
important data source that would be useful for this 
purpose is clickthrough data. Although it is 
well-known that clickthrough data contain rich 
information about users' search behavior, e.g., 
how a user (re-) formulates a query in order to 
find the relevant document, there has been little 
research on exploiting the data for the develop-
ment of a query speller system. 

In this paper we present a novel method of 
extracting large amounts of query-correction pairs 
from the clickthrough data.  These pairs, impli-
citly judged by millions of users, are used to train 
a set of spelling error models. Among these 
models, the most effective one is a phrase-based 
error model that captures the probability of 
transforming one multi-term phrase into another 
multi-term phrase. Comparing to traditional error 
models that account for transformation probabili-
ties between single characters (Kernighan et al., 
1990) or sub-word strings (Brill and Moore, 
2000), the phrase-based model is more powerful 
in that it captures some contextual information by 
retaining inter-term dependencies. We show that 
this information is crucial to detect the correction 
of a query term, because unlike in regular written 
text, any query word can be a valid search term 
and in many cases the only way for a speller 
system to make the judgment is to explore its 
usage according to the contextual information. 

We conduct a set of experiments on a large 
data set, consisting of human-labeled 



query-correction pairs. Results show that the error 
models learned from clickthrough data lead to 
significant improvements on the task of query 
spelling correction. In particular, the speller sys-
tem incorporating a phrase-based error model 
significantly outperforms its baseline systems. 

To the best of our knowledge, this is the first 
extensive study of learning phase-based error 
models from clickthrough data for query spelling 
correction. The rest of the paper is structured as 
follows. Section 2 reviews related work. Section 3 
presents the way query-correction pairs are ex-
tracted from the clickthrough data. Section 4 
presents the baseline speller system used in this 
study. Section 5 describes in detail the phrase- 
based error model. Section 6 presents the expe-
riments. Section 7 concludes the paper. 

2 Related Work 

Spelling correction for regular written text is a 
long standing research topic. Previous researches 
can be roughly grouped into two categories: 
correcting non-word errors and real-word errors. 

In non-word error spelling correction, any 
word that is not found in a pre-compiled lexicon is 
considered to be misspelled.  Then, a list of lexical 
words that are similar to the misspelled word are 
proposed as candidate spelling corrections. Most 
traditional systems use a manually tuned similar-
ity function (e.g., edit distance function) to rank 
the candidates, as reviewed by Kukich (1992). 
During the last two decades, statistical error 
models learned on training data (i.e., 
query-correction pairs) have become increasingly 
popular, and have proven more effective (Ker-
nighan et al., 1990; Brill and Moore, 2000; Tou-
tanova and Moore, 2002; Okazaki et al., 2008).  

Real-word spelling correction is also referred 
to as context sensitive spelling correction (CSSC). 
It tries to detect incorrect usages of a valid word 
based on its context, such as "peace" and "piece" 
in the context "a _ of cake". A common strategy in 
CSSC is as follows. First, a pre-defined confusion 
set is used to generate candidate corrections, then 
a  scoring model, such as a trigram language 
model or naïve Bayes classifier, is used to rank the 
candidates according to their context (e.g., 
Golding and Roth, 1996; Mangu and Brill, 1997; 
Church et al., 2007). 

When designed to handle regular written text, 
both CSSC and non-word error speller systems 
rely on a pre-defined vocabulary (i.e., either a 
lexicon or a confusion set). However, in query 
spelling correction, it is impossible to compile 

such a vocabulary, and the boundary between the 
non-word and real-word errors is quite vague. 
Therefore, recent research on query spelling 
correction has focused on exploiting noisy Web 
data and query logs to infer knowledge about 
misspellings and word usage in search queries. 
Cucerzan and Brill (2004) discuss in detail the 
challenges of query spelling correction, and 
suggest the use of query logs. Ahmad and Kon-
drak (2005) propose a method of estimating an 
error model from query logs using the EM algo-
rithm. Li et al. (2006) extend the error model by 
capturing word-level similarities learned from 
query logs. Chen et al. (2007) suggest using web 
search results to improve spelling correction. 
Whitelaw et al. (2009) present a query speller 
system in which both the error model and the 
language model are trained using Web data. 

