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ABSTRACT
Statistical translation models and latent semantic analy-
sis (LSA) are two effective approaches to exploiting click-
through data for Web search ranking. While the former
learns semantic relationships between query terms and doc-
ument terms directly, the latter maps a document and the
queries for which it has been clicked to vectors in a lower-
dimensional semantic space. This paper presents two doc-
ument ranking models that combine the strengths of both
the approaches by explicitly modeling word-pairs. The first
model, called PairModel, is a monolingual ranking model
based on word-pairs derived from click-through data. It
maps queries and documents into a concept space spanned
by these word-pairs. The second model, called Bilingual
Paired Topic Model (BPTM), uses bilingual word transla-
tions and can jointly model query-document collections writ-
ten in multiple languages. This model uses topics to capture
term dependencies and maps queries and documents in mul-
tiple languages into a lower dimensional semantic sub-space
spanned by the topics. These models are evaluated on the
Web search task using real world data sets in three different
languages. Results show that they consistently outperform
various state-of-the-art baseline models, and the best result
is obtained by interpolating PairModel and BPTM.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]:
Learning; I.5.4 [Pattern Recognition]: Applications—Text

Processing

General Terms
Learning, Algorithms, Experimentation
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1. INTRODUCTION
Web search engines till date rely strongly on matching

words in a query-document pair. But very often, words tend
to be either synonymous or polysemous resulting in a con-
cept being expressed in different ways. It is well known
that pure lexical matching is inaccurate and often leads to
suboptimal performance [19, 32]. This problem has been
addressed in mainly two ways:

• By using pairwise word associations to capture the
probability of a document word translating into a query
word [5]. The pairwise associations are typically learnt
using document’s content and its title [26], based on
click-through data [3, 25, 14] or using query expansion
techniques [35, 27].

• By representing documents and queries in a lower di-
mensional semantic space, in which words are identi-
fied by their semantics and not by their lexical form
[13, 18]. Thus a query and document pair can have a
non-zero similarity even though they don’t share any
terms.

The use of click-through data has proved to be effective
in both the approaches. Statistical translation based ap-
proaches, first, learn pairwise associations between query
and document words and then use these translation prob-
abilities to rank the documents (Sec. 2.1) [14, 3]. On the
other hand, topic modeling based approaches treat a docu-
ment and the set of queries for which it has been clicked as an
aligned query document pair and learn a shared topic distri-
bution [15] (Sec. 2.2). They use the shared topic distribution
to rank documents. A serious limitation of these topic mod-
eling based approaches is that they require aligned query
document pairs. But, there are lot of user queries without
any click information rendering their application limited.1

Notice that both these kinds of approaches harness differ-
ent aspects of the click-through data. In specific, transla-
tion models use click-through data to mine pairwise word
associations while topic modeling based approaches exploit
alignment information to learn a shared topic distribution.

1In the literature, click-through data usually refers to clicked
query document pairs. But in this paper we refer to both
clicked and not-clicked query document pairs. We use
aligned and unaligned to distinguish between these two sets.



1

The celebration of Thanksgiving will be incomplete
without the legendary Turkey bird. The customary
dinner reminds of the ‘Four Wild Turkeys’ served · · ·
Turkey, known officially as the Republic of Turkey

2 is a Eurasian country located in Western Asia and
in East Thrace in Southeastern Europe. · · ·

Table 1: Example documents where the term
‘turkey’ is used in different contexts. Relevant con-
text words are colored in Blue.

So it is natural to investigate if exploiting these two aspects
together will yield any further improvements.
With this goal, we aim to design models which can use

pairwise word associations to jointly model an aligned and
unaligned query-document collections. We achieve this by
using word-pairs (e.g., Table 2) to disambiguate the usage of
terms. To understand the intuition, consider the occurrence
of a term like ‘turkey’ in a document or a query. This term
can mean the “Turkey bird” or the “Turkey country”. Our
approach tries to identify its most relevant concept based
on its context words. For example, in the first document
of Table 1, the occurrence of terms like ‘thanksgiving’ and
‘dinner’ along with ‘turkey’ indicates that it is used in the
bird concept while the occurrence of terms like ‘republic’ and
‘country’, in the second document, indicates that it is used in
the country concept. In our models, we try to disambiguate
the term with the help of word-pairs. In this particular ex-
ample, the bird concept is captured by associating the term
to the word-pairs “turkey:thanksgiving” and “turkey:dinner”
while the country concept is identified by associating it with
“turkey:country” and “turkey:republic”. By linking two re-
lated words, via a word-pair, we gather the evidence from
both the words to make better judgements about of each of
the words. Thus, we aim to build better document models
which in turn lead to better ranking models.
Using this idea, we propose two models which explic-

itly use word-pairs to model a query-document collection.
Our first model, called PairModel, is a monolingual model.
It uses monolingual word-pairs derived from click-through
data to model term dependencies in a query-document col-
lection. It maps queries and documents into a concept space
spanned by these word-pairs (Sec. 3). As shown in Table 2,
the word-pairs capture different types of term correlations
such as morphological variations, misspellings, term relat-
edness, etc.. By accounting for these different variations,
PairModel builds better document models. The use of term
co-occurrences to build better query or document models
is not new [34], but the way we use it (i.e., by combining
word-pairs and topic models) is novel.
Our second model is a bilingual model called Bilingual

Paired Topic Model (BPTM). It uses bilingual word-pairs,
that are translations of each other say between French and
English, to model a bilingual query-document collection (Sec. 4).
Unlike PairModel, the word-pairs in BPTM are word trans-
lations and do not capture other types of semantic term
correlations. So, we introduce topics to capture the seman-
tic relatedness. This model maps queries and documents
of both languages into a common lower dimensional sub-
space. Thus BPTM addresses the lexical gap problem and
also leverages the abundant training data available in a re-
source rich assisting language (such as English) to improve

ranking in a resource poor search language. While the use
of assisting language to improve search language’s ranking is
not new [20, 10], the way we use it (i.e., via topic modeling)
is novel.

