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Abstract

In the study of interior-point methods for nonsymmetric conic optimization and
their applications, Nesterov [5] introduced the power cone, together with a 4-self-
concordant barrier for it. In his PhD thesis, Chares [2] found an improved 3-self-
concordant barrier for the power cone. In addition, he introduced the generalized
power cone, and conjectured a “nearly optimal” self-concordant barrier for it. In this
short note, we prove Chares’ conjecture. As a byproduct of our analysis, we derive a
self-concordant barrier for a high-dimensional nonnegative power cone.

1 Introduction

Self-concordant barriers play a central role in interior-point methods for convex optimiza-
tion [6], especially for conic optimization [1]. Let K be a normal convex cone (closed, pointed
and with nonempty interior) in Rn. The standard conic optimization problem is

minimize cTx
subject to Ax = b, x ∈ K, (1)

where c ∈ Rn, b ∈ Rm and A is an m by n matrix. For several symmetric cones (including
the nonnegative orthant, the second-order cone, and the positive semidefinite cone), their
self-concordant barriers are well understood, and efficient interior-point methods have been
developed and well tested in practice.

The development of interior-point methods for nonsymmetric conic optimization faces
several challenges, including the difficulty of computing the conjugate barriers. Nesterov
made several progresses for nonsymmetric conic optimization [3, 4, 5], followed by some
more recent development by others [2, 7, 8]. As for the symmetric case, the efficiency of
interior-point methods for nonsymmetric conic optimization heavily relies on the properties
of the self-concordant barriers [4, 8].
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Let X ∈ Rn be an open convex set. A function F : X → R is (standard) self-concordant
if it is three-times continuously differentiable and the inequality∣∣D3F (x)[h, h, h]

∣∣ ≤ 2D2F (x)[h, h]3/2 (2)

holds for any x ∈ dom(F ) and h ∈ Rn, where

DkF (x)[h1, . . . , hk] =
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

F (x+ t1h1 + · · ·+ tkhk)

is the kth differential of F taken at x along the directions h1, . . . , hk. In addition, F is a
barrier of X if it blows up at the boundary of X, i.e., F (x)→∞ as x→ ∂X. For a convex
cone K, the natural barriers are logarithmically homogeneous :

F (τx) = F (x)− ν log(τ), ∀x ∈ intK, τ > 0,

for some parameter ν > 0. If F is also self-concordant, then we call F a ν-self-concordant
barrier of K [6, Section 2.3.3].

The best known iteration complexity of interior-point methods to generate an ε-solution
to the conic optimization problem (1) is O(

√
ν log(1/ε), for both symmetric cones [6] and

nonsymmetric cones [5, 8]. Therefore, it is desirable to construct self-concordant barriers
with a small parameter ν. In this note, we focus on self-concordant barriers of the generalized
power cones, a special class of nonsymmetric cones proposed by Chares [2].

2 Self-concordant barriers for generalized power cones

Nesterov [5] introduced the three-dimensional power cone

Kpower =
{

(x, y, z) ∈ R2
+ × R : xθy1−θ ≥ |z|

}
where the parameter θ ∈ (0, 1), to model constraints involving powers . For example, the
inequality |y|p ≤ t (with p > 1) holds if and only if (t, 1, y) lies in the power cone with
parameter θ = p−1. Nesterov constructed a 4-self-concordant barrier for the power cone
in [5], and Chares found an improved 3-self-concordant barrier for the power cone in [2]. In
addition, Chares proposed the (n,m)-generalized power cone

K(n,m)
α =

{
(x, z) ∈ Rn

+ × Rm :
n∏
i=1

xαi
i ≥ ‖z‖2

}
.

where the parameters α belong to the simplex ∆n := {α ∈ Rn : αi ≥ 0,
∑n

i=1 αi = 1}.
When n = 2 and m = 1, the generalized power cone reduces to the usual power cone.