Compared to Web corpora and query logs, 
clickthrough data contain much richer informa-
tion about users’ search behavior.  Although there 
has been a lot of research on using clickthrough 
data to improve Web document retrieval (e.g., 
Joachims, 2002; Agichtein et al., 2006; Gao et al., 
2009), the data have not been fully explored for 
query spelling correction. This study tries to learn 
error models from clickthrough data. To our 
knowledge, this is the first such attempt using 
clickthrough data. 

Most of the speller systems reviewed above are 
based on the framework of the source channel 
model. Typically, a language model (source 
model) is used to capture contextual information, 
while an error model (channel model) is consi-
dered to be context free in that it does not take into 
account any contextual information in modeling 
word transformation probabilities. In this study 
we argue that it is beneficial to capture contextual 
information in the error model. To this end, in-
spired by the phrase-based statistical machine 
translation (SMT) systems (Koehn et al., 2003; 
Och and Ney, 2004), we propose a phrase-based 
error model where we assume that query spelling 
correction is performed at the phrase level. 

In what follows, before presenting the phrase- 
based error model, we will first describe the 
clickthrough data and the query speller system we 
used in this study. 

3 Clickthrough Data and Spelling Cor-
rection 

This section describes the way the 
query-correction pairs are extracted from click-



through data. Two types of clickthrough data are 
explored in our experiment. 

The clickthrough data of the first type has been 
widely used in previous research and proved to be 
useful for Web search (Joachims, 2002; Agichtein 
et al., 2006; Gao et al., 2009) and query refor-
mulation (Wang and Zhai, 2008; Suzuki et al., 
2009). We start with this same data with the hope 
of achieving similar improvements in our task. 
The data consist of a set of query sessions that 
were extracted from one year of log files from a 
commercial Web search engine. A query session 
contains a query issued by a user and a ranked list 
of links (i.e., URLs) returned to that same user 
along with records of which URLs were clicked. 
Following Suzuki et al. (2009), we extract 
query-correction pairs as follows. First, we extract 
pairs of queries Q1 and Q2 such that (1) they are 
issued by the same user; (2) Q2 was issued within 
3 minutes of Q1; and (3) Q2 contained at least one 
clicked URL in the result page while Q1 did not 
result in any clicks.  We then scored each query 
pair (Q1, Q2) using the edit distance between Q1 
and Q2, and retained those with an edit distance 
score lower than a pre-set threshold as query 
correction pairs. 

Unfortunately, we found in our experiments 
that the pairs extracted using the method are too 
noisy for reliable error model training, even with a 
very tight threshold, and we did not see any sig-
nificant improvement. Therefore, in Section 6 we 
will not report results using this dataset. 

The clickthrough data of the second type con-
sists of a set of query reformulation sessions 
extracted from 3 months of log files from a 
commercial Web browser.  A query reformulation 
session contains a list of URLs that record user 
behaviors that relate to the query reformulation 
functions, provided by a Web search engine. For 
example, almost all commercial search engines 
offer the "did you mean" function, suggesting a 
possible alternate interpretation or spelling of a 
user-issued query. Figure 1 shows a sample of the 
query reformulation sessions that record the "did 
you mean" sessions from three of the most pop-
ular search engines. These sessions encode the 
same user behavior: A user first queries for 
"harrypotter sheme park", and then clicks on the 
resulting spelling suggestion "harry potter theme 
park". In our experiments, we "reverse-engineer" 
the parameters from the URLs of these sessions, 
and deduce how each search engine encodes both 
a query and the fact that a user arrived at a URL 
by clicking on the spelling suggestion of the query 
– an important indication that the spelling sug-

gestion is desired. From these three months of 
query reformulation sessions, we extracted about 
3 million query-correction pairs. Compared to the 
pairs extracted from the clickthrough data of the 
first type (query sessions), this data set is much 
cleaner because all these spelling corrections are 
actually clicked, and thus judged implicitly, by 
many users. 

In addition to the "did you mean" function, 
recently some search engines have introduced two 
new spelling suggestion functions. One is the 
"auto-correction" function, where the search 
engine is confident enough to automatically apply 
the spelling correction to the query and execute it 
to produce search results for the user.  The other is 
the "split pane" result page, where one half por-
tion of the search results are produced using the 
original query, while the other half, usually vi-
sually separate portion of results are produced 
using the auto-corrected query. 