PairModel exploits term dependencies from queries and
documents within the search language (French) while BPTM
uses information gathered from the assisting (English) lan-
guage to make better relevance judgements. So, these mod-
els are complimentary to each other and can be interpolated.
Our experiments (Sec. 5) in French and German languages,
using English as the assisting language, show that the com-
bined model outperforms both the individual models and
also beats various state-of-the-art baseline systems by a sig-
nificant margin.2

2. RELATED WORK
Many strategies have been proposed to bridge the lexical

gap between queries and documents using the click-through
data. Click-through data is also shown to be effective in the
learning to rank framework [1], but here we discuss the work
that is most relevant to our problem and our approach.

2.1 Statistical Translation Based Approaches
In Language Modeling (LM) framework [29], documents

are ranked based on the likelihood of generating a query.
Statistical translation based approaches address the lexical
gap by ranking the documents based on the likelihood of
translating into a query. Let q = {q1, . . . qNq} be a query
and d = {w1, . . . wNd

} be a document, then a word based
translation model [5] ranks the documents based on:

P (q|d) =
∏

q∈q

P (q|d) =
∏

q∈q

∑

w∈d

P (q|w)P (w|d) (1)

where P (w|d) is the unigram probability of the word w in
d, and P (q|w) is the probability of the document word w

translating into the query word q. In these methods, a ma-
jor challenge is the estimation of the translation probabilities
P (q|w). An ideal training data would be a large amount of
aligned query-document pairs (in which each of the docu-
ment is judged as relevant to the query). Due to the lack
of such training data, [5] resorts to some synthetic query-
document pairs while [26] uses the title-document pairs for
estimating the translation probabilities. Click-through data
has been explored to determine relationships between terms
in queries and documents [3, 25]. However, these relation-
ships and their probabilities are created using ad hoc similar-
ity measures. Gao et al. [14] take a word alignment based ap-
proach popular in the Statistical Machine Translation com-
munity [8]. They treat an aligned query-document pair as a
parallel sentence pair in two different languages and use IBM
Model 1 to learn the translation probabilities. They show
an improved performance by using translation probabilities
learned from an year worth of click-through data.

Wei and Croft [34] discuss several co-occurrence based
methods to identify term associations and their effectiveness
for information retrieval. Moreover, lexical gap problem is
also addressed using query expansion with automatic rel-
evance feedback (e.g., pseudo relevance feedback or PRF)
[35]. Though these techniques are shown to be effective on
TREC benchmark data sets [35, 27, 37, 9], their applicabil-
ity to a commercial Web search engine is limited because

2A shorter version of this document is available at [22].



generating pseudo-relevant documents requires multi-phase
retrieval, which is prohibitively expensive.

2.2 LSA Based Approaches
Latent Semantic Analysis (LSA) based approaches assume

that both queries and documents lie in a lower dimensional
sub-space and try to learn this space [13]. Probabilistic La-
tent Semantic Analysis (PLSA) [18] assumes that each doc-
ument is a Multinomial distribution over T topics (called
document-topic distribution) where each of the topics is in
turn a Multinomial distribution over words (called topic-
word distribution). Like in LM framework, the relevance of
a document towards a query is assumed to be proportional
to the likelihood of it generating the query. Latent Dirichlet
Allocation (LDA) generalizes PLSA to unseen documents
by employing a conjugate Dirichlet prior on the document-
topic distributions [6]. Though, LDA is superior to PLSA
in theory, its effectiveness for IR, as demonstrated in [33],
has not been compared against PLSA.
Recently, Gao et al. [15] proposed a generative model

called Bilingual Topic Model (BLTM) for Web wearch. They
show that, by including the click-through data, their model
achieves better performance compared to the PLSA. They
assume that an aligned query and document pair share the
document-topic distribution. Given this document-topic dis-
tribution, the query and the document are assumed to be
independent and are generated separately. During the rank-
ing stage, they keep the topic-word distributions fixed and
fold in the unseen documents to learn their document-topic
distributions. Finally, for a given query q, they rank the
documents as follows:

P (q|d) =
∏

q∈q

P (q|d) =
∏

q∈q

T
∑

z=1

P (q|z)P (z|d) (2)

Notice that this approach exploits the alignment information
between queries and documents to learn the sub-space and
hence it is limited to aligned data sets.