Chares conjectured that

F (x, z) := − log

(
n∏
i=1

x2αi
i − ‖z‖2

2

)
−

n∑
i=1

(1− αi) log(xi)
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is an (n+1)-self-concordant barrier for K(n,m)
α . Moreover, he proved that any self-concordant

barrier for K(n,m) has parameter at least n. Therefore, if his conjecture is true, then this
proposed barrier is nearly optimal. In this short note, we prove this conjecture.

One application for the generalized power cone is to model the rotated positive power
cone. Let α ∈ ∆m be in the simplex, and let a1, . . . , am ∈ Rn be nonnegative vectors.
Nemirovski and Tunçel [9] give a self-concordant barrier for the rotated positive power cone

C =

{
(x, t) ∈ Rn

+ × R+ :
m∏
i=1

〈ai, x〉αi ≥ t

}
(3)

with parameter ν = 1 +
(

7
3

)2
n. Using Chares’ proposed barrier for the generalized power

cone, one can construct an (m + 2)-self-concordant barrier for C [2, Section 3.1.4]. Indeed,

observe the inclusion (x, t) ∈ C holds if and only if the inclusions (Ax, t) ∈ K(m,1)
α and t ∈ R+

hold, where A is a matrix with rows given by the vectors ai. We can therefore construct a
self-concordant barrier with parameter m+ 1 for the constraint (Ax, t) ∈ K(m,1)

α and another
with parameter 1 for the constraint t ∈ R+. Their sum is a self-concordant barrier for C
with parameter m + 2. In conclusion, the approach using Chares’ power cone is beneficial

compared to Nemirovski’s and Tunçcel’s barrier when m ≤
(

7
3

)2
n− 1 ≈ 5n.

In fact, we can construct a self-concordant barrier for C with a slightly better parame-
ter. More specifically, we give an (n + 1)-self-concordant barrier for the high-dimensional
nonnegative power cone

K(n,+)
α =

{
(x, z) ∈ Rn

+ × R+ :
n∏
i=1

xαi
i ≥ z

}
,

where α ∈ ∆n. This implies an (m+ 1)-self-concordant barrier for C defined in (3).
Our main results are summarized as follows.

Theorem 1. The function

F (x, z) := − log

(
n∏
i=1

x2αi
i − ‖z‖2

2

)
−

n∑
i=1

(1− αi) log(xi)

is an (n+ 1)-self-concordant barrier for the (n,m)-generalized power cone

K(n,m)
α =

{
(x, z) ∈ Rn

+ × Rm :
n∏
i=1

xαi
i ≥ ‖z‖2

}
.

Theorem 2. The function

F (x, z) := − log

(
n∏
i=1

xαi
i − z

)
−

n∑
i=1

(1− αi) log(xi)− log(z)

is an (n+ 1)-self-concordant barrier for the high-dimensional nonnegative power cone

K+
α =

{
(x, z) ∈ Rn

+ × R+ :
n∏
i=1

xαi
i ≥ z

}
.
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3 Proofs of main results

The rest of this note is devoted to proving Theorem 1 and Theorem 2. In what follows, we
use the number of primes to denote the order of differential of a function taken at a point x
along the common direction d. In other words, we denote G′ = DG(x)[d], G′′ = D2G(x)[d, d],
and G′′′ = D3G(x)[d, d, d]. We first prove the following two lemmas.

Lemma 1 (Composition with logarithm). Fix a point x and direction d. Suppose that f is a
positive concave function. Moreover, suppose that G is convex and satisfies G′′′ ≤ 2(G′′)3/2.
If f and G satisfy

3(G′′)1/2f ′′ ≤ f ′′′, (4)

then the function
F := − log(f) +G

satisfies F ′′′ ≤ 2(F ′′)3/2.

Proof. Let σ1 =
(
f ′

f

)2

, σ2 = −f ′′
f

, and σ3 = G′′. The hypotheses imply each σi is nonnegative.

