
Identifying Outlier Arms in Multi-Armed Bandit ∗

Honglei Zhuang1† Chi Wang2 Yifan Wang3
1University of Illinois at Urbana-Champaign

2Microsoft Research, Redmond
3Tsinghua University

hzhuang3@illinois.edu wang.chi@microsoft.com
yifan-wa16@mails.tsinghua.edu.cn

Abstract

We study a novel problem lying at the intersection of two areas: multi-armed bandit
and outlier detection. Multi-armed bandit is a useful tool to model the process
of incrementally collecting data for multiple objects in a decision space. Outlier
detection is a powerful method to narrow down the attention to a few objects after
the data for them are collected. However, no one has studied how to detect outlier
objects while incrementally collecting data for them, which is necessary when data
collection is expensive. We formalize this problem as identifying outlier arms in a
multi-armed bandit. We propose two sampling strategies with theoretical guarantee,
and analyze their sampling efficiency. Our experimental results on both synthetic
and real data show that our solution saves 70-99% of data collection cost from
baseline while having nearly perfect accuracy.

1 Introduction

A multi-armed bandit models a set of items (arms), each associated with an unknown probability
distribution of rewards. An observer can iteratively select an item and request a sample reward from
its distribution. This model has been predominant in modeling a broad range of applications, such
as cold-start recommendation [25], crowdsourcing [14] etc. In some applications, the objective is to
maximize the collected rewards while playing the bandit (exploration-exploitation setting [8, 6, 24]);
in others, the goal is to identify an optimal object among multiple candidates (pure exploration
setting [7]).

In the pure exploration setting, rich literature is devoted to the problem of identifying the top-K arms
with largest reward expectations [9, 16, 21]. We consider a different scenario, in which one is more
concerned about “outlier arms” with extremely high/low expectation of rewards that substantially
deviate from others. Such arms are valuable as they usually provide novel insight or imply potential
errors.

For example, suppose medical researchers are testing the effectiveness of a biomarker X (e.g.,
the existence of a certain gene sequence) in distinguishing several different diseases with similar

∗The authors would like to thank anonymous reviewers for their helpful comments.
†Part of this work was done while the first author was an intern at Microsoft Research. The first author

was sponsored in part by the U.S. Army Research Lab. under Cooperative Agreement No. W911NF-09-
2-0053 (NSCTA), National Science Foundation IIS 16-18481, IIS 17-04532, and IIS-17-41317, and grant
1U54GM114838 awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K)
initiative (www.bd2k.nih.gov). The views and conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies of the U.S. Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

www.bd2k.nih.gov

symptoms. They need to perform medical tests (e.g., gene sequencing) on patients with each disease
of interest, and observe if X’s degree of presence is significantly higher in a certain disease than other
diseases. In this example, a disease can be modeled as an arm. The researchers can iteratively select
a disease with which they sample a patient and perform the medical test to observe the presence
of X. The reward is 1 if X is fully present, and 0 if fully absent. To make sure the biomarker is
useful, researchers look for the disease with an extremely high expectation of reward compared
to other diseases, instead of merely searching for the disease with the highest reward expectation.
The identification of “outlier” diseases is required to be sufficiently accurate (e.g., correct with 99%
probability). Meanwhile, it should be achieved with a minimal number of medical tests in order
to save the cost. Hence, a good sampling strategy needs to be developed to both guarantee the
correctness and save cost.

As a generalization of the above example, we study a novel problem of identifying outlier arms in
multi-armed bandits. We define the criterion of outlierness by extending an established rule of thumb,
3σ rule. The detection of such outliers requires calculating an outlier threshold that depends on the
mean reward of all arms, and outputing outlier arms with an expected reward above the threshold.
We specifically study pure exploration strategies in a fixed confidence setting, which aims to output
the correct results with probability no less than 1− δ.

Existing methods for top-K arm identification cannot be directly applied, mainly because the number
of outliers are unknown a priori. The problem also differs from the thresholding bandit problem [27],
as the outlier threshold depends on the (unknown) reward configuration of all the arms, and hence
also needs to be explored. Given the outlierness criterion, the key challenges in tackling this problem
are: i) how to guarantee the identified outlier arms truly satisfy the criterion; and ii) how to design
an efficient sampling strategy which balances the trade-off between exploring individual arms and
exploring outlier threshold.

In this paper, we make the following major contributions:

• We propose a Round-Robin sampling algorithm, with a theoretical guarantee of its correctness as
well as a theoretical upper bound of its total number of pulls.
• We further propose an improved algorithm Weighted Round-Robin, with the same correctness

guarantee, and a better upper bound of its total number of pulls.
• We verify our algorithms on both synthetic and real datasets. Our Round-Robin algorithm has

near 100% accuracy, while reducing the cost of a competitive baseline up to 99%. Our Weighted
Round-Robin algorithm further reduces the cost by around 60%, with even smaller error.

2 Related Work

We present studies related to our problem in different areas.

Multi-armed bandit. Multi-armed bandit is an extensively studied topic. A classic setting is to
regard the feedback of pulling an arm as a reward and aim to optimize the exploration-exploitation
trade-off [8, 6, 24]. In an alternative setting, the goal is to identify an optimal object using a small cost,
and the cost is related to the number of pulls rather than the feedback. This is the “pure exploration”
setting [7]. Early work dates back to 1950s under the subject of sequential design of experiments [28].
Recent applications in crowdsourcing and big data-driven experimentation etc. revitalized this field.
The problem we study also falls into the general category of pure exploration bandit.

Within this category, a number of studies focus on best arm identification [5, 7, 15, 16], as well
as finding top-K arms [9, 16, 21]. These studies focus on designing algorithms with probabilistic
guarantee of finding correct top-K arms, and improving the number of pulls required by the algorithm.
Typical cases of study include: (a) fixed confidence, in which the algorithm needs to return correct
top-K arms with probability above a threshold; (b) fixed budget, in which the algorithm needs to
maximize the probability of correctness within a certain number of pulls. While there are promising
advances in recent theoretical work, optimal algorithms in general cases remain an open problem.
Finding top-K arms is different from finding outlier arms, because top arms are not necessarily
outliers. Yet the analysis methods are useful and inspiring to our study.

There are also studies [27, 12] on thresholding bandit problem, where the aim is to find the set of
arms whose expected rewards are larger than a given threshold. However, since the outlier threshold

2

depends on the unknown expected rewards of all the arms, these algorithms cannot apply to our
problem.

Some studies [13, 17] propose a generalized objective to find the set of arms with the largest sum
of reward expectations with a given combinatorial constraint. The constraint is independent of the
rewards (e.g., the set must have K elements). Our problem is different as the outlier constraint
depends on the reward configuration of all the arms.