In neither of these functions does the user ever 
receive an opportunity to approve or disapprove 
of the correction. Since our extraction approach 
focuses on user-approved spelling suggestions, 

Google: 

http://www.google.com/search? 
hl=en&source=hp& 
q=harrypotter+sheme+park&aq=f&oq=&aqi= 

http://www.google.com/search? 
hl=en&ei=rnNAS8-oKsWe_AaB2eHlCA& 
sa=X&oi=spell&resnum=0&ct= 
result&cd=1&ved=0CA4QBSgA& 
q=harry+potter+theme+park&spell=1 

Yahoo: 

http://search.yahoo.com/search; 
_ylt=A0geu6ywckBL_XIBSDtXNyoA? 
p=harrypotter+sheme+park& 
fr2=sb-top&fr=yfp-t-701&sao=1 

http://search.yahoo.com/search? 
ei=UTF-8&fr=yfp-t-701& 
p=harry+potter+theme+park 
&SpellState=n-2672070758_q-tsI55N6srhZa. 
qORA0MuawAAAA%40%40&fr2=sp-top 

Bing: 
http://www.bing.com/search? 
q=harrypotter+sheme+park&form=QBRE&qs=n 

http://www.bing.com/search? 
q=harry+potter+theme+park&FORM=SSRE 

Figure 1.  A sample of query reformulation sessions 
from three popular search engines. These sessions 
show that a user first issues the query "harrypotter 
sheme park", and then clicks on the resulting spell 
suggestion "harry potter theme park". 



we ignore the query reformulation sessions re-
cording either of the two functions. Although by 
doing so we could miss some basic, obvious 
spelling corrections, our experiments show that 
the negative impact on error model training is 
negligible. One possible reason is that our base-
line system, which does not use any error model 
learned from the clickthrough data, is already able 
to correct these basic, obvious spelling mistakes. 
Thus, including these data for training is unlikely 
to bring any further improvement. 

We found that the error models trained using 
the data directly extracted from the query refor-
mulation sessions suffer from the problem of 
underestimating the self-transformation probabil-
ity of a query P(Q2=Q1|Q1), because we only 
included in the training data the pairs where the 
query is different from the correction. To deal 
with this problem, we augmented the training data 
by including correctly spelled queries, i.e., the 
pairs (Q1, Q2) where Q1 = Q2.  First, we extracted a 
set of queries from the sessions where no spell 
suggestion is presented or clicked on. Second, we 
removed from the set those queries that were 
recognized as being auto-corrected by a search 
engine. We do so by running a sanity check of the 
queries against our baseline spelling correction 
system, which will be described in Section 6. If 
the system thinks an input query is misspelled, we 
assumed it was an obvious misspelling, and re-
moved it. The remaining queries were assumed to 
be correctly spelled and were added to the training 
data. 

4 The Baseline Speller System 

The spelling correction problem is typically 
formulated under the framework of the source 
channel model. Given an input query 

. . . , we want to find the best spelling correc-
tion . . .  among all candidate spelling 
corrections: 

argmax |  (1) 

Applying Bayes' Rule and dropping the constant 
denominator, we have 

argmax |  (2) 

where the error model |  models the trans-
formation probability from C to Q, and the lan-
guage model  models how likely C is a 
correctly spelled query. 

The speller system used in our experiments is 
based on a ranking model (or ranker), which can 
be viewed as a generalization of the source 
channel model. The system consists of two 
components: (1) a candidate generator, and (2) a 
ranker. 

In candidate generation, an input query is first 
tokenized into a sequence of terms. Then we scan 
the query from left to right, and each query term q 
is looked up in lexicon to generate a list of spel-
ling suggestions c whose edit distance from q is 
lower than a preset threshold. The lexicon we 
used contains around 430,000 entries; these are 
high frequency query terms collected from one 
year of search query logs. The lexicon is stored 
using a trie-based data structure that allows effi-
cient search for all terms within a maximum edit 
distance. 

The set of all the generated spelling sugges-
tions is stored using a lattice data structure, which 
is a compact representation of exponentially many 
possible candidate spelling corrections. We then 
use a decoder to identify the top twenty candi-
dates from the lattice according to the source 
channel model of Equation (2).  The language 
model (the second factor) is a backoff bigram 
model trained on the tokenized form of one year 
of query logs, using maximum likelihood estima-
tion with absolute discounting smoothing.  The 
error model (the first factor) is approximated by 
the edit distance function as 

log | EditDist ,  (3) 

The decoder uses a standard two-pass algorithm 
to generate 20-best candidates. The first pass uses 
the Viterbi algorithm to find the best C according 
to the model of Equations (2) and (3).  In the 
second pass, the A-Star algorithm is used to find 
the 20-best corrections, using the Viterbi scores 
computed at each state in the first pass as heuris-
tics. Notice that we always include the input query 
Q in the 20-best candidate list. 

