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Abstract—Unsupervised single-channel overlapped speech
recognition is one of the hardest problems in automatic speech
recognition (ASR). Permutation invariant training (PIT) is a state
of the art model-based approach, which applies a single neural
network to solve this single-input, multiple-output modeling
problem. We propose to advance the current state of the
art by imposing a modular structure on the neural network,
applying a progressive pretraining regimen, and improving the
objective function with transfer learning and a discriminative
training criterion. The modular structure splits the problem into
three sub-tasks: frame-wise interpreting, utterance-level speaker
tracing, and speech recognition. The pretraining regimen uses
these modules to solve progressively harder tasks. Transfer
learning leverages parallel clean speech to improve the training
targets for the network. Our discriminative training formulation
is a modification of standard formulations that also penalizes
competing outputs of the system. Experiments are conducted on
the artificial overlapped Switchboard and hub5e-swb dataset. The
proposed framework achieves over 30% relative improvement of
WER over both a strong jointly trained system, PIT for ASR, and
a separately optimized system, PIT for speech separation with
clean speech ASR model. The improvement comes from better
model generalization, training efficiency and the sequence level
linguistic knowledge integration.

Index Terms—unsupervised single channel overlapped speech
recognition, permutation invariant training, progressive joint
training, transfer learning, sequence discriminative training

I. INTRODUCTION

The cocktail party problem [1], [2], referring to multi-talker
overlapped speech recognition, is critical to enable automatic
speech recognition (ASR) scenarios such as automatic meeting
transcription, automatic captioning for audio/video recordings,
and multi-party human-machine interactions, where overlap-
ping speech is commonly observed and all streams need to be
transcribed. The problem is still one of the hardest problems
in ASR, despite encouraging progresses [3], [4], [5], [6].

In this paper, we address the speech recognition problem
when multiple people speak at the same time and only a single
channel of overlapped speech is available. This is useful when
only a single microphone is present, or when microphone
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array based algorithms fail to perfectly separate the speech.
Specifically, the paper focuses on an unsupervised inference
method, which does not need any prior knowledge of speakers.
To obtain transcriptions of all speakers from the overlapped
speech, joint inference is conducted based on multiple
knowledge sources: frequency domain voice discrimination,
temporal speaker tracing, linguistic information and speech
recognition.

Prior work in unsupervised single-channel overlapped
speech recognition generally separates the problem into
speech separation and recognition stages. Before the deep
learning era, the most popular speech separation technique
is computational auditory scene analysis (CASA) [3]. There
are two main stages in CASA approaches: segmentation and
grouping. The segmentation stage decomposes mixed speech
into time-frequency segments assumed to be derived from
the corresponding speakers based on perceptual grouping
cues [7]. The grouping stage simultaneously and sequentially
concatenates the segments to generate independent streams for
each speaker. Non-negative matrix factorization (NMF) [8] is
another popular technique which aims to learn a set of non-
negative bases that can be used to estimate mixing factors
during evaluation. Recently, several deep learning based
techniques have been proposed but seldom concentrate on the
unsupervised case, which is more applicable. In [9], [10], [11],
the authors propose deep clustering (DPCL), in which a deep
network is trained to produce spectrogram embeddings that are
discriminative for partition labels given in training data. The
model is optimized so that in the neural network embedding
space the time-frequency bins belonging to the same speaker
are closer and those of different speakers are farther away.
Speech segmentations are therefore implicitly encoded in the
embeddings, and can be obtained by clustering algorithm.
In [12], a DNN-based gender mixture detection system
and three gender-dependent speech separation systems are
constructed. The latter ones directly infer the feature streams
of two speakers respectively. For all these methods, speech
separation and recognition are two separate components and
the latter is applied to the separated feature streams. The
mismatched feature in the speech recognition stage is one of
the limitation in these methods.

In light of permutation invariant training (PIT) proposed
in speech separation [13] originally, the PIT-ASR model [14]
is the first attempt in joint modeling of unsupervised single-
channel mixed speech recognition. Whereas the original PIT
technique jointly models the voice discrimination and speaker
tracing, PIT-ASR further integrates speech recognition into the
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neural network with a unified cross entropy (CE) criterion.
Although PIT-ASR shows promising results, it suffers from
several disadvantages, which are analyzed in Section II.

In this paper, progressive joint modeling is proposed
to divide the single channel overlapped speech recognition
problem into three sub-problems for initialization: frame-wise
interpreting, speaker tracing and speech recognition (Figure 1).
Each module is initialized by placing it into a series of
networks that solve progressively more difficult problems.
After the initialization, modules are jointly trained with two
novel strategies, namely self-transfer learning and multi-
output sequence discriminative training. Transfer learning is
introduced in this problem, which leverages parallel clean
speech to improve the training targets for the network.
Our discriminative training formulation is a modification of
standard formulations, that also penalizes competing outputs
of the system. The proposed framework achieves 30% relative
improvement over both a strong jointly trained system, PIT-
ASR, and a separately optimized system, PIT for speech
separation with clean speech ASR. The improvement comes
from better model generalization, training efficiency and the
sequence level linguistic knowledge integration.