A few studies on clustering bandits [18, 23] aim to identify the internal cluster structure between arms.
Their objective is different from outlier detection. Moreover, they do not study a pure-exploration
scenario.

Carpentier and Valko [10] propose the notion of “extreme bandits” to detect a different kind of outlier:
They look for extreme values of individual rewards from each pull. Using the medical example
in Section 1, the goal can be interpreted as finding a patient with extremely high containment of a
biomarker. With that goal, the arm with the heaviest tail in its distribution is favored, because it is
more likely to generate extremely large rewards than other arms. In contrast, our objective is to find
arms with extremely large expectations of rewards.

Outlier detection. Outlier detection has been studied for decades [11, 19]. Most existing work
focuses on finding outlier data points from observed data points in a dataset. We do not target on
finding outlier data points from observed data points (rewards). Instead, we look for outlier arms
which generate these rewards. Also, these rewards are not provided at the beginning to the algorithm,
and the algorithm needs to proactively pull each arm to obtain more reward samples.

Sampling techniques were used in detecting outlier data points from observed data points with very
different purposes. In [1], outlier detection is reduced to a classification problem and an active
learning algorithm is proposed to selectively sample data points for training the outlier detector.
In [29, 30], a subset of data points is uniformly sampled to accelerate the outlier detector. Kollios et al.
[22] propose a biased sampling strategy. Zimek et al. [31], Liu et al. [26] use subsampling technique
to introduce diversity in order to apply ensemble methods for better outlier detection performance. In
outlier arm identification, the purpose of sampling is to estimate the reward expectation of each arm,
which is a hidden variable and can only be estimated from sampled rewards.

There are also studies on outlier detection when uncertainty of data points is considered [2, 20].
However, these algorithms do not attempt to actively request more information about data points to
reduce the uncertainty, which is a different setting from our work.

3 Problem Definition

In this section, we describe the problem of identifying outlier arms in a multi-armed bandit. We start
with recalling the settings of the multi-armed bandit model.

Multi-armed bandit. A multi-armed bandit (MAB) consists of n-arms, where each arm is associated
with a reward distribution. The (unknown) expectation of each reward distribution is denoted as yi.
At each iteration, the algorithm is allowed to select an arm i to play (pull), and obtain a sample reward
x
(j)
i ∈ R from the corresponding distribution, where j corresponds to the j-th samples obtained

from the i-th arm. We further use xi to represent all the samples obtained from the i-th arm, and y to
represent the configuration of all the yi’s.

Problem definition. We study to identify outlier arms with extremely high reward expectations
compared to other arms in the bandit. To define “outlier arms”, we adopt a general statistical rule
named k-sigma: The arms with reward expectations higher than the mean plus k standard deviation
of all arms are considered as outliers. Formally, we define the mean of all the n arms’ reward
expectations as well as their standard deviation as:

µy =
1

n

n∑
i=1

yi, σy =

√√√√ 1

n

n∑
i=1

(yi − µy)2

We define a threshold function based on the above estimators as:
θ = µy + kσy

3

An arm i is defined as an outlier arm iff yi > θ and is defined as a normal (non-outlier) arm iff yi < θ.
We denote the set of outlier arms as Ω = {i ∈ [n]|yi > θ}.
In a multi-armed bandit setting, the value of yi for each arm is unknown. Instead, the system needs
to pull one arm at each iteration to obtain a sample, and estimate the value yi for each arm and the
threshold θ from all the obtained samples xi,∀i. We introduce the following estimators:

ŷi =
1

mi

∑
j

x
(j)
i , µ̂y =

1

n

n∑
i=1

ŷi, σ̂y =

√√√√ 1

n

n∑
i=1

(ŷi − µ̂y)2, θ̂ = µ̂y + kσ̂y

where mi is the number of times the arm i is pulled.

We focus on the fixed confidence setting. The objective is to design an efficient pulling algorithm,
such that the algorithm can return the true set of outlier arms Ω with probability at least 1− δ (δ is
usually a small constant).The fewer total number of pulls, i.e. T =

∑
imi, the better, because each

pull has a economic or time cost. Note that this is a pure exploration setting, i.e., the reward incurred
during exploration is irrelevant to the cost.

4 Algorithms

In this section, we propose several algorithms, and present the theoretical guarantee of each algorithm.

4.1 Round-Robin Algorithm

The most simple algorithm is to pull arms in a round-robin way. That is, the algorithm starts from
arm 1 and pulls arm 2, 3, · · · respectively, and goes back to arm 1 after it iterates over all the n arms.
The process continues until a certain termination condition is met.

Intuitively, the algorithm should terminate when it is confident about whether each arm is an outlier.
We achieve this by using the confidence interval of each arm’s reward expectation as well as the
confidence interval of the outlier threshold. If the significance levels of these intervals are carefully
set, and each reward expectation’s confidence interval has no overlap with the threshold’s confidence
interval, we can safely terminate the algorithm while guaranteeing correctness with desired high
probability. In the following, we first discuss the formal definition of confidence intervals, as well as
how to set the significance levels. Then we present the formal termination condition.

Confidence intervals. We provide a general definition of confidence intervals for ŷi and θ̂. The
confidence interval for ŷi at significance level δ′ is defined as [ŷi − βi(mi, δ

′), ŷi + βi(mi, δ
′)], such

that:
P(|ŷi − yi| > βi(mi, δ

′)) < 2δ′

Similarly, the confidence interval for θ̂ at significance level δ′ is defined as [θ̂ − βθ(m, δ′), θ̂ +
βθ(m, δ′)], such that:

P(|θ̂ − θ| > βθ(m, δ′)) < 2δ′

The concrete form of confidence interval may vary with the reward distribution associated with each
arm. We defer the discussion of concrete form of confidence interval to Section 4.3.

In our algorithm, we update the significance level δ′ for the above confidence intervals at each
iteration. After T pulls, the δ′ should be set as:

δ′ =
3δ

π2(n+ 1)T 2
(1)

In the following discussion, we omit the parameters in βi and βθ when they are clear from the context.

Active arms. At any time, if ŷi’s confidence interval overlaps with θ̂’s confidence interval, then the
algorithm cannot confidently tell if the arm i is an outlier or a normal arm. We call such arms active,
and vice versa. Formally, an arm i is active, denoted as ACTIVEi = TRUE, iff{

ŷi − βi < θ̂ + βθ, if ŷi > θ̂;
ŷi + βi > θ̂ − βθ, otherwise.

(2)

4

We denote the set of active arms as A = {i ∈ [n]|ACTIVEi = TRUE}. With this definition, the
termination condition is simply A = ∅. When this condition is met, we return the result set:

Ω̂ = {i|ŷi > θ̂} (3)

The algorithm is outlined in Algorithm 1.