2.3 Dictionary Based Semantic Models
On the other hand, there are approaches that learn se-

mantic sub-space using word-pairs [21, 7, 38]. These ap-
proaches usually model unaligned bilingual document col-
lections using bilingual dictionaries, but they can be mod-
ified to model unaligned query-document collections using
monolingual word-pairs. In [21], each document is assumed
to be a Multinomial distribution over T bilingual topics. A
bilingual topic is a Multinomial distribution over bilingual
concepts (c) and each of these concepts generates a word
depending on the document language. In these models, the
probability of generating a string s = (w1, . . . , wNs) given a
document d is given by:

P (s|d) =
∏

wi∈s

P (wi|d) =
∏

wi∈s

∑

c,z

P (wi|c)P (c|z)P (z|d) (3)

where z = 1 . . . T is the bilingual topic indicator.
In this paper, we propose models that use ideas from the

above mentioned approaches. More specifically, we 1) use
IBM model 1 to learn word-pairs from the click-through
data (Sec. 2.1), 2) exploit the association between an aligned
query-document pair (Sec. 2.2) and 3) finally use the word-
pairs, derived in step 1, as proxy for the concepts in the dic-
tionary based approaches to model unaligned query-document

turkey thanksgiving
turkey bird
turkey country
turkey istanbul
government govenment
colleges college
university colleges
addiction rehab
camera canon
camera D3000

Table 2: Example monolingual word-pairs. The
word ‘govenment’ is misspelled purposefully.

collections as well. Thus our models combine the strengths
of these individual approaches. As shown in Table 2, the
word-pairs used for PairModel capture different types of se-
mantic term correlations, so this model does not need topics.
In contrast, BPTM uses bilingual word translations and can
not account for the different types of variations and so it
uses topics to learn the semantic space.

As explained in Sec. 1, our models use word-pairs to dis-
ambiguate the concept in which a term is used. The usage
of term co-occurrences to build better document models is
not new [4]. For example, most of the approaches discussed
in Section 2.2 inherently use term co-occurrences in their
process. But our approach uses only a subset of selected
word-pairs (Sec. 5.2). As argued in [23], considering all pos-
sible pairwise associations can be noisy and hence using a
pre-selected set of word-pairs is desirable.

3. PAIR MODEL
In this section, we propose our model assuming that we

have monolingual pairwise word associations. An example
set of word-pairs is shown in Table 2.3 Our model is inde-
pendent of the dictionary’s source.

The most important aspect of our model is that we treat
a word-pair as a hidden variable, i.e., when we see a term we
model the concept in which it is used as a hidden variable
and try to infer it based on the context. The order of words
in a word-pair doesn’t carry any significance, i.e., “addic-
tion:rehab” is same as “rehab:addiction”. By grouping two
related words together we effectively combine the evidence
of both words so that each word can help make an appro-
priate decision about the other word. Moreover, by linking
evidence from related words, we move beyond bag-of-word
based models and, since these words can lie anywhere in the
document, our approach is different from other higher order
models which consider n-gram relationships between words
[30, 31].

We first describe our model for aligned query-document
pairs and later discuss, briefly, on extending it to unaligned
queries and documents. We assume that each aligned query-
document pair is a distribution over word-pairs or concepts
referred to as concept distribution. From now on, we use
concept and word-pair interchangeably. Each concept is in
turn a Binomial distribution over its two component words.
Notice that there are no topics in this model and the only
hidden variables are concepts. This is the primary difference

3For conciseness, we refer to this as monolingual dictionary.
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Figure 1: Graphical notation of the PairModel,
the concept distribution is shared across an aligned
query-document pair.

between our PairModel and other related generative models
such as JointLDA [21] and BLTM [15].
Formally, we assume that an aligned query-document pair

(q,d) =
(

(q1, . . . , qNq ), (w1, . . . , wNd
)
)

share the concept

distribution ψ(q,d)
4 which is drawn from a Dirichlet distri-

bution with symmetric prior γ. For each word in the query-
document pair, we first draw a concept (c) from the concept
distribution ψ(q,d) and then draw a word from the words
associated with the concept. Let |C| be the total number
of concepts, then we assume the following generative story
for generating an aligned query-document pair. The corre-
sponding graphical notation is shown in Fig. 1.

1. For each concept c = 1 . . . |C|, choose φc ∼ Beta(β, β)

2. For each aligned query-document pair

(a) Choose ψ(q,d) ∼ Dir(γ)

(b) For each document term i = 1 . . . Nd

• Select a concept ci ∼ Mult(ψ(q,d))

• Select a word wi ∼ Bin(φci)

(c) For each query term i = 1 . . . Nq

• Select a concept ci ∼ Mult(ψ(q,d))

• Select a word qi ∼ Bin(φci)

Since the size of the monolingual dictionary is limited, there
will be some words that do not have any pairwise associ-
ations. For example, the word ‘world’ is not part of the
extremely small dictionary provided in Table 2. To handle
these Out-of-Dictionary words, we add dummy concepts of
the form word:word (“world:world” in this particular case).
Notice that this concept can generate only one word ‘world’
with a probability of 1. The model can be easily extended to
unaligned data, in which case the generative story is limited
to either a query or a document.
To understand how this model uses context words to dis-

ambiguate the concept associated with a term and improve
the search ranking, consider the example documents from
Table 1 and the term ‘turkey’. Based on the input monolin-
gual dictionary, the word ‘turkey’ has four possible concepts
associated with it (as shown in Table 2). When the term
‘turkey’ is seen in the first document, then all the four con-
cepts are equally likely to have generated this term, so all
of them get equal probability for this document. But when
we see its context words, say ‘thanksgiving’ then the proba-
bility of the concept “thanksgiving:turkey” increases for this

4We use ψ instead of the traditional θ to remind the reader
that this is not a distribution over topics, instead it is a
distribution over the word-pairs.

document as it is triggered for both the words ‘turkey’ and
‘thanksgiving’. Likewise, the concept “turkey:bird” also be-
comes more probable when the word ‘bird’ is seen. Similarly,
in the second document, the words ‘country’ and ‘republic’
will cause the concept distribution to peak for the coun-
try sense compared to the bird sense. When we link all
the terms to their most relevant concepts and gather these
statistics over all queries and documents, we obtain statis-
tics that better fit this particular data set and hence they
tend to be more accurate than the translation probabilities
of the original dictionary (as evidenced in our experiments
in Sec. 5.2) resulting in better ranking models.