Now simple calculations yield the following:

F ′′ = σ1 + σ2 + σ3,

F ′′′ = −2

(
f ′

f

)3

− 3σ2

(
f ′

f

)
− f ′′′

f
+G′′′

≤ 2σ
3/2
1 + 3σ

1/2
1 σ2 + 3σ

1/2
3 σ2 + 2σ

3/2
3

= 2(σ
1/2
1 + σ

1/2
3 )(σ1 − σ1/2

1 σ
1/2
3 + σ3) + 3σ2(σ

1/2
1 + σ

1/2
3 )

= (σ
1/2
1 + σ

1/2
3 )

(
3F ′′ − (σ

1/2
1 + σ

1/2
2 )2

)
≤ 2(F ′′)3/2,

where in the last inequality we used the observation that the positive maximizer of the
function t 7→ t(3F ′′ − t2) occurs at t = (F ′′)1/2.

Lemma 2. Fix a dimension n ≥ 1 and let ∆n = {w ∈ Rn
+ :
∑n

i=1 wi = 1} be the simplex.
Suppose we have x ∈ Rn and w ∈ ∆n. Define the moments

s1 =
n∑
i=1

wixi,

s2 =
n∑
i=1

wix
2
i ,

s3 =
n∑
i=1

wix
3
i ,
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and the constants

e1 = s1,

e2 = s2 − s2
1,

e3 = s3
1 − 3s1s2 + 2s3.

Then the matrix

M(x,w) =

[
6e1 + 6‖x‖2 −3e2

−3e2 e3 + 3e2‖x‖2

]
is positive semidefinite.

Proof. We first show that M is positive semidefinite if its determinant det(M) is nonnegative,
and then establish det(M) is nonnegative by induction on n. To this end, suppose that we
have det(M) ≥ 0. A symmetric matrix is positive semidefinite if all its principal minors are
nonnegative, so we need to show the diagonal entries M11 and M22 are nonnegative. The
entry M11 is nonnegative because we have

|e1| =
∣∣wTx∣∣

≤ ‖w‖2‖x‖2

≤ ‖w‖1‖x‖2

= ‖x‖2,

where we used the Cauchy-Schwarz inequality, ‖w‖2 ≤ ‖w‖1, and w ∈ ∆n. If M11 is strictly
positive, then

M22 =
(
9e2

2 + det(M)
)
/M11

is also nonnegative. If M11 is zero, then we have e1 = −‖x‖2. This only happens if one xi
is negative, wi = 1, and all other xj are zero. In this case, s1 = xi, s2 = x2

i , and s3 = x3
i ,

which imply e2 = e3 = 0. Therefore M22 = e3 + 3e2‖x‖2 is also zero.
We now show that det(M) is nonnegative by induction on n. Let D(x,w) denote det(M),

where we emphasize the dependence on x and w. The function D(·, w) is positively homo-
geneous of degree 4; i.e., for t ≥ 0 we have D(tx, w) = t4D(x,w). We therefore assume that
x lies on the sphere Sn−1.

When n = 2, a simple yet tedious calculation shows that, in terms of the nonnegative
variables Xi = xi + 1 for i = 1, 2, the determinant is

D(x,w) = 3a(X1 −X2)2(bX2
1 + cX1X2 + dX2

2 ),

where

a = w1 − w2
1

b = w1 + w2
1

c = 4 + 2w1 − 2w2
1

d = 2− 3w1 + w2
1.
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For w1 ∈ [0, 1], the coefficients a, b, c, and d are all nonnegative. In addition, since x lies on
the sphere Sn−1, we have xi ≥ −1 and Xi = xi + 1 ≥ 0, which implies D(x,w) ≥ 0.

Now suppose we have n ≥ 3. A simple calculation shows that

D(x,w) = −3s4
1 − 12s3

1‖x‖2 − 18s2
1‖x‖2

2 + 12s1s3 + 18s2‖x‖2
2 − 9s2

2 + 12s3‖x‖2

= −3s4
1 − 12s3

1 − 18s2
1 + 12s1s3 + 18s2 − 9s2

2 + 12s3.