Algorithm 1: Round-Robin Algorithm (RR)
Input: n arms, outlier parameter k
Output: A set Ω̂ of outlier arms

1 Pull each arm i once ∀i ∈ [n]; // Initialization
2 T ← n;
3 Update ŷi,mi, βi, ∀i ∈ [n] and θ̂, βθ;
4 i← 1;
5 while A 6= ∅ do
6 i← i%n+ 1; // Round-robin
7 Pull arm i;
8 T ← T + 1;
9 Update ŷi,mi, βi and θ̂, βθ;

10 return Ω̂ according to Eq. (3);

Theoretical results. We first show that if the algorithm terminates with no active arms, the returned
outlier set will be correct with high probability.
Theorem 1 (Correctness). With probability 1− δ, if the algorithm terminates after a certain number
of pulls T when there is no active arms i.e. A = ∅, then the returned set of outliers will be
correct, i.e. Ω̂ = Ω.

We can also provide an upper bound for the efficiency of the algorithm in a specific case when all the
reward distributions are bounded within [a, b] where b− a = R. In this case, the confidence intervals
can be instantiated as discussed in Section 4.3. And we can accordingly obtain the following results:
Theorem 2. With probability 1− δ, the total number of pulls T needed for the algorithm to terminate
is bounded by

T ≤ 8R2HRR

[
log

(
4R2π2(n+ 1)HRR

3δ

)
+ 1

]
+ 4n (4)

where

HRR = H1

(
1 +

√
l(k)

)2
, H1 =

n

mini∈[n](yi − θ)2
,

l(k) =

[√
(1 + k

√
n− 1)2

n
+

√
k2

2 log
(
π2n3

3δ

)]2

4.2 Weighted Round-Robin Algorithm

The round-robin algorithm evenly distributes resources to all the arms. Intuitively, active arms deserve
more pulls than inactive arms, since the algorithm is almost sure about whether an inactive arm is
outlier already.

Based on this idea, we propose an improved algorithm. We allow the algorithm to sample the active
arms ρ times as many as inactive arms, where ρ ≥ 1 is a real constant. Since ρ is not necessarily an
integer, we use a method similar to stride scheduling to guarantee the ratio between number of pulls
of active and inactive arms are approximately ρ in a long run. The algorithm still pulls by iterating
over all the arms. However, after each arm is pulled, the algorithm can decide either to stay at this
arm for a few “extra pulls,” or proceed to the next arm. If the arm pulled at the T -th iteration is the
same as the arm pulled at the (T − 1)-th iteration, we call the T -th pull an “extra pull.” Otherwise,
we call it a “regular pull.” We keep a counter ci for each arm i. When T > n, after the algorithm

5

performs a regular pull on arm i, we add ρ to the counter ci. If this arm is still active, we keep pulling
this arm until mi ≥ ci or it becomes inactive. Otherwise we proceed to the next arm to perform the
next regular pull.

This algorithm is named Weighted Round-Robin, and outlined in Algorithm 2.

Algorithm 2: Weighted Round-Robin Algorithm (WRR)
Input: n arms, outlier parameter k, ρ
Output: A set of outlier arms Ω̂

1 Pull each arm i once ∀i ∈ [n]; // Initialization
2 T ← n;
3 Update ŷi,mi, βi, ∀i ∈ [n] and θ̂, βθ;
4 ci ← 0, ∀i ∈ [n];
5 i← 1;
6 while A 6= ∅ do
7 i← i%n+ 1 ; // Next regular pull
8 ci ← ci + ρ;
9 repeat

10 Pull arm i;
11 T ← T + 1;
12 Update ŷi,mi, βi and θ̂, βθ;
13 until i /∈ A

∨
mi ≥ ci;

14 return Ω̂ according to Eq. (3);

Theoretical results. Since the Weighted Round-Robin algorithm has the same termination condition,
according to Theorem 1, it has the same correctness guarantee.

We can also bound the total number of pulls needed for this algorithm when the reward distributions
are bounded.
Theorem 3. With probability 1−δ, the total number of pulls T needed for the Weighted Round-Robin
algorithm to terminate is bounded by

T ≤ 8R2HWRR

[
log

(
2R2π2(n+ 1)HWRR

3δ

)
+ 1

]
+ 2(ρ+ 2)n (5)

where

HWRR =

(
H1

ρ
+

(ρ− 1)H2

ρ

)(
1 +

√
l(k)ρ

)2

, H2 =
∑
i

1

(yi − θ)2

Determining ρ. One important parameter in this algorithm is ρ. For bounded reward distributions,
we have a closed form upper bound of T asO(HWRR log HWRR

δ). The lower bound of T is independent
of ρ. We conjecture the lower bound to be Ω(H2 log H2

δ). We aim to find the ρ that minimizes the
gap between the upper bound and the lower bound. We formalize the objective as finding a ρ to
minimize HWRR/H2. Since we do not know the reward distribution configuration y, we use the
minimax principle to find ρ∗ that optimizes the most difficult configuration y, namely

ρ∗ = argmin
ρ≥1

sup
y

HWRR

H2

Since H1

n ≤ H2 ≤ H1, and HWRR
H2

is monotonically increasing with regard to H1

H2
, we can obtain the

optimal value ρ∗ as

ρ∗ =
(n− 1)

2
3

l
1
3 (k)

(6)

Theoretical comparison with RR. We compare theses two algorithms by comparing their upper
bounds. Essentially, we study HWRR/HRR since the two bounds only differ in this term after a small

6

constant is ignored. We have

HWRR

HRR
=

(
1

ρ
+
ρ− 1

ρ

H2

H1

)(
1 +

√
l(k)ρ

1 +
√
l(k)

)2

(7)

The ratio between H2 and H1 indicates how much cost WRR will save from RR. Notice that
1
n ≤ H2

H1
≤ 1. In the degenerated case H2/H1 = 1, WRR does not save any cost from RR. This

case occurs only when all arms have identical reward expectations, which is rare and not interesting.
However, if H2/H1 = 1/n, by setting ρ to the optimal value in Eq. (6), it is possible to save a
substantial portion of pulls. In this scenario, the RR algorithm will iteratively pull all the arms until
the arm closest to the threshold i∗ confidently determined as outlier or normal. However, the WRR
algorithm is able to invest more pulls on arm i∗ as it remains active, while pulling other arms for
fewer times, only to obtain a more precise estimate of the outlier threshold.

4.3 Confidence Interval Instantiation

With different prior knowledge of reward distributions, confidence intervals can be instantiated
differently. We introduce the confidence interval for a relatively general scenario, where reward
distributions are bounded.

Bounded distribution. Suppose the reward distribution of each arm is bounded in [a, b], and
R = b− a.

According to Hoeffding’s inequality and McDiarmid’s inequality, we can derive the confidence
interval for yi as

βi(mi, δ
′) = R

√
1

2mi
log

(
1

δ′

)
, βθ(m, δ′) = R

√
l(k)

2h(m)
log

(
1

δ′

)
where mi is the number of pulls of arm i so far, and h(m) is the harmonic mean of all the mi’s.