The rest of the paper is organized as follows. In Section II,
the unsupervised single-channel overlapped speech recognition
problem is briefly reviewed. In Section III-A, the modular
initialization and progressive joint training is proposed. In
Section III-B, the self-transfer learning is proposed and in
Section III-C, multi-output sequence discriminative training is
proposed. In Section IV, the experimental results are reported
in artificial overlapped Switchboard corpus and Eval2000
hub5e-swb test set, followed by the conclusion in Section V.

II. UNSUPERVISED SINGLE-CHANNEL OVERLAPPED
SPEECH RECOGNITION

Unsupervised single-channel overlapped speech recognition
refers to the speech recognition problem when multiple unseen
talkers speak at the same time and only a single channel
of overlapped speech is available. Different from supervised
mode, there’s not any prior knowledge of speakers in the
evaluation stage.

In the problem, only the linearly overlapped single-channel
signal is known, which is defined as,

O(m)
u =

N∑
n=1

O(r)
un (1)

where O
(r)
un is the clean signal stream of speaker n at utterance

u and O
(m)
u is the overlapped speech stream of utterance u.

N is the number of streams. Single channel ASR is always
formulated as a supervised sequence labeling problem given by
P (Lu|Ou), which is the posterior probability of transcription
sequence Lu given the feature sequence Ou in the utterance
u. Nevertheless, the multi-speaker problem is to model the
joint distribution of N streams of transcriptions given the
overlapped speech signal, P (Lu1, ...,LuN |O(m)

u ). Due to the
symmetric labels given the mixture signals, it is no longer
a supervised optimization problem. One branch of methods

assumes the inference streams are conditionally independent,
and tries to assign the correct transcription stream L

(r)
un to the

corresponding output stream n,

P (Lu1, ...,LuN |O(m)
u ) ≈

N∏
n=1

P (L(r)
un |O(m)

u ) (2)

Another branch of methods assume the overlapped signal can
be separated to O

(c)
un :O

(c)
un ≈ O

(r)
un . Because the original

streams O
(r)
un are conditionally independent with each other,

the separated signal streams O
(c)
un are also assumed to be

conditionally independent. Thus Equation (2) can be derived
to Equation (3),

P (Lu1, ...,LuN |O(m)
u ) ≈

N∏
n=1

P (L(r)
un |O(c)

un) (3)

However, neither assumption is precise. For the first
assumption, there is no pre-determined method to obtain the
ideal label arrangements, which is called the speaker tracing
problem. The second assumption is that the speech separation
and recognition are independent processes, which introduces
an artificial information bottleneck.

In [13], the reference streams are treated as an unordered
set. The PIT framework is proposed to address the speech
separation problem by firstly determining the assignment of
the reference stream and inference stream that minimizes the
error at the utterance level based on the forward-pass result.
This is followed by minimizing the error given the utterance
level best assignment. [14] extends this by integrating speech
recognition into the neural network with a unified cross-
entropy (CE) training criterion.

JCE-PIT =
∑
u

min
s′∈S

∑
t

1

N

∑
n∈[1,N ]

CE(l
(s′)
utn, l

(r)
utn) (4)

Here, S is the permutation set of the reference representation
and the inference representation. l(s

′)
utn is the n-th inference

label of permutation s′ at frame t in utterance u and l
(r)
utn is

the corresponding transcription label obtained by clean speech
forced-alignment [15].

The PIT-ASR criterion [14] elegantly integrates speech
separation, speaker tracing and speech recognition together
as Figure 2(a). Its joint modeling approach eliminates the
artificial bottleneck between the speech separation and speech
recognition tasks. But the method suffers from several
disadvantages which deteriorates the performance:
• Previous PIT-ASR work attempts to solve three of the

most difficult problems in speech processing with one
large model. This oversized model can lead to poor
generalization and slow training.

• Speaker tracing and speech recognition are both sequence
modeling problems. PIT-ASR concatenates frame level
CE as the criteria of the sequence level problem, which
limits the modeling effect of the neural network.

• PIT-ASR with a monolithic model is difficult to integrate
with other speech separation and segmentation technolo-
gies. For instance, although linguistic information can be
valuable for solving the speaker tracing problem [6], there
is no natural way to incorporate it into PIT-ASR.
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Fig. 1. The Proposed System Framework. The single monolithic structure (the dashed line box) that predicts independent targets for each speaker, proposed
in [14], is improved through modularization (three solid line boxes) and pretraining. Self-transfer learning and multi-output sequence discriminative training
are conducted on modularly initialized layers.

III. METHODS

In this work, we propose three separate enhancements to
improve the performance of PIT-ASR.