The core of the second component of the 
speller system is a ranker, which re-ranks the 
20-best candidate spelling corrections. If the top 
C after re-ranking is different than the original 
query Q, the system returns C as the correction.   

Let f be a feature vector extracted from a query 
and candidate spelling correction pair (Q, C). The 
ranker maps f to a real value y that indicates how 
likely C is a desired correction of Q.  For example, 
a linear ranker simply maps f to y with a learned 
weight vector w such as · , where w is 
optimized w.r.t. accuracy on a set of hu-



man-labeled (Q, C) pairs. The features in f are 
arbitrary functions that map (Q, C) to a real value. 
Since we define the logarithm of the probabilities 
of the language model and the error model (i.e., 
the edit distance function) as features, the ranker 
can be viewed as a more general framework, 
subsuming the source channel model as a special 
case. In our experiments we used 96 features and a 
non-linear model, implemented as a two-layer 
neural net, though the details of the ranker and the 
features are beyond the scope of this paper. 

5 A Phrase-Based Error Model 

The goal of the phrase-based error model is to 
transform a correctly spelled query C into a 
misspelled query Q. Rather than replacing single 
words in isolation, this model replaces sequences 
of words with sequences of words, thus incorpo-
rating contextual information. For instance, we 
might learn that “theme part” can be replaced by 
“theme park” with relatively high probability, 
even though “part” is not a misspelled word. We 
assume the following generative story: first the 
correctly spelled query C is broken into K 
non-empty word sequences c1, …, ck, then each is 
replaced with a new non-empty word sequence q1, 
…, qk, and finally these phrases are permuted and 
concatenated to form the misspelled Q. Here, c 
and q denote consecutive sequences of words. 

To formalize this generative process, let S 
denote the segmentation of C into K phrases c1…cK, 
and let T denote the K replacement phrases 
q1…qK – we refer to these (ci, qi) pairs as 
bi-phrases. Finally, let M denote a permutation of 
K elements representing the final reordering step. 
Figure 2 demonstrates the generative procedure. 

Next let us place a probability distribution over 
rewrite pairs. Let B(C, Q) denote the set of S, T, M 
triples that transform C into Q. If we assume a 
uniform probability over segmentations, then the 
phrase-based probability can be defined as: 

| | , | , ,
, ,

,

 (4) 

As is common practice in SMT, we use the 
maximum approximation to the sum:  

| max
, ,

,

| , | , ,  (5) 

5.1 Forced Alignments 

Although we have defined a generative model for 
transforming queries, our goal is not to propose 
new queries, but rather to provide scores over 
existing Q and C pairs which act as features for 
the ranker. Furthermore, the word-level align-
ments between Q and C can most often be iden-
tified with little ambiguity. Thus we restrict our 
attention to those phrase transformations consis-
tent with a good word-level alignment. 

Let J be the length of Q, L be the length of C, 
and A = a1, …, aJ be a hidden variable 
representing the word alignment. Each ai takes on 
a value ranging from 1 to L indicating its corres-
ponding word position in C, or 0 if the ith word in 
Q is unaligned. The cost of assigning k to ai is 
equal to the Levenshtein edit distance (Levensh-
tein, 1966) between the ith word in Q and the kth 
word in C, and the cost of assigning 0 to ai is equal 
to the length of the ith word in Q. We can deter-
mine the least cost alignment A* between Q and C 
efficiently using the A-star algorithm. 

When scoring a given candidate pair, we fur-
ther restrict our attention to those S, T, M triples 
that are consistent with the word alignment, which 
we denote as B(C, Q, A*). Here, consistency re-
quires that if two words are aligned in A*, then 
they must appear in the same bi-phrase (ci, qi). 
Once the word alignment is fixed, the final per-
mutation is uniquely determined, so we can safely 
discard that factor. Thus we have: 

| max
, ,

, ,

| ,  (6) 

For the sole remaining factor P(T|C, S), we 
make the assumption that a segmented query T = 
q1… qK is generated from left to right by trans-
forming each phrase c1…cK independently: 

C: “disney theme park” correct query 
S: [“disney”, “theme park”] segmentation 
T: [“disnee”, “theme part”] translation 
M: (1  2, 2  1) permutation 
Q: “theme part disnee” misspelled query 

Figure 2: Example demonstrating the generative 
procedure behind the phrase-based error model. 