Bernoulli distribution. In many real applications, each arm returns a binary sample 0 or 1, drawn
from a Bernoulli distribution. We use the following confidence intervals heuristically.

We leverage a confidence interval presented in [3], defined as

βi(mi, δ
′) = zδ′

√
p̃(1− p̃)
mi

, βθ(m, δ′) =

√√√√∑
i

(
kŷi

n
√
σ̂y

+
1

n

)2

β2
i

where

p̃ =
m+
i +

z2
δ′
2

mi + z2δ′
, zδ′ = erf−1(1− δ′)

m+
i is the number of samples that equal to 1 among mi samples, and zδ′ is value of the inverse error

function.

5 Experimental Results

In this section, we present experiments to evaluate both the effectivenss and efficiency of proposed
algorithms.

5.1 Datasets

Synthetic. We construct several synthetic datasets with varying number of arms n =
20, 50, 100, 200, and varying k = 2, 2.5, 3. There are 12 configurations in total. For each con-
figuration, we generate 10 random test cases. For each arm, we draw its reward from a Bernoulli
distribution Bern(yi).

7

Twitter. We consider the following application of detecting outlier locations with respect to keywords
from Twitter data. A user has a set of candidate regions L = {l1, · · · , ln}, and is interested in finding
outlier regions where tweets are extremely likely to contain a keyword w. In this application, each
region corresponds to an arm. A region has an unknown probability of generating a tweet containing
the keyword, which can be regarded as a Bernoulli distribution. We collect a Twitter dataset with
1, 500, 000 tweets from NYC, associated with its latitude and longitude. We divide the entire space
into regions of 2′′ × 2′′ in latitude and longitude respectively. We select 47 regions with more than
5, 000 tweets as arms and select 20 keywords as test cases.

5.2 Setup

Methods for comparison. Since the problem is new, there is no directly comparable solution in
existing work. We design two baselines for comparative study.

• Naive Round-Robin (NRR). We play arms in a round-robin fashion, and terminate as soon as we
find the estimated outlier set Ω̂ has not changed in the last consecutive 1/δ pulls. Ω̂ is defined
as in Eq. (3). This baseline reflects how well the problem can be solved by RR with a heuristic
termination condition.

• Iterative Best Arm Identification (IB). We apply a state-of-the-art best arm identification algo-
rithm [13] iteratively. We first apply it to all n arms until it terminates, and then remove the best
arm and apply it to the rest arms. We repeat this process until the current best arm is not in Ω̂,
where the threshold function is heuristically estimated based on the current data. We then return the
current Ω̂. This is a strong baseline that leverages the existing solution in best-arm identification.

Then we compare them with our proposed two algorithms, Round-Robin (RR) and Weighted Round-
Robin (WRR).

Parameter configurations. For both of our algorithms, we derived the confidence intervals based
on Bernoulli distribution. Since some algorithm takes extremely long time to terminate in certain
cases, we place a cap on the total number of pulls. Once an algorithm runs for 107 pulls, the algorithm
is forced to terminate and output the current estimated outlier set Ω̂. We set δ = 0.1.

For each test case, we run the experiments for 10 times, and take the average of both the correctness
metrics and number of pulls.

5.3 Results

Performance on Synthetic. Figure 1(a) shows the correctness of each algorithm when n varies. It
can be observed that both of our proposed algorithms achieve perfect correctness on all the test sets.
In comparison, the NRR baseline has never achieved the desired level of correctness. Based on the
performance on correctness, the naive baseline NRR does not qualify an acceptable algorithm, so we
only measure the efficiency of the rest algorithms.

We plot the average number of pulls each algorithm takes before termination varying with the number
of arms n in Figure 1(b). On all the different configurations of n, IB takes a much larger number
of pulls than WRR and RR, which makes it 1-3 orders of magnitude as costly as WRR and RR. At
the same time, RR is also substantially slower than WRR, with the gap gradually increasing as n
increases. This shows our design of additional pulls helps. Figure 1(c) further shows that in 80% of
the test cases, WRR can save more than 40% of cost from RR; in about half of the test cases, WRR
can save more than 60% of the cost.

Performance on Twitter. Figure 2(a) shows the correctness of different algorithms on Twitter data
set. As one can see, both of our proposed algorithms qualify the correctness requirement, i.e., the
probability of returning the exactly correct outlier set is higher than 1 − δ. The NRR baseline is
far from reaching that bar. The IB baseline barely meets the bar, and the precision, recall and F1
measures show that its returned result is averagely a good approximate to the correct result, with an
average F1 metric close to 0.95. This once again confirms that IB is a strong baseline.

We compare the efficiency of IB, RR and WRR algorithms in Figure 2(b). In this figure, we plot
the cost reduction percentage for both RR and WRR in comparison with IB. WRR is a clear winner.
In almost 80% of the test cases, it saves more than 50% of IB’s cost, and in about 40% of the test

8

20 50 100 200
n

0.0

0.2

0.4

0.6

0.8

1.0

%
C

or
re

ct

1− δ
NRR
IB
RR
WRR

(a) % Exactly Correct

20 50 100 200
n

103

104

105

106

107

#P
ul

ls

IB
RR
WRR
Cap

(b) Avg. #Pulls vs. n

0.0 0.2 0.4 0.6 0.8 1.0

Cost Reduction Percentage
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
of

Te
st

C
as

es

(c) WRR’s Cost Reduction wrt RR

Figure 1: Effectiveness and efficiency studies on Synthetic data set. Cap indicates the maximum
number of pulls we allow an algorithm to run.

%Correct Precision Recall F1
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
M

ea
su

re

1− δ
NRR
IB
RR
WRR

(a) Correctness comparison

−1.5 −1.0 −0.5 0.0 0.5 1.0

Cost Reduction Percentage
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
of

Te
st

C
as

es

RR
WRR

(b) Cost Reduction wrt IB

Figure 2: Effectiveness and efficiency studies on Twitter
dataset.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

ρ

1.00

1.02

1.04

1.06

1.08

T
ρ
/T

ρ
∗

Preset ρ
ρ = ρ∗

Figure 3: Ratio between avg. #pulls
with a given ρ and with ρ = ρ∗.

cases, it saves more than 75% of IB’s cost. In contrast, RR’s performance is comparable to IB. In
approximately 30% of the test cases, RR is actually slower than IB and has negative cost reduction,
though in another 40% of the test cases, RR saves more than 50% of IB’s cost.