First, the structure and accuracy of the model is
improved through modularization and pretraining. Frame-wise
interpreting, speaker tracing, and speech recognition modules
replace the monolithic structures used in previous work. These
modules are progressively pretrained and jointly fine-tuned.

Second, we demonstrate a natural way to incorporate a form
of transfer learning. Clean speech features are used to generate
soft label targets which are interpolated with the reference
label alignments.

Third, multi-output discriminative training is applied to
the system. As with single-stream speech recognition, multi-
stream discriminative training can help with model general-
ization. Additionally, the objective function is augmented to
reduce cross-speaker word assignment errors.

A. Modularization

In the original formulation, a PIT-ASR model consists of a
single monolithic structure that predicts independent targets for
each speaker. We improve this by replacing the main network
structure with a modular structure, shown in Figure 1.

This modular structure consists of three tasks, namely
interpreting mixed acoustic data, tracing speakers across
time, and predicting acoustic label sequences. First, the
frame-wise module is designed to extract the local time-
frequency information necessary to separate the overlapped
speech into individual acoustic representations. It is entirely
local and does not depend on sequence-level information.
Second, the speaker tracing module accepts frame-wise
acoustic representations from the frame-wise module and
traces the speaker information. This process concatenates
adjacent acoustic representations of the same speaker together
to infer the recovered speech features of each speaker. Third,
the speech recognition modules accept the sequences of
recovered acoustic features from each speaker, and produce
sequences of label scores suitable for use in an automatic
speech recognition system. Because each speech recognition
module performs the same task, it is natural to share the
parameters of this module across each instance in the final
model.

Although it is possible to train the modularized network
of Figure 2(e) from random initialization, it is better to use
a progressive training strategy. This strategy is motivated by

the Curriculum learning theory in [16], and integrates both
modular initialization and joint training. We train a simple
model first, and then use it as a pre-trained building block
for a more complicated model and task. Figures 2(b)-(e)
illustrate how the model becomes progressively more complex
while solving more difficult problems, from frame-wise mean
squared error to whole utterance cross entropy.

Our simplest model, shown in Figure 2(b), is trained to solve
a frame-wise speech separation task. For N speakers, given the
mixed data O

(m)
u , the model infers an acoustic representation

outn for each speaker n at frame t of utterance u. The objective
function of the frame-wise training, is given as

JF-PIT =
∑
u

∑
t

1

N
min
s′∈S

∑
n∈[1,N ]

MSE(o
(s′)
utn, o

(r)
utn) (5)

where, S is the permutation set of the reference representation
and the inference representation. o

(s′)
utn and o

(r)
utn is the

frame level acoustic representation of permutation s′ and
the reference clean speech, respectively. In each frame t of
the utterance u, the overall minimum square error, MSE,
is obtained by comparing all the reference and inference
representations of each permutation s′.

The architecture for pre-training the speaker tracing module
is explained in Figure 2(c). The tracing module is combined
with a pre-trained frame-wise module that has had its N
output layers removed. As in [13], the PIT objective function
is applied in utterance level.

JU-PIT =
∑
u

min
s′∈S

∑
t

1

N

∑
n∈[1,N ]

MSE(o
(s′)
utn, o

(r)
utn) (6)

The speech recognition module is separately pretrained in
the same way as a conventional acoustic model, with clean
speech and a cross-entropy objective function, maximizing
p(Lu|Ou). This is illustrated in Figure 2(d).

The final model, shown in Figure 2(e), is created by stacking
the speech recognition modules onto the outputs of the pre-
trained speaker tracing and frame-wise modules. It is jointly
trained with an utterance level PIT-CE objective function given
in Equation (4).

Notably, even though the proposed structure has several
copies of the speech recognition module, the numbers of
parameters between Figure 2(a) and Figure 2(e) are similar.
Because the speech recognition modules are solving similar
problems, their parameters can be shared 1. In preliminary

1Namely the “shared” option in CNTK “CloneFunction”.
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Fig. 2. PIT-ASR Joint Training versus the Modular Initialization and
Progressive Joint Training. The dash-dot blocks indicate the learnable model
parameters. The dot-dot blocks indicate the learnable and shared model
parameters.

experiments, the performance gap between sharing and
independent parameters is less than 3%. Thus to make the
comparison fair, without specific explanation, the shared
structure is used.

The advantage of the progressive joint training includes:
• Decreased model complexity leading to better system

generalization and data efficiency. By separating system
into proper modules, the model complexity is less than the
all-in-one system in PIT-ASR. As unsupervised single-
channel overlapped speech recognition contains several of
the hardest components in speech processing, the model
complexity reduction is critical to the empirical training
performance.

• Faster convergence of the training process and better
quality of the local minimum. Curriculum learning
improves both the training speed and the performance of
the model [16]. As shown in Figure 4, the progressive
joint training needs fewer epochs to converge, and it
converges to a better local minimum. An additional
benefit is that the module initializations all take much

less time compared with the joint training 2.
• Potential to integrate with other technologies. State-of-

the-art technologies in each field can be applied to the
initialization of each module.