In our model, word-pairs enable us to leverage the term
correlations within a document or a query. At the same time,
the fact that an aligned query-document pair share concept
distribution means that it also leverages term correlations
across a query-document pair.

3.1 Inference
In [2], authors show that MAP inference performs compa-

rably to the best Bayesian inference methods for generative
models such as LDA. So, we use Expectation Maximiza-
tion [12] algorithm to learn the MAP values for (φ, ψ). The
E-step involves finding the posterior probabilities, i.e., the
probability of associating each term with a concept, as fol-
lows:

P (c|w, (q,d)) =
P (w|φc)P (c|ψ(q,d))

∑

c′
P (w|φc′)P (c′|ψ(q,d))

(4)

For each concept c, P (w|φc) is non-zero for only the two
words that are part of this concept. So, the above posterior
probability is non-zero for only those concepts that can gen-
erate the given word. Because of this, although there are a
total of O(V 2) possible concepts, only a tiny fraction of them
will have non-zero probability in a given document. More-
over, this set can be precomputed based on the document
words and can be stored in an appropriate data structure for
efficient processing. Again, because on an average a word
has a small number of associated concepts, most of the terms
in the summation term in the denominator of Eq. 4 are zeros
and hence it can also be computed efficiently.

The M-step updates the parameters based on the poste-
rior probabilities estimated in the E-step. Let n(q,q) de-
note the frequency of a query word q in the query q and,
similarly, n(w,d) denote the frequency of a word w in the
document d. Moreover, let N(q, c,q) = n(q,q)P (c|q, (q,d))
and N(w, c,d) = n(w,d)P (c|w, (q,d)) then,

P (c|ψ(q,d)) ∝ (γ − 1) +
∑

q∈q

N(q, c,q) +
∑

w∈d

N(w, c,d)

P (w|φc) ∝ (β − 1) +
∑

(q,d)

(

N(w, c,q) +N(w, c,d)
)

3.2 PairModel Variants
In PairModel, we force an aligned query-document pair to

share the concept distribution. Instead we can allow them to
have different concept distributions and then take an average
of them to denote the concept distribution of the pair. The
corresponding graphical notation is shown in Fig. 2. Dur-
ing inference, we learn ψq and ψd independently and then

use ψ =
ψq+ψd

2
as the resulting concept distribution of the

document. We refer to this model as PairModel(Averaged)
in the rest of the paper.
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Figure 2: Graphical notation for the PairModel (Av-
eraged), query and document do not share the con-
cept distribution.

In another variant, we run PairModel without any word-
pairs. As stated earlier, we add dummy concepts of the form
“word:word” for Out-of-Dictionary words. In this variant,
we use dummy concept for each word. Thus, the model
reduces to a unigram language model whose parameters,
shared by queries and documents, are estimated on the con-
catenation of queries and documents. We refer to this model
as PairModel(–Pairs) in the experimental section (Sec. 5.2).
Finally, we can use posterior regularization to constrain

the concepts sampled for a query and document to match
with each other. But [15], shows that posterior regulariza-
tion brings only a minor improvement so we skip this variant
in our experimental section.

3.3 Document Ranking
We use the LM framework to rank documents. Following

[36, 14], we score the relevance of documents given a query
using a mixture model

P (q|d) =
∏

q∈q

(

λ1Pmx(q|d) + (1− λ1)P (q|C)
)

where

Pmx(q|d) = λ2Pml(q|d) + (1− λ2)Psys(q|d) (5)

where Pml(q|d) is the maximum likelihood estimate of the
query word q in the document and P (q|C) is the unigram
probability of the query word in the entire collection. And
Psys(q|d) is the probability of q in the given document whose
value varies among different ranking models. In PairModel,
Psys(p|d) is estimated as

Psys(q|d) =
∑

c|q∈c

P (q|c)P (c|d) (6)

where c|q ∈ c denotes the set of all concepts that have the
query word q as one of them.

4. BILINGUAL PAIRED TOPIC MODEL
Bilingual Paired Topic Model (BPTM) uses training data

from an assisting language to improve ranking of documents
in a search language. We assume that the assisting lan-
guage (English) has richer resources, such as larger amounts
of click-through data, document and query collections, that
are useful for building a better Web search ranker. For con-
creteness, we consider the task of ranking French documents
using English as an assisting language.
In what follows, we will first describe the way aligned

query-document collections are modeled by BPTM. Then
we extend BPTM to model unaligned query-document col-
lections. We assume that we have aligned query-document
collections (which are extracted from click-through logs) in

both languages
{

(qei ,d
e
i ), (q

f
j ,d

f
j )
}

for i=1 . . .m and j =

1 . . . n. The queries and documents across different lan-
guages are assumed to be comparable (e.g., from the same
time period) but not necessarily translations of each other.