The function D(·, w) is continuous so it suffices to establish D(·, w) is nonnegative on the
intersection of the sphere Sn−1 and the set {x ∈ Rn : all xi are distinct}. Fix a vector x ∈ Rn

with distinct components and unit norm, and let w be the minimizer of D(x, ·) over ∆n. We
show that D(x,w) is nonnegative.

We claim that w does not have full support. Before we show this, let’s first see how this
completes the argument. Let J be the support of w so that wJ ∈ ∆n−1. If we have |J | < n,
then by induction we know that M(xJ , wJ) is positive semidefinite, and therefore

M(x,w) = M(xJ , wJ) +

[
6 (1− ‖xJ‖2) 0

0 3e2 (1− ‖xJ‖2)

]
(5)

(noticing that ‖x‖2 = 1 since x ∈ Sn−1) is also positive semidefinite.
Now we show that w does not have full support. To the contrary, suppose that w does

have full support, i.e., w belongs to the relative interior of ∆n. By the optimality condition
that w minimizes D(x, ·) over ∆n, the gradient ∇wD(x,w) is a normal vector to ∆n. Since
any normal vector of ∆n at a non-boundary point is proportional to the all-one vector
[1, . . . , 1] ∈ Rn, the partial derivatives of D(x, ·) at w are all equal. Thus there exists a
scalar v ∈ R such that

v = qi :=
1

6

∂

∂wi
D = xi(ax

2
i + bxi + c), i = 1, . . . , n, (6)

where a = 2(s1 + 1), b = 3(1− s2), and c = 2(s3 − s3
1 − 3s2

1 − 3s1). We derive contradictions
in the following two cases.

• Case 1: n ≥ 4. The numbers x1, x2, x3, and x4 are distinct roots of the cubic
t 7→ at3 + bt2 + ct− v, and therefore we have a = b = c = v = 0. Since b = 0, we have
s2 = 1; on the other hand, the assumption that x has distinct components and unit
norm implies that s2 is strictly less than 1.

• Case 2: n = 3. Since the qi are equal and the xi are distinct, we have

(x2 − x3)(q1 − q3)− (x1 − x3)(q2 − q3)

(x1 − x2)(x1 − x3)(x2 − x3)
= 0.

Substituting q1, q2 and q3 in the above equation by their definitions in (6) and simpli-
fying the resulting expression, we obtain

aΣ + b = 0,
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where Σ = x1 +x2 +x3. Next, we get a contradiction by showing that aΣ+ b is strictly
positive. First observe the bound

aΣ + b = 2Σ + 3 +
3∑

1=1

(2Σxi − 3x2
i )wi

≥
3

min
i=1

2Σ + 3 + 2Σxi − 3x2
i

=
3

min
i=1

(1 + xi)(3 + 2x1 + 2x2 + 2x3 − 3xi).

For any i, we claim both 1 + xi and 3 + 2x1 + 2x2 + 2x3 − 3xi are strictly positive.
For concreteness, we focus on the case where i = 1. For z ∈ S2, we have z1 ≥ −1
with z1 = −1 if and only if z = (−1, 0, 0). Thus we have 1 + x1 > 0 since we assumed

x2 6= x3. Similarly, the affine function z 7→ 3 +
[
−1 2 2

]T
z has unique minimizer

over S2 at z = −1
3

(−1, 2, 2) with minimum value 0, and so we have 3−x1+2x2+2x3 > 0
since we assumed x2 6= x3.

Based on the above two contradictions, we conclude that for n ≥ 3 and any x ∈ Sn−1 that
has distinct components, the minimizer of D(x, ·) over ∆n does not have full support. This
implies that M(x,w) is positive semidefinite for all n ≥ 2 by the induction through (5).

Proof of Theorem 1. The function F is (n+1)-logarithmically homogeneous, so the only diffi-

culty is showing self-concordance. Define ξ =
∏n

i=1 x
αi
i , f = ξ− ‖z‖

2
2

ξ
, and G = −

∑n
i=1 log(xi).