B. Transfer Learning Based Joint Training

Transfer learning, or teacher-student training, is a powerful
technique to address domain adaptation problems in speech
recognition. In this section, we show that multi-channel ASR
is a type of domain adaptation, and that transfer learning can
be used to improve model training.

1) Conventional Transfer Learning in Domain Adaptation:
Transfer learning has been proposed to solve the distribution
mismatch problem in feature space [17]. To use this method
in single-output ASR domain adaptation, parallel data must
be available from a source domain and a target domain.
A fully trained model in the source domain (the teacher)
processes data and generates posterior probabilities, which are
sometimes referred to as “soft labels.” These soft labels then
replace or augment the usual “hard labels” when training the
student model with parallel data in the target domain [18].

To train the student, the Kullback-Leibler divergence (KLD)
between the output distributions of the teacher and student
models is minimized as below.

KLD(y(T ), y(S)) =
∑
i

y
(T )
i log

y
(T )
i

y
(S)
i

=
∑
i

[ y
(T )
i log y

(T )
i − y(T )

i log y
(S)
i ]

(7)

=
∑
i

−y(T )
i log y

(S)
i (8)

where y(T )
i and y

(S)
i is the teacher and student distributions

respectively. Because the first term is not related to the
student model optimization, only the second term is used for
optimization. Comparing Equation (8) to CE criterion in ASR,
the hard labeling is replaced by the soft distribution inferred
from the source data by the teacher model.

2) Self-transfer Learning: In light of above discussion, self-
transfer learning can be extended to the training of any multi-
channel speech recognition system. The student is, of course
the multi-channel speech recognition system. It operates in
the target domain of mixed speech acoustic data, and must
produce separate outputs for each speaker in the mixture. The
teacher also must produce separate outputs for each speaker,
but has access to the source domain: un-mixed clean speech.
The teacher model is a set of clean speech acoustic models
operating independently on the separate channels of clean
speech.

The self-transfer learning method then minimizes the KLD
between the output distribution of the mixed speech model and
the set of clean speech models. The KL divergence defined for

2The training curve of PIT speech separation can be referred to [13].
Besides, initializations also can be done in parallel.
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utterance level PIT training between the clean speech model
distribution and the joint model distribution is as below,

JKLD-PIT =
∑
u

min
s′∈S

∑
t

1

N

∑
n∈[1,N ]

KLD(P (l
(c)
utn|O(r)

un), P (l
(s′)
utn|O(m)

u ))

(9)

where the calculation of each KLD(·) pair is the same to the
adaptation-purpose single-channel case in Equation (8). Name-
ly, the joint-trained model distribution, y(S) = P (l

(s′)
utn|O

(m)
u ),

is taken as the student model distribution, and the clean speech
model distribution, y(T ) = P (l

(c)
utn|O

(r)
un), is taken as the

teacher model distribution. It is notable that when this method
is applied to the modular structure proposed in this work, as
in Figure 3, the speech recognition modules can be initialized
with an exact copy of the teacher model.

The training framework for self-transfer learning is shown
in Figure 3. The soft targets generated by the teacher models
are interpolated with the hard labeling as in [19]. The training
procedure is as below:

1) Clone the speaker tracing layers in the bottom. Clone 2N
copies of clean ASR model initialized in Section III-A,
half for stacking upon the speaker tracing layers, half for
model inference given each clean speech stream.

2) Use simultaneous clean speech streams O
(r)
un and the

overlapped speech stream O
(m)
u to do joint training.

a) For each mini-batch, do forward propagation of the
clean ASR model using each clean speech stream
to calculate N streams of P (l(c)utn|O

(r)
un) respectively.

Do forward propagation of the joint model using
overlapped speech stream to calculate N streams of
inference distributions, P (l(s

′)
utn|O

(m)
u ).

b) For that mini-batch, calculate the error signal of
Equation (9) and then do back propagation for the joint
model.

c) Update parameters of the joint model and repeat until
convergence.

The proposed method elegantly solves the label mismatch
problem and helps the model convergence. Namely, using hard
labeling obtained from forced-alignment in the clean speech
is not proper, because the feature has been distorted in the
mixed speech. The proposed method replaces it with the soft
distribution. In addition, the proposed method formulates the
joint training of multi-channel ASR by domain adaptation
between clean speech and overlapped speech. Thus the soft
distribution also helps model convergence, because it’s easier
to recreate its performance, compared with training a speech
recognition model from scratch.

The evidence can be observed from the training curve
in Figure 4 that the initial CE of self-transfer learning
based progressive joint training is much better than that of
both joint modeling and progressive joint modeling. Notably,
the different starting points between the progressive joint
modeling and self-transfer learning based progressive joint
modeling is because the CE in the former system is calculated
versus hard labeling, while for the latter system it is versus

the soft distribution inferred from simultaneous clean speech 3.
Thus with a better starting point and less parameter updating
requirement, finally the model also comes into better minimum
in the figure.