The underlying idea behind BPTM is to jointly model
bilingual collections such that useful knowledge can be trans-
ferred across languages. The joint modeling is motivated
by the previous study [20], which shows that training a
ranker on a bilingual data is more effective than than learn-
ing a ranker in English and transferring it to French. Note
that simply replacing word-pairs of PairModel with bilingual
word translations does not lead to a model that is different
from a document’s unigram model because the model can-
not capture any inter-word dependencies in documents of the
same language. For example, the probability of a word-pair
(“camera:caméra”) in a particular French document depends
only on the French word ‘caméra’ and is independent of other
French words. Therefore, in addition to the use of bilingual
translations, BPTM also uses bilingual topics. These bilin-
gual topics map the queries and documents in different lan-
guages into a common lower dimensional semantic space. In
that sense, BPTM bears resemblance to JointLDA [21] and
BLTM [15] but there are some key differences. First of all,
unlike BLTM where a topic is a distribution over words, a
topic in BPTM is a distribution over bilingual word trans-
lation pairs (or concepts).5 Second, unlike JointLDA which
does not make use of alignment information between query
and document, BPTM assumes that a query and its paired
document share the same topic distribution.

We now describe BPTM more formally. We assume that
an aligned query-document pair share the topic distribution
θ(q,d) which is a multinomial distribution over T bilingual
topics and is drawn from a Dirichlet distribution with sym-
metric prior (α). Each bilingual topic (ψk) is a multinomial
distribution over concepts. Finally, depending on the lan-
guage of the query-document pair, these concepts generate
words. Given a concept and the language, there is only one
option for choosing the word and it is deterministic. To ex-
plain words that are not present in the bilingual dictionary,
we add dummy translations for both Out-of-Dictionary En-
glish and French words. A dummy translation for an English
word can only generate a English word and can not gener-
ate French words and vice versa. Jagarlamudi and Daumé
III [21] showed that these dummy translations lead to defi-
cient probability models and suggested adding a dependency
link between the document language and the concept vari-
able. Following their argument, let I(ci, ld) denote a binary
indicator variable that denotes whether the concept ci can
generate a word from the language ld, then the generative
process of BPTM is as follows. The corresponding graphical
notation is shown in Fig. 3.

1. For each topic k = 1 . . . T , choose ψk ∼ Dir(γ)

2. For each aligned query-document pair

(a) Choose l(q,d) ∼ Bin( 1
2
).

(b) Choose θ(q,d) ∼ Dir(α)

(c) For each document term i = 1 . . . Nd

• Select a topic zi ∼ Mult(θ(q,d))

• Select a concept ci ∼ Mult(ψzi) · I(ci, l(q,d))

5We advise the reader to distinguish that a concept in
BPTM refers to a word translation pair while it refers to
a semantically related word pair in the PairModel.
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Figure 3: Graphical notation for the Bilingual
Paired Topic Model (BPTM).

• Select a word wi ∼ P (wi|ci, l(q,d))

(d) For each query term i = 1 · · ·Nq

• Select a topic zi ∼ Multi(θ(q,d))

• Select a concept ci ∼ Mult(ψzi) · I(ci, l(q,d))

• Select a word qi ∼ P (qi|ci, l(q,d))

To understand the generative process, consider generat-
ing an English aligned query-document pair. First, choose
a topic mixture say 70% of education and 30% of sports.
Then, we generate the query term by term. For the first
term, choose a topic, say ‘education’, and then choose a con-
cept from the education topic, let it be“university:université”.
We then generate the first English query term ‘university’
from the concept. If we were to generate the French query
then we would have chosen ‘université’ instead. This process
repeats until all words in the query and its aligned document
are generated. Like in PairModel, BPTM can be trivially
extended to generating queries and documents that are not
aligned. In such a case, the generative process is limited to
either a query or a document.
In BPTM, we use bilingual word-pairs which are trans-

lation equivalents where as in the PairModel we use mono-
lingual word-pairs that are semantically related. Because of
this distinction, BPTM doesn’t inherit all the advantages of
the PairModel (as evidenced in Sec. 5.3). We can use se-
mantically related bilingual word-pairs but it is very difficult
to obtain such word-pairs.

4.1 Inference
Again we use EM algorithm to derive the parameter up-

date equations. In the E-step, we estimate the posterior
probabilities and then use them to update the MAP esti-
mates in the M-step. The E-step involves estimating:

P (c|z, l) =
P (c|ψz)I(c, l)

∑

c′
P (c′|ψz)I(c′, l)

(7)

P (c, z|w,d, l) =
P (z|θ(q,d))P (c|z, l)

∑

z′,c′
P (z′|θ(q,d))P (c′|z′, l)

(8)

To compute the posterior probability for a query word, sim-
ply replace the pair w,d with q,q in Eq. 8.
As before, let n(q,q) denote the frequency of the query

word q in the query q and, similarly, n(w,d) be the fre-
quency of the word w in the document d. Moreover, let
N(c, z, q,q, l) = n(q,q)P (c, z|q, (q,d), l) andN(c, z, w,d, l) =

De Fr En En(all)

Test
# of queries 4K 5K 5.3K 6K
# docs 44K 54K 49K 190K

Training #(q,d) pairs 128K 133K 2.1M 32M
Vocab Size 110K 76K 500K 500K
Dictionary Size 100K 82K 489K 489K

Table 3: Training and test data statistics.

n(w,d)P (c, z|w, (q,d), l) then the M-step involves:

P (z|θ(q,d)) ∝ (α− 1) +
∑

q,c

N(c, z, q,q, l) +
∑

w,c

N(c, z, w,d, l)

P (c|ψz) ∝ (γ − 1) +
∑

q|q∈c

N(c, z, q,q, l) +
∑

w|w∈c

N(c, z, w,w, l)

where w ∈ c denotes that the word w is one of the two
words represented by c. Given a concept c and the language
l, there is only one option for choosing the word and hence
P (w|c, l) need not be estimated.