The proposed barrier is then
F = − log(f) +G

and we can show self-concordance by establishing Inequality (4) and appealing to Lemma 1.
Let ∆x ∈ Rn be a direction starting at x. Denote δi = ∆xi

xi
and sj =

∑n
i=1 αiδ

j
i . The

derivatives of ξ at x in direction ∆x are

ξ′ = e1ξ = s1ξ

ξ′′ = −e2ξ = −(s2 − s2
1)ξ

ξ′′′ = e3ξ = (s3
1 − 3s1s2 + 2s3)ξ,

where we adopted the definitions of e1, e2 and e3 in Lemma 2. The derivatives of f at (x, z)
in direction (∆x,∆z) are

f ′ = ξ′ +
1

ξ

(
e1‖z‖2

2 − 2z ·∆z
)

f ′′ = ξ′′ − e2

ξ
‖z‖2

2 −
2

ξ
‖e1z −∆z‖2

2

f ′′′ = ξ′′′ +
e3

ξ
‖z‖2

2 +
6

ξ

[
e1‖e1z −∆z‖2

2 + e2z · (e1z −∆z)
]
.
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Let

g := (G′′)1/2 =

√√√√ n∑
i=1

δ2
i .

Inequality (4) is equivalent to nonnegativity of

f ′′′ − 3gf ′′ = ξ′′′ − 3gξ′′︸ ︷︷ ︸
A

+
1

ξ

[
(6e1 + 6g)‖e1z −∆z‖2

2 + 6e2z · (e1z −∆z) + (e3 + 3ge2)‖z‖2
2

]︸ ︷︷ ︸
B

.

We show that both A and B are nonnegative. We can write A = ξ(e3 + 3ge2), and because
e2 is nonnegative, Cauchy-Schwarz yields a lower bound on B:

B ≥
[
‖e1z −∆z‖2 ‖z‖2

] [6e1 + 6g −3e2

−3e2 e3 + 3ge2

] [
‖e1z −∆z‖2

‖z‖2

]
.

As ξ is positive, nonnegativity of A and B follow from Lemma 2.

Proof of Theorem 2. The proposed barrier is

F (x,w) = − log(ξ − z) + log(ξ)−
n∑
i=1

log(xi)− log(z)

= − log(f) +G,

where f = z − z2

ξ
and G = −

∑m
i=1 log(xi). By Lemma 1, it suffices to show

f ′′′ − 3gf ′′

is nonnegative. The derivatives of ξ at x in direction ∆x are

ξ′ = e1ξ = s1ξ

ξ′′ = −e2ξ = −(s2 − s2
1)ξ

ξ′′′ = e3ξ = (s3
1 − 3s1s2 + 2s3)ξ,

where sj =
∑n

i=1 αiδ
j
i and δi = ∆xi

xi
. The derivatives of f at (x, z) in direction (∆x,∆z) are

f ′ =
ξ′z2

ξ2
− 2z∆z

ξ

f ′′ =
−1

ξ

(
2(e1z −∆z)2 + e2z

2
)

f ′′′ =
1

ξ

(
e3z

2 + 6e1(e1z −∆z)2 + 6e2z(e1z −∆z)
)
.

Let

g := (G′′)1/2 =

√√√√ n∑
i=1

δ2
i .
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We must show

f ′′′ − 3(G′′)1/2f ′′ =
1

ξ

(
6 (e1 + g) (e1z −∆z)2 + 6e2z(e1z −∆z) + (e3 + 3ge2) z2

)
,

a quadratic form in z and e1z −∆z, is nonnegative. It suffices to note the matrix

M :=

[
6 (e1 + g) 3e2

3e2 e3 + 3ge2

]
is positive semidefinite by Lemma 2. (The off-diagonal entries of M are negated in Lemma 2,
but this does not affect it being positive-semidefinite.)
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