The relationships of the proposed method and previous
works are summarized as below.
• Model space adaptation. The formulation of the proposed

method is similar to KLD-based adaptation [21] and
teacher-student based domain adaptation [18]. In [21], to
conservatively update model parameters using adaptation
data, the target probability distribution is changed from the
ground truth alignment to a linear interpolation with the
distribution estimated from the unadapted model. In [18],
the feature mismatch problem in the target domain is solved
by minimizing the inference distribution divergence between
the target and source domains using parallel-data. The
reader is free to consider the proposed method as analogous
to optimizing student network in the target domain, i.e.
overlapped speech, to behave similarly to the well-trained
teacher network in the source domain, i.e. clean speech,
while bearing in mind the proposed method requires module
stacking because the motivation is to do joint training.

• Stereo piecewise linear compensation for environment
(SPLICE) [22]. The SPLICE algorithm uses stereo data
to do noise reduction and channel distortion compensation.
In [23], the clean feature is used for the teacher model to
provide supervision on the stereo noisy data trained student
model. In [19], the multi-channel enhanced feature is used
for the teacher model. In this work, the teacher-student
framework is also based on stereo data. The student model
is initialized better to cope with the more difficult modeling
problem, and the entire framework is expanded to handle
multiple output streams.

• Progressive stacking transfer learning. [24] proposes to
progressively conduct transfer learning to train speech
enhancement layers. The motivation of the progressive
stacking is only to gradually model a hard task by dividing
into several same but smaller tasks. Thus the criteria of all
tasks are the same. However, the proposed method is to do
joint training of distinct tasks. And each task is fully trained
with specific data and criterion.

• Self-supervised training. [25] proposes to use a teacher
model based on more accurate sensor information as
the supervision of the student model. The motivation of
the proposed method is different, which is to transfer
distribution between two models with feature mismatch.
Besides, the empirical procedure of the proposed method
is to fine-tune the original model in the target feature
distribution from supervision of itself in parallel source
distribution.
3) Learning from Ensemble: Following the transfer learn-

ing diagram, the joint model can also benefit from an ensemble
of teachers [26]. Specifically, because the problem includes
several sub-problems discussed in Section III-A, different

3We didn’t use CE versus hard labeling for all systems, because CE between
inference distribution and the hard labeling is not always a good indicator of
the quality of the acoustic model [20], while the proposed curves better show
the optimization process.
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Fig. 3. Transfer Learning Based Progressive Joint Training. The dash-dot
blocks indicate the learnable model parameters. The dot-dot blocks indicate
the learnable and shared model parameters.

neural network structures can show different superiorities, e.g.,
with different numbers of stream-dependent layers and stream-
independent layers. Learning from an ensemble of joint models
with different structures is promising in both performance
improvement and model compression.

C. Multi-output Sequence Discriminative Training

1) Motivation: Speech recognition is inherently a se-
quence prediction problem. In single-output ASR, sequence
level criteria such as sequence discriminative training tend
to improve performance. The unsupervised single-channel
overlapped speech recognition problem further includes the
speaker tracing problem, which is also a sequence level
problem. Previous works concatenate frame level CE as the
criteria of the sequence level problem, which limits the
modeling effect of the neural network. In this paper, sequence
discriminative training of multiple output streams is proposed
for the first time.

2) Sequence Discriminative Criterion of Multiple outputs:
In single-output ASR, to form a sequence discriminative
training criterion, it is necessary to calculate the sequence
posterior probability using Bayes’ theorem as below,

P (Lu|Ou) =
p(Ou|Lu)P (Lu)

p(Ou)
(10)

Here, Lu is the word sequence of utterance u. P (Lu) is the
language model probability. p(Ou|Lu) is the corresponding
acoustic part. The marginal probability p(Ou) of the feature
sequence Ou, is modeled by summation of the probability
over all possible hypothesis sequences.

p(Ou) =
∑
L

p(Ou,L) =
∑
L

P (L)p(Ou|L) (11)

Here, L denotes all competing hypotheses. As an example
of the sequence discriminative training criteria, the maximum
mutual information (MMI) [27] of inference distribution
stream Lu in utterance u is defined as below,

JSEQ(Lu,L
(r)
u ) = logP (L(r)

u |Ou) (12)

where L
(r)
u is the corresponding reference.

For the overlapped speech recognition problem, the
conditional independence assumption in the output label
streams is still made as in Equation (2). Then the cross-entropy
based PIT can be transformed to sequence discriminative
criterion based PIT as below,

JSEQ-PIT =
∑
u

min
s′∈S

1

N

∑
n∈[1,N ]

−JSEQ(L
(s′)
un ,L

(r)
un) (13)

Different from Equation (4), the best permutation is decided
by JSEQ(L

(s′)
un ,L

(r)
un), which is the sequence discriminative

criterion of taking the s′-th permutation in n-th output
inference stream at utterance u. Similar to CE-PIT, JSEQ of all
the permutations are calculated and the minimum permutation
is taken to do the optimization.