4.2 Document Ranking
We first train BPTMmodel on the bilingual query-document

collections. Then, we keep the topic-concept distributions
(ψ) fixed and fold in the test documents to get their topic
distributions (θ). We use the same mixture model described
in Sec. 3.3 to rank the documents. Finally, the Psys(q|d)
required to compute Eq. 5 is computed as follows:

Psys(q|d) =
∑

c,z

P (q|c)P (c|z)P (z|d) (9)

5. EXPERIMENTS
In this section, we evaluate our models against state-of-

the-art baseline systems in three languages: English, Ger-
man and French. We first compare PairModel with different
baselines on monolingual Web Search task, in Sec. 5.2, and
then move on to evaluating BPTM in Sec. 5.3.

5.1 Experimental Setup
Since our ranking models rely on click-through data, we

can not evaluate our models on standard TREC data sets.
Therefore, following previous studies of using user log for
Web search ranking [1, 14, 15], we use proprietary datasets
that have been developed for building a commercial Web
search engine and compare our models with state-of-the-
art ranking models that are originally developed for TREC
data sets [27] as well as approaches that use click-through
data [14, 15]. We evaluate our models on data sets collected
in three different languages, English, French, and German.
The queries in all the three languages are sampled from a
year of search engine query logs. Queries are “de-duped” so
that only unique queries remain. To reflect a natural query
distribution, we do not try to control the quality of these
queries. For example, in our query sets, around 20% are
misspelled queries, and around 20% are navigational queries
and 10% are transactional queries, etc.. Second, for each
query, we collect Web documents to be judged by issuing
the query to Bing. Subsequently, query-document pairs are
manually judged on a scale of 0 to 4, with 0 being totally
irrelevant and 4 being most relevant. For all the three data
sets, we filtered the queries that have less than ten relevant



English German French
ndcg@1 ndcg@3 ndcg@10 ndcg@1 ndcg@3 ndcg@10 ndcg@1 ndcg@3 ndcg@10

JMLM 28.70 37.54 48.66 34.59 43.79 56.20 38.22 46.36 60.57
RM 31.30 40.21 50.82 36.18 45.48 57.84 40.31 48.60 62.51
WTM 31.79 40.77 51.31 36.54 46.26 58.63 40.09 48.89 63.06
BLTM 34.70 43.16 53.03 37.26 46.50 58.33 40.03 48.36 62.49

PairModel(–Pairs) 34.74 43.46 53.17 35.74 45.05 57.45 38.94 47.54 61.82
PairModel(Averaged) 34.64 43.40 53.10 38.28 47.02 58.63 40.34 48.42 62.30
PairModel 35.02∗ 43.46∗ 53.26∗ 39.55∗ 47.64∗ 58.98 40.94∗ 48.95 62.58

∆ over best baseline +0.32 +0.30 +0.23 +2.29 +1.14 +0.35 +0.63 +0.06 -0.48

Table 4: Comparison of PairModel with state-of-the-art baseline systems. In each column, the best system
is bolded, the second best system is italicized and ∗ denotes statistical significance improvement compared
to the best baseline measured by t-test at p-value of 0.05.

documents. For most of the experiments, we include docu-
ments with at least one clicked query. To evaluate the ef-
fectiveness of different systems in leveraging unaligned doc-
uments, we prepare a separate English data set, referred to
as En(all), by including queries and documents that do not
have any user click information. For all the data sets, the
click information is extracted from query logs using a pro-
cess similar to [17]. The training and test set statistics are
shown in Table 3. Notice that the number of test queries
is much larger than the typical 50 queries used in standard
TREC evaluation settings.
We use the following baseline systems. JMLM: This is

the unigram language model of the document with Jelinek-
Mercer smoothing. RM: Relevance model [27], is one of the
state-of-the-art PRF methods developed for the LM frame-
work. The number of expansion terms and the number of
top-ranked documents used for query expansion are opti-
mized via cross validation. WTM: The third baseline is a
word based translation model, a variant of statistical trans-
lation model, as implemented in [14]. We use same dictio-
naries for WTM and PairModel. BLTM: The final baseline
is the Bilingual Topic Model [15].
The interpolation parameters in all the systems, λ1 and

λ2, are estimated using 2-fold cross validation. We split the
data into two halves, find the best interpolation parame-
ters on one half using grid search and use them for testing
on the other half. We report averaged results on both the
splits. Finally, we use Normalized Cumulative Discounted
Gain (ndcg) [24] to evaluate the ranking against the human
judgements. We report ndcg at ranks 1, 3, and 10.