 



| , ∏ | , (7) 

where |  is a phrase transformation 
probability, the estimation of which will be de-
scribed in Section 5.2.  

To find the maximum probability assignment 
efficiently, we can use a dynamic programming 
approach, somewhat similar to the monotone 
decoding algorithm described in Och (2002). 
Here, though, both the input and the output word 
sequences are specified as the input to the algo-
rithm, as is the word alignment. We define the 
quantity  to be the probability of the most likely 
sequence of bi-phrases that produce the first j 
terms of Q and are consistent with the word 
alignment and C. It can be calculated using the 
following algorithm: 

1. Initialization:  
 1 (8) 

2. Induction:  
 max

′ ,
′

…
′  (9) 

3. Total:   

 |  (10) 

The pseudo-code of the above algorithm is 
shown in Figure 3. After generating Q from left to 
right according to Equations (8) to (10), we record 
at each possible bi-phrase boundary its maximum 
probability, and we obtain the total probability at 
the end-position of Q. Then, by back-tracking the 
most probable bi-phrase boundaries, we obtain B*.  
The algorithm takes a complexity of O(KL2), 
where K is the total number of word alignments in 
A* which does not contain empty words, and L is 
the maximum length of a bi-phrase, which is a 
hyper-parameter of the algorithm. Notice that 
when we set L=1, the phrase-based error model is 
reduced to a word-based error model which as-
sumes that words are transformed independently 
from C to Q, without taking into account any 
contextual information. 
 

5.2 Model Estimation 

We follow a method commonly used in SMT 
(Koehn et al., 2003) to extract bi-phrases and 
estimate their replacement probabilities.  From 
each query-correction pair with its word align-
ment (Q, C, A*), all bi-phrases consistent with the 
word alignment are identified. Consistency here 
implies two things. First, there must be at least 
one aligned word pair in the bi-phrase. Second, 
there must not be any word alignments from 
words inside the bi-phrase to words outside the 
bi-phrase. That is, we do not extract a phrase pair 
if there is an alignment from within the phrase 
pair to outside the phrase pair. The toy example 
shown in Figure 4 illustrates the bilingual phrases 
we can generate by this process. 

 After gathering all such bi-phrases from the 
full training data, we can estimate conditional 
relative frequency estimates without smoothing. 
For example, the phrase transformation probabil-
ity |  in Equation (7) can be estimated ap-
proximately as 

Input: biPhraseLattice “PL” with length = K & height 
= L;  
Initialization: biPhrase.maxProb = 0; 
for (x = 0; x <= K – 1; x++) 
      for (y = 1; y <= L; y++) 
            for (yPre = 1; yPre <= L; yPre++) 
            { 
                  xPre = x – y;  
                  biPhrasePre = PL.get(xPre, yPre); 
                  biPhrase = PL.get(x, y); 
                  if (!biPhrasePre || !biPhrase) 
                         continue; 
                  probIncrs = PL.getProbIncrease(biPhrasePre,  
                                                                      biPhrase); 
                  maxProbPre = biPhrasePre.maxProb;  
                  totalProb = probIncrs + maxProbPre; 
                  if  (totalProb > biPhrase.maxProb)  
                  { 
                        biPhrase.maxProb = totalProb;  
                        biPhrase.yPre = yPre; 
                   } 
             } 
Result: record at each bi-phrase boundary its maxi-
mum probability (biPhrase.maxProb) and optimal 
back-tracking biPhrases (biPhrase.yPre). 
 
Figure 3: The dynamic programming algorithm for 
Viterbi bi-phrase segmentation. 

 A B C D E F  a A 
a #       adc ABCD 
d    #    d D 
c   #     dc CD 
f      #  dcf CDEF 
        c C 
        f F 

 
Figure 4: Toy example of (left) a word alignment 
between two strings "adcf" and "ABCDEF"; and (right) 
the bi-phrases containing up to four words that are 
consistent with the word alignment. 
 