The definition of JSEQ(L
(s′)
un ,L

(r)
un) is similar to Equa-

tion (12) in single output ASR.

JMMI =
∑
u

JSEQ(L
(s′)
un ,L

(r)
un)

=
∑
u

log

∑
Lu
p(Ou|Lu)κP (Lu)∑

L p(Ou|L)κP (L)

(14)

For simplicity, Lu = L
(r)
un and L is all the hypothesis

sequences generated by the output stream L
(s′)
un . p(Ou|Lu) and

p(Ou|L) is the conditional likelihood obtained from forward
propagation of the joint model, P (Lu) and P (L) is the prior
probability obtained from language model.

3) Competing Hypothesis Modeling: The hypothesis se-
quence L refers to all the competing hypotheses in the
speech recognition. Bad modeling of L, namely ignoring
some modeling errors, results in imprecise estimation of
Equation (11), which hurts ASR performance. Thus competing
hypotheses modeling is key to the discriminative training.
Empirically, it is constrained by linguistic search space. In
the single output ASR, the linguistic search space is further
pruned by the online method, lattice-based discriminative
training [28], or by the offline method, lattice-free (LF)
discriminative training [29], [30], [31].

Compared with single output ASR, the additional error
hypothesis types include: i) Assignment errors: someone said
a word, but it is assigned to the wrong channel. ii) cross talk
errors: one person said a word, but it appears in multiple
channels. They both come from imperfect acoustic modeling
and result in several challenges in discriminative training.

The first problem is linguistic search space modeling.
As discussed in the first paragraph, there are mainly two
branches of methods. When training the joint model, speaker
tracing results can always change, which results in different
permutations of the same utterance between different epochs.
Thus if using lattice-based method, lattices should be updated
after each epoch in case of bias in the search space modeling.
Another choice is to use a pre-pruned senone level language
model as the common search space for all utterances [31].
With this method, the lattice generation problem in multiple
outputs can be solved and the discriminative training can be
conducted efficiently in the shared search space.
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The second problem is the swapped word modeling
in multiple outputs. Swapped word results in both cross
talk errors and assignment errors. Thus bad swapped word
modeling hurts the ASR performance. Generally, the linguistic
search space is estimated from the transcription of the training
dataset. And then sequence criterion is calculated in this
search space. Because there’s no swapped word phenomenon
in the transcription, thus the search space doesn’t contain
swapped word cases, which results in overestimating the
sequence criterion. Especially for the multiple output streams,
the swapped word errors are critical to the ASR performance.
Three methods are proposed to cope with the problem.

• Artificial swapped words. A very simple method is to
generate several copies of the transcription with artificially
swapped words in each copy. And then the language
model is estimated on the re-generated transcription. With
this method, some of the swapped word cases can still
exist in the search space. Thus the problem is alleviated.
Empirically, the senone level language model is obtained
from the senone level transcription, namely clustered tri-
phone state alignment. In case of significant increasing in
the search space because of the swapped word, we set a rule
that in each frame, the probability of senone swapping is α.
But if the senone is swapped, the senone sequence of the
following β frames won’t be swapped. And γ copies of the
transcriptions are generated.

• De-correlated lattice free MMI (LF-DC-MMI). The mo-
tivation is that swapped words come from the other
output streams. Thus adding these output streams into the
search space and minimizing them in the denominator of
discriminative training can alleviate the problem.

JLF-DC-MMI =
∑
u

log[

∑
Lu
p(Ou|Lu)κP (Lu)

(
∑

L p(Ou|L)κP (L) )1−λ
·

1

(
∑

Lû
p(Ou|Lû)κP (Lû) )λ

]

(15)

In Equation (15), the other output streams are denoted as
Lû. An interpolation weight λ is added with the augmented
term in the denominator.

• De-correlated lattice free boosted MMI (LF-DC-bMMI).
Analogous to boosted MMI [32] as Equation (16),

JLF-bMMI =
∑
u

log

∑
Lu
p(Ou|Lu)κP (Lu)∑

L p(Ou|L)κP (L)e−b maxLu A(L,Lu)

(16)

we propose de-correlated lattice free boosted MMI (LF-DC-
bMMI) as Equation (17). Here, b is the boosting factor.
A(L,Lu) is the state level accuracy between sequence L and
Lu. By this method, the ASR error hypotheses can be further
minimized in the denominator. In the proposed method,
both the ASR errors between the target inference sequence
and the target reference, and the falsely-recognition of the

interfere streams, are boosted.