5.2 Monolingual Web Search Results
In this section we compare PairModel with the baseline

systems. PairModel requires a monolingual dictionary of
word-pairs. For English, this dictionary is learnt from a
year worth of query logs (as in [14]). For German and
French languages, we learn the dictionaries from the train-
ing data of aligned query-document pairs which is much
smaller compared to the data used for English. For all the
three languages, we run IBM Model 1 on the aligned query-
document pairs and then filter all the word-pairs with condi-
tional translation probability less than a threshold of 0.005.
For quicker I/O, we keep only those word-pairs in which
both the words are seen in our vocabulary and the resulting
dictionary statistics are also shown in Table 3. We use the
dictionary to fit PairModel and its variants and estimate the

parameter values. After learning the parameter values, the
documents are ranked using Eqs. 5 and 6.

Table 4 shows the results of different systems on English,
German and French data sets. Across all the languages,
JMLM smoothing does poorly because of the lexical gap
problem. As expected, RM and WTM outperform JMLM
demonstrating the effectiveness of addressing the term mis-
match problem using co-occurrence statistics. BLTM per-
forms significantly better than WTM on English but is in-
distinguishable on German and French. This is largely due
to the size of training data we used to learn BLTM, which
is considerably larger in English than in other languages as
shown in Table 3. The order of the baseline systems is consis-
tent with what has been reported in the previous literature
[14, 15].

Recall that PairModel without word-pairs (PairModel(–
Pairs) in Sec. 3.2) reduces to a unigram language model
whose parameters are estimated from both the document
title and the queries for which the document is clicked. As
shown in Table 4, the performance of PairModel(–Pairs) is
not consistent across different languages. It outperforms
WTM and BLTM in English but underperforms in German
and French. We speculate that this result is due to the fact
that, on average, English documents have rich click data
than German and French documents.

On the other hand, using word-pairs but neglecting the
alignment between query-document pairs, as indicated by
PairModel(Averaged) row of Table 4, is indistinguishable
from PairModel(–Pairs) model on English, but is signifi-
cantly better in other languages. This shows the effective-
ness of using word-pairs especially when the click data is
smaller. This model compares favorably to the state-of-the-
art baselines (i.e., WTM and BLTM).

Finally, PairModel which uses both the word-pairs and the
alignment information between query and document pairs
outperforms not only the variants, but also the baseline sys-
tems in most cases. The last row of the Table 4 shows the
improvement of this model compared to the best of the four
baseline systems. It achieves a significant improvement of
2.29 points at ndcg@1 for German. Overall, PairModel per-
formed best and one of its variants performed second best.

Although PairModel and WTM use same set of word-
pairs, the significantly better performance of PairModel in-
dicates that our model seems to have the capability to adapt
the translation probabilities to the data set. To verify this,
we ran a separate experiment where we (re-)estimate the
translation probabilities for the original pairs based on the



English German French
ndcg@1 ndcg@3 ndcg@10 ndcg@1 ndcg@3 ndcg@10 ndcg@1 ndcg@3 ndcg@10

WTM 31.79 40.77 51.31 36.54 46.26 58.63 40.09 48.89 63.06
WTM (Adapted dict.) 32.49 41.32 51.64 38.04 47.58 59.49 40.70 49.36 63.39

∆ over original +0.70 +0.55 +0.33 +1.50 +1.32 +0.86 +0.61 +0.47 +0.33

Table 5: Performance of WTM model with adapted translation dictionary.
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Figure 4: Performance (ndcg@1) of PairModel under different resource settings. JMLM uses only titles (D)
while BLTM uses titles, queries, and click data (QDC).

posterior probabilities learnt by PairModel. Let c12 denote
the word-pair w1 : w2 and let {c′|w ∈ c′} denote the set of
concepts that have w as on of their words, then

P (w1|w2) =
#(w1, w2)

#(w2)
=

#(w1 : w2)
∑

w′ #(w′ : w2)
=

N(c12)
∑

c′|w2∈c′
N(c′)

where N(c) denote the expected number of times this con-
cept is assigned to any of the words and is given by:

N(c) =
∑

(q,d)

(

∑

q∈q & q∈c

N(q, c,q) +
∑

w∈d & w∈c

N(w, c,d)
)

N(q, c,q) and N(w, c,d) are as defined in Sec. 3.1. For
every word-pair of the input dictionary, we re-estimate its
translation probability and use this re-weighted dictionary
as input to WTM. Table 5 shows the results with the re-
estimated dictionary. This clearly confirms that our model
learns to tune the translation probabilities for this data set.

5.2.1 Variation with the Data
To better understand the model, we test the effectiveness

of PairModel with varying resources. Specifically, we trained
the model on document titles only (D), document titles +
queries but without click information (QD) and document
titles + queries + click data (QDC). Fig. 4 shows the results.
The x-axis marks the resource setting and the y-axis marks
the ndcg@1 scores.
Except in French, performance of PairModel increases as

we add queries and their alignment information. Moreover,
PairModel achieves significantly higher improvements in re-
source poor situations, which is justifiable as exploiting pair-
wise relations is expected to be more useful when there is
not enough evidence for a word on its own. Another inter-
esting observation is that, in German and French, even with
only documents PairModel beats the state-of-the-art BLTM
model. In the QDC setting, the performance of BLTM is
closer to that of PairModel in English than in other lan-

guages, probably due to the availability of relatively larger
amounts of click-through data in English.

English (All)
ndcg@1 ndcg@3 ndcg@10

JMLM 26.30 31.84 43.80
WTM 28.85 34.76 47.42
BLTM 31.24 36.85 49.36

PairModel(–Pairs) 30.30 35.61 47.44
PairModel(Averaged) 32.25 37.10 48.88
PairModel 32.23 37.13 48.91

∆ over best baseline 0.99 0.28 -0.45

Table 6: Performance of all the models after adding
unaligned documents and queries (in English).