Tuning ρ. In order to experimentally justify our selection of ρ value, we test the performance of
WRR on a specific setting of synthetic data set (n = 15, k = 2.5) with varying preset ρ values.
Figure 3 shows the average number of pulls of 10 test cases for each ρ in {1.5, 2, . . . , 5}, comparing
to the performance with ρ = ρ∗ according to Eq. (6). It can be observed that the performance of
ρ = ρ∗ is very close to the best performance when ρ = 3. A further investigation reveals that the
H1

H2
of these test cases vary from 3 to 14. Although we choose ρ∗ based on an extreme assumption

H1

H2
= n, its average performance is found to be close to the optimal even when the data do not satisfy

the assumption.

6 Conclusion

In this paper, we study a novel problem of identifying the outlier arms with extremely high/low reward
expectations compared to other arms in a multi-armed bandit. We propose a Round-Robin algorithm
and a Weighted Round-Robin algorithm with correctness guarantee. We also upper bound both
algorithms when the reward distributions are bounded. We conduct experiments on both synthetic
and real data to verify our algorithms. There could be further extensions of this work, including
deriving a lower bound of this problem, or extending the problem to a PAC setting.

References
[1] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In KDD, pages 504–509. ACM,

2006.

[2] C. C. Aggarwal and P. S. Yu. Outlier detection with uncertain data. In SDM, pages 483–493. SIAM, 2008.

[3] A. Agresti and B. A. Coull. Approximate is better than "exact" for interval estimation of binomial
proportions. The American Statistician, 52(2):119–126, 1998. ISSN 00031305. URL http://www.
jstor.org/stable/2685469.

[4] A. Antos, V. Grover, and C. Szepesvári. Active learning in heteroscedastic noise. Theoretical Computer
Science, 411(29-30):2712–2728, 2010.

[5] J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits. In COLT, pages 13–p, 2010.

9

http://www.jstor.org/stable/2685469
http://www.jstor.org/stable/2685469

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[7] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and continuous-armed bandits.
Theoretical Computer Science, 412(19):1832–1852, 2011.

[8] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[9] S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-armed bandits. In ICML, pages
258–265, 2013.

[10] A. Carpentier and M. Valko. Extreme bandits. In NIPS, pages 1089–1097, 2014.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3):
15:1–15:58, 2009.

[12] L. Chen and J. Li. On the optimal sample complexity for best arm identification. arXiv preprint
arXiv:1511.03774, 2015.

[13] S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen. Combinatorial pure exploration of multi-armed bandits.
In NIPS, pages 379–387, 2014.

[14] P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the accuracy of labeling sources for
selective sampling. In KDD, pages 259–268. ACM, 2009.

[15] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of machine learning research, 7(Jun):1079–1105,
2006.

[16] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget
and fixed confidence. In NIPS, pages 3212–3220, 2012.

[17] V. Gabillon, A. Lazaric, M. Ghavamzadeh, R. Ortner, and P. Bartlett. Improved learning complexity in
combinatorial pure exploration bandits. In AISTATS, pages 1004–1012, 2016.

[18] C. Gentile, S. Li, and G. Zappella. Online clustering of bandits. In ICML, pages 757–765, 2014.

[19] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22
(2):85–126, 2004.

[20] B. Jiang and J. Pei. Outlier detection on uncertain data: Objects, instances, and inferences. In ICDE, pages
422–433. IEEE, 2011.

[21] S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. Pac subset selection in stochastic multi-armed
bandits. In ICML, pages 655–662, 2012.

[22] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. Efficient biased sampling for approximate
clustering and outlier detection in large data sets. IEEE Transactions on Knowledge and Data Engineering,
15(5):1170–1187, 2003.

[23] N. Korda, B. Szörényi, and L. Shuai. Distributed clustering of linear bandits in peer to peer networks.
In Journal of Machine Learning Research Workshop and Conference Proceedings, volume 48, pages
1301–1309. International Machine Learning Societ, 2016.

[24] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

[25] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article
recommendation. In WWW, pages 661–670. ACM, 2010.

[26] H. Liu, Y. Zhang, B. Deng, and Y. Fu. Outlier detection via sampling ensemble. In Big Data, pages
726–735. IEEE, 2016.

[27] A. Locatelli, M. Gutzeit, and A. Carpentier. An optimal algorithm for the thresholding bandit problem. In
ICML, pages 1690–1698. JMLR. org, 2016.

[28] H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical
Society, 58(5):527–35, 1952.

[29] M. Sugiyama and K. Borgwardt. Rapid distance-based outlier detection via sampling. In NIPS, pages
467–475, 2013.

[30] M. Wu and C. Jermaine. Outlier detection by sampling with accuracy guarantees. In KDD, pages 767–772.
ACM, 2006.

[31] A. Zimek, M. Gaudet, R. J. Campello, and J. Sander. Subsampling for efficient and effective unsupervised
outlier detection ensembles. In KDD, pages 428–436. ACM, 2013.

10

Appendices

A Correctness (Theorem 1)

We start by confining our discussion into an event, where yi and θ do not fall out of the given
confidence intervals.
Lemma 1. Suppose we are given confidence interval functions βi(mi, δ

′) for ∀i and βθ(m, δ′)
related to the number of pulls and an arbitrary error probability 0 < δ′ < 1. They satisfy

P(|ŷi − yi| > βi(mi, δ
′)) < 2δ′

P(|θ̂ − θ| > βθ(m, δ′)) < 2δ′

Define the random event

E =

{
|ŷi − yi| ≤ βi(T,mi)

∧
|θ̂ − θ| ≤ βθ(T,m),∀i,∀T

}
Suppose a sequence S = [I1, I2, . . .] is an infinite sequence where 1 ≤ It ≤ n is a integer,
representing the arm pulled at iteration t. If we properly set the tolerance of confidence intervals δ′
according to the current number of iterations, namely

δ′(T) =
3δ

π2(n+ 1)T 2

then for any S, we have

P(E|S) ≥ 1− δ

Proof.

1− P(E|S) ≤
∞∑
T=1

[
6δ

π2(n+ 1)T 2
+

n∑
i=1

6δ

π2(n+ 1)T 2

]

=
6

π2

∞∑
T=1

δ

T 2
= δ

Based on this, it is straightforward to prove Theorem 1.

B Confidence Intervals of Bounded Reward Distributions

In this appendix, we show an instantiation of confidence interval when all the reward distributions are
bounded. Without loss of generality, suppose they are bounded in [a, b] and R = b− a.

We start by a direct application of Hoeffding’s inequality to depict the concentration of each arm’s
expectation estimate.
Lemma 2 (Hoeffding). The probability that the difference between ŷi and yi is larger than a given
constant t can be bounded as:

P(|ŷi − yi| ≥ t) ≤ 2 exp

(−2mit
2

R2

)
(8)

We then apply McDiarmid’s inequality to describe the concentration of the threshold function
estimator.
Lemma 3. The probability that the difference between the estimated threshold function and the
expected estimation of the value of the threshold function is larger than a given constant t can be
bounded as:

P(|θ̂ − Eθ̂| ≥ t) ≤ 2 exp

(−2h(m)t2

R2g(k)

)
(9)

where g(k) = (1 + k
√
n− 1)2/n.