JLF-DC-bMMI =
∑
u

log [
∑
Lu

p(Ou|Lu)κP (Lu)·

1∑
L p(Ou|L)κP (L)e−b maxLu A(L,Lu)−b̂ maxLû

(1−A(L,Lû))
]

(17)

where b̂ is the de-correlated boosting factor and A(L,Lû)
measures how many falsely recognitions of the interfere
streams.
Experiments are conducted on all three methods in

Section IV-D and the first method can be further combined
with the other two.

IV. EXPERIMENT

The experimental results are reported in artificial overlapped
Switchboard corpus and Eval2000 hub5e-swb test set.
Although the methods presented here are valid for any number
of overlapped speakers, we focus on the two-talker scenario.

A. Experimental Setup

For training, the Switchboard corpus [33] is used, which
contains about 300 hours of speech. Evaluation is carried
out on the Switchboard (SWB) subset of the NIST 2000
CTS (hub5e-swb) test set. The waveforms were segmented
according to the NIST partitioned evaluation map (PEM) file.

Two-talker overlapped speech is artificially generated by
mixing these waveform segments. To maximize the speech
overlap, we developed a procedure to mix similarly sized
segments at around 0dB. First, we sort the speech segments
by length. Then, we take segments in pairs, zero-padding the
shorter segment so both have the same length. These pairs
are then mixed together to create the overlapped speech data.
The overlapping procedure is similar to [14] except that we
make no modification to the signal levels before mixing 4.
After overlapping, there’s 150 hours data in the training,
called 150 hours dataset, and 915 utterances in the test set.
After decoding, there are 1830 utterances for evaluation, and
the shortest utterance in the hub5e-swb dataset is discarded.
Additionally, we define a small training set, the 50 hours
dataset, as a random 50 hour subset of the 150 hours dataset.
Results are reported using both datasets.

In the training stage, 80-dimensional log-filterbank features
were extracted every 10 milliseconds, using a 25-millisecond
analysis window. The convolution neural network (CNN)
models use 41 context frames (20 in both left and right) and
the long short term memory networks (LSTM) processed one
frame of input at a time. All neural networks were trained with
the Microsoft Cognitive Toolkit (CNTK) [34]. The detailed
setup of CNN is listed in Section IV-B. The acoustic model
is based on three state left-to-right triphone models with 9000
tied states (senones). The individual senone alignments for the
two-talkers in each mixed speech utterance are from the single-
speaker ASR alignment [31]. For compatibility, the alignment
of the shorter utterance within the mixed speech is padded

4We will try to release scripts that create the training data in the future.
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with the silence state at the front and the end. The clean
speech recognition performance in the corpus can be referred
to [31], [30]. Using clean speech model to do decoding in
the overlapped speech isn’t reported as it’s as bad as in [14].
The baseline model of joint training is a PIT-ASR model with
a setup similar to [14]. The PIT-ASR model is composed of
10 bidirectional LSTM layers with 768 memory cells in each
layer 5, and 80-dimensional feature. The baseline model of
separately optimized system is a PIT for speech separation
(PIT-SS) model combined with a clean speech ASR model. As
PIT-SS model has shown competitive performance compared
with other speech separation systems, only PIT-SS model is
taken as the baseline. The PIT-SS model has a setup similar
to [13] but with 6 bidirectional LSTM layers with 768 memory
cells in each layer, it directly outputs multiple channels of the
80 dimensional log-filterbank features the speech recognition
module expects. The speech recognition module, pretrained as
a clean speech model, is composed of 4 bidirectional LSTM
layers with 768 memory cells in each layer. It is trained from
the corresponding source speech segments used to create the
overlapped corpus. After initialization, the WER performance
of the ASR model in the clean speech test set is 17.0%.
Although it would be easy to incorporate a stronger acoustic
model [31] in conjunction with the proposed method, we chose
a structure that allows for a fair comparison, in terms of
the number of model parameters, among the baselines and
proposed methods. However, as discussed in Section III-A, the
modular system needs fewer parameters and training iterations
to achieve good performance. Notably, the use of enhanced
signals after speech separation as training data of the speech
recognition module tends to degrade the ASR performance and
isn’t included. The reason can be from the sporadic distortions
that signal processing inevitably adds, similar to what has been
observed in [19].

In the evaluation stage, a 30k-vocabulary language model
derived from the most common words in the Switchboard and
Fisher corpora is used. The decoder uses a statically compiled
unigram graph, and dynamically applies the language model
score. The unigram graph has about 300k states and 500k
arcs [31]. Two outputs of the PIT-ASR model are both used
in decoding to obtain the hypotheses for two talkers. For
scoring, we evaluated the hypotheses on the pairwise score
mode against the two references, and used the assignment with
better word error rate (WER) for each utterance [14]. Only the
average WER of two output streams is reported, as the task is
to correctly recognize all words from both speakers.

B. Separate Optimization v.s. Joint Modeling

Table I shows the performance of the naive joint modeling,
PIT-ASR, compared with that of the separately optimized
system.