In the final monolingual experiment, we evaluate the ef-
fectiveness of PairModel by adding unaligned queries and
documents. Table 6 shows the results on this data set. As
expected, this decreased the performance of all the systems,
but notably PairModel is still able to better identify the rel-
evant documents at rank 1. But the improvements decrease
(compared to BLTM model) at higher ranks.

5.3 Bilingual Web Search Results
In this section, we report our bilingual results on German

and French. Our aim is to test the effectiveness of word-
pairs, in using assist language training data, to improve the
accuracy in a search language and is not to build a competi-
tive multilingual IR algorithm. So in this section we mainly
resort to comparing with the same baselines and not with
the state-of-the-art multilingual IR algorithms like [10, 11,
20].

We use the same data sets and the experimental setup
as described in Sec. 5.1 and report results on Web Search
task in French and German using English as the assisting



German French
ndcg@1 ndcg@3 ndcg@10 ndcg@1 ndcg@3 ndcg@10

Monolingual BLTM 37.26 46.50 58.33 40.03 48.36 62.49

Bilingual

BPTM 37.38 46.58 58.48 40.85∗ 49.01∗ 62.73
∆ over BLTM +0.12 +0.08 +0.15 +0.82 +0.65 +0.24

BPTM+PairModel 39.66∗ 47.73∗ 59.04∗ 42.25∗ 50.01∗ 63.42∗

∆ over BLTM +2.40 +1.23 +0.71 +2.22 +1.65 +0.93

Table 7: Bilingual IR results on French and German. For comparison purposes, we have also shown the
scores of best monolingual baseline system (BLTM). Again ∗ denotes statistically significant improvement
compared to BLTM as measured by t-test at p-value of 0.05.

language. For both these language pairs, we used statistical
dictionaries learnt using Giza++ [28] on parallel data used
for training a commercial MT system. We remove all trans-
lation pairs that have conditional translational probability
less than 0.001 and keep only those pairs in which both the
words are seen in our vocabularies. After the filtering, we
are left with 181K and 269K word-pairs in En–De and En–Fr
language pairs.
As explained in Sec. 1, PairModel exploits evidence from

the search language while BPTM uses evidence from the
assisting language so we also report the results of a com-
bined model, ‘BPTM+PairModel’. We use query wise in-
terpolation to combine these models, i.e., we first score the
documents independently using the two models (described
in sections 3.3 and 4.2) and then interpolate the document
scores using a variant of Powell Search algorithm [16]. Table
7 shows the results.
We remind the reader that the major difference between

BLTM and BPTM is that BPTM models query-document
collections of both search and assisting languages while BLTM
models only search language query-document collection. We
expect the effectiveness of BPTM to depend on the cover-
age and quality of the bilingual word translations. Compar-
ing BPTM with BLTM, we observe that BPTM is able to
get 0.82 and 0.65 ndcg improvements at ranks 1 and 3 in
French6 but it gives almost the same performance in Ger-
man. This is justifiable because of the poor quality dictio-
nary for En–De language pair. The rich morphology and
the compound word phenomenon of German limits the cov-
erage of the En–De dictionary. The combined model, as de-
noted by ‘BPTM+PairModel’, improves over both BPTM
and PairModel and the improvements are higher in French
(again because of the high quality dictionary). While the
reader might think that the combination of BLTM and Pair-
Model can perform as good as BPTM+PairModel, we argue
that BPTM is a better choice than BLTM since it uses assist-
ing language query-document collection and hence is more
likely to be complementary than BLTM.

6. DISCUSSION
In this paper, we proposed two models that explicitly use

word-pairs to model aligned and unaligned query document
collections. Our models combine the strengths of the pre-
vious click-through based approaches to lexical gap and,
hence, achieve statistically significant improvements com-
pared to the state-of-the-art baseline systems. The improve-
ments are especially promising when the click data is small,

6The improvements in French are statistically significant as
measured by the t-test with p-value of 0.05

i.e., for emerging languages such as French and German.
We have also observed that, significant improvements can be
obtained by using a resource rich assisting language which
presumably has more click-through data. To this end, our
second model uses bilingual dictionaries to map queries and
documents of both the languages into a common lower di-
mensional sub-space. Hence, it can use training data from
a data rich assisting language to improve ranking in a re-
source poor language. Experimental analysis indicates that
the performance of this model depends on the quality and
the coverage of bilingual dictionaries. Since PairModel and
BPTM models exploit different collections, search and as-
sisting language resources respectively, they are complimen-
tary to each other and hence can be combined. The com-
bined model gave superior results compared to the individual
models and also the baseline systems.

We have used word-pairs derived from click-through data
for the monolingual model. Though, in principle, our model
does not depend on the source of these word-pairs, its effec-
tiveness for the Web search task will probably depend on the
source. Moreover, for BPTM, we used bilingual word-pairs
that are likely to be translations of each other and, again,
such word-pairs may not be ideal for the Web search task.
In this paper, our primarily goal is to show the utility of
modeling word-pairs and is not to evaluate the suitability of
the word-pairs – although the latter task is equally impor-
tant. In future, we would like to study the effect of differ-
ent sources on the final performance. Moreover we would
like to move from word-pairs to small bilingual clusters, so
that the model can effectively combine evidence from query-
document pairs with-in and across languages.
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