11

Proof. Consider µ̂y to be a function of all the samples µ̂y(x1, · · · ,xn). Since

µ̂y(x1, · · · ,xn) =
1

n

∑
i

∑
j

x
(j)
i

mi
(10)

Hence

sup
x
(j)
i

µ̂y(x1, · · · ,xn)− inf
x
(j)
i

µ̂y(x1, · · · ,xn) ≤ b− a
nmi

=
R

nmi
(11)

Consider σ̂y to be a function of all the samples σ̂y(x1, · · · ,xn). For any given pair of i and j, let

Ai =
1

n− 1

∑
i′ 6=i

ŷ2i′

Bi =
1

n− 1

∑
i′ 6=i

ŷi′

Mij =
1

mi − 1

∑
j′ 6=j

x
(j)
i

where Bi is the mean of all the estimated ŷi′ other than ŷi′ ; (Ai −Bi)2 is their standard deviation
and therefore is no less than 0; Mij is the mean of all but the j-th samples from the i-th arm.

We represent the estimated standard deviation σ̂y as a function of random variable x(j)i and the
variables above:

σ̂y(x1, · · · ,xn) =

√∑
i ŷ

2
i

n
−
(∑

i ŷi
n

)2

=

√
Ai(n− 1) + ŷ2i

n
−
(
Bi(n− 1) + ŷi

n

)2

=

√(
1− 1

n

)(
1

n
(ŷi −Bi)2 + (Ai −B2

i)

)

=

√
1− 1

n

√
1

n

(
(mi − 1)Mij + x

(j)
i

mi
−Bi

)2

+ (Ai −B2
i)

For any given x, we want to bound the maximum possible difference of this function by keeping all
variables fixed but only adjusting x(j)i

Let x1, x2 be the value of xji when σ̂y has the maximum and minimum value respectively. For any
given x1 · · · ,xn except xji , we have,

sup
x
(j)
i

σ̂y(x1, · · · ,xn)− inf
x
(j)
i

σ̂y(x1, · · · ,xn)

≤
√

1− 1

n

[√
1

n

(
(mi − 1)Mij + x1

mi
−Bi

)2

−
√

1

n

(
(mi − 1)Mij + x2

mi
−Bi

)2
]

≤
√

1

n

(
1− 1

n

)[∣∣∣∣ (mi − 1)Mij + x1
mi

−Bi
∣∣∣∣− ∣∣∣∣ (mi − 1)Mij + x2

mi
−Bi

∣∣∣∣]

≤
√

1

n

(
1− 1

n

)(
x1 − x2
mi

)
≤b− a
nmi

√
n− 1 =

R

nmi

√
n− 1

12

Since the threshold function is a linear combination of µ̂y and σ̂y , it also has bounded difference:

sup
x
(j)
i

θ̂(x1, · · · ,xn)− inf
x
(j)
i

θ̂(x1, · · · ,xn)

≤ sup
x
(j)
i

µ̂(x1, · · · ,xn)− inf
x
(j)
i

µ̂(x1, · · · ,xn) + sup
x
(j)
i

kσ̂(x1, · · · ,xn)− inf
x
(j)
i

kσ̂(x1, · · · ,xn)

≤ R

nmi

(
1 + k

√
n− 1

)
(12)

Let cij = R
nmi

(
1 + k

√
n− 1

)
. We can have

∑
i

∑
j

c2ij =
∑
i

mi
R2

n2m2
i

(
1 + k

√
n− 1

)2
=
(
1 + k

√
n− 1

)2R2

n2

∑
i

1

mi

According to McDiarmid’s inequality, we can have the following concentration guarantee:

P(|θ̂ − Eθ̂| ≥ t) ≤ 2 exp

(−2t2∑
i

∑
j c

2
ij

)
= 2 exp

(−2n2t2

R2
(
1 + k

√
n− 1

)2∑
i

1
mi

)

= 2 exp

(−2h(m)t2

R2g(k)

)
(13)

where g(k) = (1 + k
√
n− 1)2/n.

And since Eθ̂ is a biased estimator, we also need to bound its bias |Eθ̂ − θ|.
Lemma 4. The bias of the threshold function estimator can be bounded as:

∣∣∣Eθ̂ − θ∣∣∣ ≤ kR√n− 1

4n

1

h(m)
(14)

Proof. Notice that

Eθ̂ − θ = Eµ̂y − µy + kEσ̂y − kσy = k
(
Eσ̂y − σy

)
We only need to upper bound

∣∣∣Eσ̂y − σy∣∣∣. Let êi = ŷi − yi, and µ̂e = µ̂y − µy , we have:

Eσ̂y = E
√

1

n

∑
i

(
yi − µy + êi − µ̂e

)2

= E

√√√√ 1

n

[∑
i

(yi − µy)2 +
∑
i

2(yi − µy)(êi − µ̂e) +
∑
i

(êi − µ̂e)2
]

According to the Cauchy–Schwarz inequality,∣∣∣∣∣∑
i

(yi − µy)(êi − µ̂e)
∣∣∣∣∣ ≤

√∑
i

(yi − µy)2 ·
√∑

i

(êi − µ̂e)2

13

Therefore, we can obtain the upper bound for Eσ̂y as

Eσ̂y ≤ E

√√√√ 1

n

[∑
i

(yi − µy)2 + 2

√∑
i

(yi − µy)2 ·
√∑

i

(êi − µ̂e)2 +
∑
i

(êi − µ̂e)2
]

= E

√√√√√ 1

n

(√∑
i

(yi − µy)2 +

√∑
i

(êi − µ̂e)2
)2

=

√
1

n

∑
i

(yi − µy)2 + E
√

1

n

∑
i

(êi − µ̂e)2

= σy + E
√

1

n

∑
i

(êi − µ̂e)2

Symmetrically, we can obtain the lower bound for Eσ̂y as

Eσ̂y ≥ σy − E
√

1

n

∑
i

(êi − µ̂e)2

Therefore, we only need to bound the term E
√

1
n

∑
i(êi − µ̂e)2. By applying Jensen’s inequality:

E
√

1

n

∑
i

(êi − µ̂e)2 ≤
√

1

n

∑
i

E(êi − µ̂e)2

=

√
1

n

∑
i

E(ŷi − yi)2 − E
(∑

i

ŷi − yi
n

)2
Assuming the variance of the i-th arm’s distribution is σ2

i , when there are mi samples collected to
estimate ŷi, we have E[ŷ2i] = y2i +

σ2
i

mi
. Therefore, the equation becomes√

1

n

∑
i

E(êi − µ̂e)2 =

√
n− 1

n2

∑
i

σ2
i

mi

Further, since we have assume all the distributions are bounded, we can apply Popoviciu’s inequality
on variances, which states σ2

i ≤ R2/4. Hence,√
n− 1

n2

∑
i

σ2
i

mi
≤ R

√
n− 1

4n

1

h(m)