 



|
,

∑ ,
 (11) 

where ,  is the number of times that c is 
aligned to q in training data. These estimates are 
useful for contextual lexical selection with suffi-
cient training data, but can be subject to data 
sparsity issues. 

An alternate translation probability estimate 
not subject to data sparsity issues is the so-called 
lexical weight estimate (Koehn et al., 2003). 
Assume we have a word translation distribution 

|  (defined over individual words, not 
phrases), and a word alignment A between q and c; 
here, the word alignment contains (i, j) pairs, 
where  1. . | | and 0. . | |, with 0 indicat-
ing an inserted word.  Then we can use the fol-
lowing estimate: 

| ,
1

| | , | |
,

| |

 (12) 

We assume that for every position in q, there is 
either a single alignment to 0, or multiple align-
ments to non-zero positions in c. In effect, this 
computes a product of per-word translation scores; 
the per-word scores are averages of all the trans-
lations for the alignment links of that word. We 
estimate the word translation probabilities using 
counts from the word aligned corpus: |

,
∑ , ′′

. Here ,  is the number of times that 

the words (not phrases as in Equation 11) c and q 
are aligned in the training data. These word based 
scores of bi-phrases, though not as effective in 
contextual selection, are more robust to noise and 
sparsity. 

Throughout this section, we have approached 
this model in a noisy channel approach, finding 
probabilities of the misspelled query given the 
corrected query. However, the method can be run 
in both directions, and in practice SMT systems 
benefit from also including the direct probability 
of the corrected query given this misspelled query 
(Och, 2002). 

5.3 Phrase-Based Error Model Features 

To use the phrase-based error model for spelling 
correction, we derive five features and integrate 
them into the ranker-based query speller system, 
described in Section 4. These features are as 
follows. 
• Two phrase transformation features: 

These are the phrase transformation scores 
based on relative frequency estimates in two 

directions. In the correction-to-query direc-
tion, we define the feature as  , ,
log | , where |  is computed by 
Equations (8) to (10), and  is the rel-
ative frequency estimate of Equation (11).   

• Two lexical weight features: These are the 
phrase transformation scores based on the 
lexical weighting models in two directions. 
For example, in the correction-to-query di-
rection, we define the feature 
as , , log | , where |  
is computed by Equations (8) to (10), and the 
phrase transformation probability is the 
computed as lexical weight according to Eq-
uation (12). 

• Unaligned word penalty feature: the feature 
is defined as the ratio between the number of 
unaligned query words and the total number 
of query words. 

6 Experiments 

We evaluate the spelling error models on a large 
scale real world data set containing 24,172 queries 
sampled from one year’s worth of query logs from 
a commercial search engine. The spelling of each 
query is judged and corrected by four annotators.  

We divided the data set into training and test 
data sets. The two data sets do not overlap. The 
training data contains 8,515 query-correction 
pairs, among which 1,743 queries are misspelled 
(i.e., in these pairs, the corrections are different 
from the queries). The test data contains 15,657 
query-correction pairs, among which 2,960 que-
ries are misspelled. The average length of queries 
in the training and test data is 2.7 words.  

The speller systems we developed in this study 
are evaluated using the following three metrics. 
• Accuracy: The number of correct outputs 

generated by the system divided by the total 
number of queries in the test set. 

• Precision: The number of correct spelling 
corrections for misspelled queries generated 
by the system divided by the total number of 
corrections generated by the system. 

• Recall: The number of correct spelling cor-
rections for misspelled queries generated by 
the system divided by the total number of 
misspelled queries in the test set. 

We also perform a significance test, i.e., a t-test 
with a significance level of 0.05. A significant 
difference should be read as significant at the 95% 
level. 



In our experiments, all the speller systems are 
ranker-based. In most cases, other than the base-
line system (a linear neural net), the ranker is a 
two-layer neural net with 5 hidden nodes. The free 
parameters of the neural net are trained to optim-
ize accuracy on the training data using the back 
propagation algorithm, running for 500 iterations 
with a very small learning rate (0.1) to avoid 
overfitting. We did not adjust the neural net 
structure (e.g., the number of hidden nodes) or 
any training parameters for different speller sys-
tems. Neither did we try to seek the best tradeoff 
between precision and recall. Since all the sys-
tems are optimized for accuracy, we use accuracy 
as the primary metric for comparison. 