Combining the above equations, we have

σy −R
√
n− 1

4n

1

h(m)
≤ Eσ̂y ≤ σy +R

√
n− 1

4n

1

h(m)
(15)

From Lemma 3, we can derive with probability 1− δ′,

|θ̂ − Eθ̂| ≤ R
√

l(k)

2h(m)
log

(
1

δ′

)
From Lemma 4, we have

|Eθ̂ − θ| ≤ kR
√
n− 1

4n

1

h(m)

14

Combining these two equations, we have (with probability 1− δ′)
|θ̂ − θ| ≤ |θ̂ − Eθ̂|+ |Eθ̂ − θ|

= R

√
g(k)

2h(m)
log

(
1

δ′

)
+ kR

√
n− 1

4n

1

h(m)

≤ R
√

1

2h(m)
log

(
1

δ′

)(√
g(k) +

√
k2

2 log
(

1
δ′

))

In our algorithm, the error δ′ is set according to a function δ′(T) to guarantee the validity of the
confidence interval through the entire sampling process. According to Eq. (1), we substitute its
definition into the inequality above:

|θ̂ − θ| ≤ R
√

1

2h(m)
log

(
1

δ′(T)

)(√
g(k) +

√
k2

2 log
(π2(n+1)T 2

3δ

))

Notice that we pull each arm at least once as initialization, so T ≥ n. Therefore, we can further
obtain:

|θ̂ − θ| ≤ R
√

1

2h(m)
log

(
1

δ′(T)

)(√
g(k) +

√
k2

2 log
(
π2n3

3δ

))

≤ R
√

l(k)

2h(m)
log

(
1

δ′(T)

)
with probability 1− δ′.

C Upper Bound of Round-Robin Algorithm (Theorem 2)

We start by a lemma indicating how small the confidence intervals should be could we guarantee a
certain arm is inactive.
Lemma 5. At the T -th iteration, if E happens, and arm i is active, then

βi + βθ ≥
1

2
∆i (16)

where ∆i = |yi − θ|.

Proof. If arm i is active, then according to the algorithm, it satisfies the condition that{
ŷi − βi < θ̂ + βθ, if ŷi > θ̂;
ŷi + βi > θ̂ − βθ, otherwise.

(17)

Furthermore, if event E happens, we should have

ŷi − βi ≤ yi ≤ ŷi + βi

θ̂ − βθ ≤ θ ≤ θ̂ + βθ

If ŷi > θ̂, then we have

yi − θ ≤ ŷi + βi − (θ̂ − βθ)
= ŷi − θ̂ + βi + βθ
≤ 2βi + 2βθ (18)

Hence,

βi + βθ ≥
1

2
∆i (19)

Symmetrically, for ŷi ≤ θ̂ we can also obtain the same result.

15

Now we can give a proof of Theorem 2.

Proof. In Round-Robin algorithm, at any iteration, we have

|mi −mj | ≤ 1,∀1 ≤ i, j ≤ n (20)

where i and j are integers. According to Lemma 5, if E happens and arm i is still active, we have

βi + βθ ≥
1

2
∆i (21)

Substituting the confidence intervals by their definitions,

1

2
∆i ≤ R

√
1

2mi
log

(
1

δ′(T)

)
+R

√
l(k)

2h(m)
log

(
1

δ′(T)

)

∆i ≤ R
√

2 log

(
1

δ′(T)

)(√
1

mi
+

√
l(k)

h(m)

)

≤ R
√

2 log

(
1

δ′(T)

)(√
1

m∗
+

√
l(k)

m∗

)

≤ R
√

2 log

(
1

δ′(T)

)(√
1

m∗
+

√
l(k)

m∗

)
(22)

where m∗ = mini′ mi′ . By organizing the above inequality, we can obtain

m∗ ≤ 2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)

)2

(23)

Hence, if the algorithm is not yet terminated, then there must be at least an arm i where the condition
above holds.

And since in Round-Robin algorithm, for any i at any time we have mi ≤ m∗ + 1, we can obtain

T =
∑
i

mi ≤ n(m∗ + 1) (24)

We analyze the situation when the algorithm is about to terminate. Right before the algorithm’s last
pull, denote the minimum number of pulls of a certain arm as m̃∗. Notice that the algorithm is not
yet terminated, so we still have

m̃∗ ≤ 2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)

)2

≤ 2R2

∆2
i∗

log

(
1

δ′(T)

)(
1 +

√
l(k)

)2

where ∆i∗ = mini′ ∆i′ .

After the last pull, the minimum number of pulls of a certain arm m∗ ≤ m̃∗ + 1. So we have

T ≤ n(m∗ + 1) ≤ n(m̃∗ + 2)

≤ 2nR2

∆2
i∗

log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)

)2

+ 2n

= 2H1R
2 log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)

)2

+ 2n

According to Lemma 8 in [4], we have

T ≤ 8R2HRR

[
log

(
4R2π2(n+ 1)HRR

3δ

)
+ 1

]
+ 4n (25)

16

D Upper Bound of Weighted Round-Robin Algorithm (Theorem 3)

Lemma 6. Suppose after T iterations of the algorithm WRR, the (T + 1)-th iteration will be a
regular pull. If random event E happens, and arm i has no less than T ′i additional pulls, then arm i is
not in active set A (i /∈ A). T ′i is defined as:

T ′i =
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

(26)

where ∆i = |yi − Eθ̂|.

Proof. According to Lemma 5, if arm i is active and E happens, we have βi + βθ ≥ ∆i/2. By
substituting the confidence intervals by their definitions, we have:

1

2
∆i ≤ R

√
1

2mi
log

(
1

δ′(T)

)
+R

√
l(k)

2h(m)
log

(
1

δ′(T)

)

∆i ≤ R
√

2 log

(
1

δ′(T)

)(√
1

mi
+

√
l(k)

h(m)

)

≤ R
√

2 log

(
1

δ′(T)

)(√
1

mi
+

√
l(k)

m∗

)
(27)

where m∗ = mini′ mi′ . Among the mi pulls for arm i, suppose mi,r are regular pulls, and mi,a are
additional pulls, mi,r +mi,a = mi. According to the algorithm, when the flag of additional pull is
cleared, and if arm i is still in the active set, then there must be

ρ(mi,r − 1) ≤ mi = mi,r +mi,a < ρ(mi,r − 1) + 1 (28)

And since the regular pulls follow a round-robin strategy, we should have m∗ ≥ mi,r − 1. Hence,

∆i ≤ R
√

2 log

(
1

δ′(T)

)(√
1

mi
+

√
l(k)

mi,r − 1

)

≤ R
√

2 log

(
1

δ′(T)

)(√
1

mi
+

√
l(k)ρ

mi

)
mi ≤

2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

From Eq. (28) we can have

mi,a <
ρ− 1

ρ
mi (29)

which leads to

mi,a <
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

= T ′i (30)

This is a contradiction to the condition mi,a ≥ T ′i . Therefore arm i should not be pulled additionally
in the next iteration.