Table 1 summarizes the main spelling correc-
tion results.  Row 1 is the baseline speller system 
where the source-channel model of Equations (2) 
and (3) is used. In our implementation, we use a 
linear ranker with only two features, derived 
respectively from the language model and the 
error model models. The error model is based on 
the edit distance function. Row 2 is the rank-
er-based spelling system that uses all 96 ranking 
features, as described in Section 4. Note that the 
system uses the features derived from two error 
models.  One is the edit distance model used for 
candidate generation. The other is a phonetic 
model that measures the edit distance between the 
metaphones (Philips, 1990) of a query word and 
its aligned correction word. Row 3 is the same 
system as Row 2, with an additional set of features 

derived from a word-based error model. This 
model is a special case of the phrase-based error 
model described in Section 5 with the maximum 
phrase length set to one.  Row 4 is the system that 
uses the additional 5 features derived from the 
phrase-based error models with a maximum 
bi-phrase length of 3. 

In phrase based error model, L is the maxi-
mum length of a bi-phrase (Figure 3). This value 
is important for the spelling performance. We 
perform experiments to study the impact of L; 
the results are displayed in Table 2. Moreover, 
since we proposed to use clickthrough data for 
spelling correction, it is interesting to study the 
impact on spelling performance from the size of 
clickthrough data used for training. We varied 
the size of clickthrough data and the experi-
mental results are presented in Table 3. 

The results show first and foremost that the 
ranker-based system significantly outperforms 
the spelling system based solely on the 
source-channel model, largely due to the richer 
set of features used (Row 1 vs. Row 2).  Second, 

the error model learned from clickthrough data 
leads to significant improvements (Rows 3 and 4 
vs. Row 2).  The phrase-based error model, due to 
its capability of capturing contextual information, 
outperforms the word-based model with a small 
but statistically significant margin (Row 4 vs. 
Row 3), though using phrases longer (L > 3) does 
not lead to further significant improvement (Rows 
6 and 7 vs. Rows 8 and 9). Finally, using more 
clickthrough data leads to significant improve-
ment (Row 13 vs. Rows 10 to 12). The benefit 
does not appear to have peaked – further im-
provements are likely given a larger data set. 

7 Conclusions 

Unlike conventional textual documents, most 
search queries consist of a sequence of key words, 
many of which are valid search terms but are not 
stored in any compiled lexicon. This presents a 
challenge to any speller system that is based on a 
dictionary.  

This paper extends the recent research on using 
Web data and query logs for query spelling cor-
rection in two aspects. First, we show that a large 
amount of training data (i.e. query-correction 
pairs) can be extracted from clickthrough data, 
focusing on query reformulation sessions. The 
resulting data are very clean and effective for 
error model training. Second, we argue that it is 
critical to capture contextual information for 
query spelling correction. To this end, we propose 

# System Accuracy Precision Recall 
1 Source-channel 0.8526 0.7213 0.3586 
2 Ranker-based 0.8904 0.7414 0.4964 
3 Word model 0.8994 0.7709 0.5413 
4 Phrase model (L=3) 0.9043 0.7814 0.5732 
Table 1. Summary of spelling correction results. 

# System Accuracy Precision Recall 
5 Phrase model (L=1) 0.8994 0.7709 0.5413 
6 Phrase model (L=2) 0.9014 0.7795 0.5605 
7 Phrase model (L=3) 0.9043 0.7814 0.5732 
8 Phrase model (L=5) 0.9035 0.7834 0.5698 
9 Phrase model (L=8) 0.9033 0.7821 0.5713 
Table 2. Variations of spelling performance as a func-
tion of phrase length. 
 
# System Accuracy Precision Recall 

10 L=3; 0 month data 0.8904 0.7414 0.4964 
11 L=3; 0.5 month data 0.8959 0.7701 0.5234 
12 L=3; 1.5 month data 0.9023 0.7787 0.5667 
13 L=3; 3 month data 0.9043 0.7814 0.5732 
Table 3. Variations of spelling performance as a func-
tion of the size of clickthrough data used for training. 
 
 



a new phrase-based error model, which leads to 
significant improvement in our spelling correc-
tion experiments.  

There is additional potentially useful informa-
tion that can be exploited in this type of model. 
For example, in future work we plan to investigate 
the combination of the clickthrough data collected 
from a Web browser with the noisy but large 
query sessions collected from a commercial 
search engine. 
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