Next we bound the number of regular pulls for each arm. For the convenience of analysis, we analyze
the situation when the algorithm just finishes a “total iteration”, when the next (T + 1)-th iteration
will be a regular pull for arm 1. In this case the number regular pulls for all arms will be the same,
denoted as mr. Let i∗ = arg min

i
∆i, we have the following theorem.

Lemma 7. Suppose after T iterations the (T + 1)-th iteration will be a regular pull for arm 1. If the
algorithm is not yet terminated and event E happens, then the number of regular pulls for any arms
should be no more than T ′r, where

T ′r =
1

ρ

2R2

∆2
i∗

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ 1 (31)

17

Proof. Since the algorithm is not yet terminated, then the active set of arms A is non-empty. Suppose
arm i ∈ A, then

mi ≤
2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

And since the (T + 1)-th iteration will be a regular pull, the inequality of Eq. (28) stands. Hence,

mr = mi,r ≤
mi

ρ
+ 1

≤ 1

ρ

2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ 1

≤ 1

ρ

2R2

∆2
i∗

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ 1

Now we prove Theorem 3

Proof. According to Theorem 1, as long as event E happens, the returned results will be correct. And
since for any possible pulling sequences, the probability of event E is no less than (1− δ), thus the
returned result will be correct with probability (1− δ).

As for bounding the total number of pulls T . Notice that

T =
∑
i

mi =
∑
i

mi,a +
∑
i

mi,r (32)

we bound the number of additional and regular pulls respectively.

We start by bounding the final number of additional pulls for each arm. For any arm i, when the
algorithm terminates, denote the iteration of its last regular pull when it is in the active set as Ti,a.
Then we can apply Lemma 6 to the (Ti,a − 1)-th iteration, as well as the fact that the following last
several additional pulls on arm i will not exceed ρ, thus

mi,a ≤
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(Ti,a − 1)

)(
1 +

√
l(k)ρ

)2

+ ρ

≤ ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ ρ

We then bound the final number of regular pulls for each arm. Since the regular pulls follow the
round-robin strategy, we denote the iteration of the last regular pull on arm 1 as T1,r. Then we apply
Lemma 7 to the (T1,r − 1)-th iteration, and using the fact that there will be no more than 1 more
regular pulls for each arm before the algorithm terminates. Thereby we obtain

mr,a ≤
1

ρ

2R2

∆2
i∗

log

(
1

δ′(T1,r − 1)

)(
1 +

√
l(k)ρ

)2

+ 2

≤ 1

ρ

2R2

∆2
i∗

log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ 2

Thus, when the algorithm terminates, we should have

T =
∑
i

mi,a +
∑
i

mi,r

≤
(
H1

ρ
+

(ρ− 1)H2

ρ

)
2R2 log

(
1

δ′(T)

)(
1 +

√
l(k)ρ

)2

+ (ρ+ 2)n

18

Substituting δ′(T) by its definition, we have

T ≤
(
H1

ρ
+

(ρ− 1)H2

ρ

)
2R2 log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)ρ

)2

+ (ρ+ 2)n

= 2R2HWRR log

(
π2(n+ 1)T 2

3δ

)
+ (ρ+ 2)n

Therefore, according to Lemma 8 in [4], we have

T ≤ 8R2HWRR

[
log

(
4R2π2(n+ 1)HWRR

3δ

)
+ 1

]
+ 2(ρ+ 2)n (33)

E Confidence Intervals of Bernoulli Reward Distributions

In many real applications, each arm returns a binary sample 0 or 1, drawn from a Bernoulli distribution.
In this appendix, we show an heuristic instantiation of confidence interval when all the reward
distributions are Bernoulli distributions. We optimize the confidence interval on this specific case
with some approximation.

We leverage a confidence interval presented in [3], defined as

βi(mi, δ
′) = zδ′

√
p̃(1− p̃)
mi

(34)

where

p̃ =
m+
i +

z2
δ′
2

mi + z2δ′

m+
i is the number of samples that equal to 1 among mi samples, and zδ′ is value of the inverse error

function:

zδ′ = erf−1(1− δ′)

As for the confidence interval of the outlier threshold, we simply apply the propagation of uncertainty,
where

βθ(m, δ′) =

√√√√∑
i

(
∂θ

∂yi

)2

β2
i

=

√√√√∑
i

(
kyi
n
√
σy

+
1

n

)2

β2
i

≈

√√√√∑
i

(
kŷi

n
√
σ̂y

+
1

n

)2

β2
i

F Case Study of Twitter Experiments

We conduct a detailed case study to compare the behavior of RR and WRR.

For keyword “stadium”, Figure 4(a) presents the parameters yi’s of different regions (arms). The
largest value appears at a football stadium, which is MetLife stadium, followed by two baseball
fields (Yankee stadium and Citi field) and a historic stadium site (Forest Hill). However, only the
region containing MetLife stadium is an outlier by 2σ rule, probably due to the difference of the size
between a football stadium and a baseball field, and the tweeting frequency.

19

(a) Ground-truth yi’s (b) # pulls by RR (c) # pulls by WRR

Figure 4: Case study on Twitter dataset for keyword “stadium.” Each plotted square represents a
region regarded as an arm in our experiments. Darker color indicates higher value.

Figure 4(b) shows the number of pulls on each arms when the RR algorithm terminates. As expected,
all the arms are pulled for almost the same number, which is more than 500. In comparison, as shown
in Figure 4(c), when WRR terminates, only the arm containing Yankee stadium is pulled for around
500 times, while all the other arms are only pulled for fewer than 200 times. This is because the WRR
algorithm focuses more on the arms closer to the outlier threshold, which are harder to be determined
as outlier or normal. It saves a lot of iterations on other arms.

20

	Introduction
	Related Work
	Problem Definition
	Algorithms
	Round-Robin Algorithm
	Weighted Round-Robin Algorithm
	Confidence Interval Instantiation

	Experimental Results
	Datasets
	Setup
	Results

	Conclusion
	Appendices
	Correctness (Theorem 1)
	Confidence Intervals of Bounded Reward Distributions
	Upper Bound of Round-Robin Algorithm (Theorem 2)
	Upper Bound of Weighted Round-Robin Algorithm (Theorem 3)
	Confidence Intervals of Bernoulli Reward Distributions
	Case Study of Twitter Experiments