5In the updated arxiv version of [14], the number of layers changed from 10
to 4 and a moderate WER improvement is obtained. Since the authors didn’t
provide further information, this work mainly compares with the result of 10
layers. In this work, more layers always bring about better performance. And
we believe that improved performance with fewer layers in [14] is a result of
bad model generalization in the PIT-ASR model framework.

TABLE I
Separate Optimization v.s. Joint Modeling. Fine-tune ST denotes to fine-tune

the speaker tracing module and Fine-tune ASR denotes to fine-tune the
speech recognition module defined in Figure 2.

Layers Modular Fine-tune ST Fine-tune ASR WER Rel. (%)
10 · 0 × n/a n/a 57.5 0

6 · 4

× n/a n/a 52.8 -8.2√
× × 93.4 +62.4√ √

× 51.3 -10.7√ √ √
50.2 -12.7

The first row shows the performance of the joint training
baseline model in this corpus, PIT-ASR [14]. Compared with
the 0dB WER result listed in [14], 55.80%, the performance
is reasonable 6. As discussed in Section III-A, the separately
optimized system has a similar number of parameters but
different model architecture. Thus to make a fair comparison,
the model with 6 stream-independent layers in the bottom
and 4 parameter-shared stream-dependent layers in the top,
denoted as 6·4, is listed in the second row 7. The learnable
structure is the same to the dash-dot blocks shown in
Figure 2(e), but trained from scratch as 10·0. The performance
of the 6·4 structure is significantly better than that of the
10·0 structure. The reason is that unlike in the pure speech
separation task, the speech recognition stage in this task is
also very hard and needs more nonlinear layers. It also shows
that this task is much harder than the speech separation, so
better joint training method to fulfill the performance of each
module is critical to the success.

Without fine-tuning parameters, the performance of the
separately optimized system is shown in the third row.
The significantly worse performance comes from the feature
mismatch in Equation (3). With fine-tuning parameters, the
performance is restored in the fourth and fifth rows. The
system in the fifth row can be viewed as a strong baseline
with separate optimization and fine-tuning.

The better performance of the progressive joint training is
from better model generalization and training efficiency 8.
Figure 4 show the effect. Training curves of both joint
modeling, i.e. the second row in the table, and progressive
joint modeling, i.e. the fifth row in the table, are plotted.
From the figure, both better starting point and better converged
minimum can be observed in the joint progressive training.
With better joint training strategy shown in Section IV-C, such
modeling effect can be further fulfilled.

Table II shows the performance of the joint modeling from
different modular initialization setups. All modular systems are
fine-tuned after joint training. The first and second rows show
the naive joint training models with BLSTM and BLSTM
combined with CNN, respectively. 6·4 BLSTM refers to 6
layers BLSTM in the bottom and 4 parameter-shared layers

6The differences include: the dataset is 50 hours versus 400 hours, while the
clean speech WER is 17.0% versus 26.6% . In Section IV-E, the experiments
are extended to 150 hours corpus.

7As a comparison, the baseline 10·0 has 10 stream-independent layers in
the bottom and no stream-dependent layers except the output layers.

8After submitting the paper, we notice that similar progressive joint training
idea is proposed in [35]. Experiments using the AMI corpus [36] shows similar
improvement.
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Fig. 4. Validation Curves of Naive Joint Modeling and the Proposed
Methods. Joint modeling, progressive joint modeling and transfer learning
based progressive joint modeling are denoted as Joint Model, Pro. Joint Model
and Pro. Joint Model + Transf. in the figure. Each epoch contains 24 hours
of data.

for each output in the top, i.e. 6 · 4 in Table I. Layer-
wise context expansion with attention (LACE) model is used
for CNN [37], which is a TDNN [38] variant where each
higher layer is a weighted sum of nonlinear transformations
of a window of lower layer frame. Each LACE block starts
with a convolution layer with stride 2 which sub-samples the
input and increases the number of channels. This layer is
followed by three RELU-convolution layers with jump links.
The channel size is 48. The slightly different setup compared
with [31] is to make parameter number of one LACE block
comparable with one layer of bidirectional LSTM with 768
memory cells, i.e. 5M parameters. Only one block of LACE
is used to replace one layer of BLSTM as the frame-wise
interpreting module, because the speaker tracing and speech
recognition modules are the hardest parts in the problem. The
other parts of the structure are the same, and the proposed
structure is denoted as 1 LACE + 5·4 BLSTM. From the table,
it can be observed that there’s no improvement by merely
stacking these kinds of neural networks together and jointly
training them.

In the third and fourth rows, the model is firstly initialized
with frame-wise interpreting, Figure 2(b), speaker tracing,
Figure 2(c), and speech recognition, Figure 2(d), tasks
respectively and then jointly trained. Comparing the fourth
row to the third row, 1 LACE + 5·4 BLSTM shows larger
improvement than 6·4 BLSTM. Two conclusions can be
derived from the results: i) CNN structure is more suitable
for the frame-wise interpreting module because it focuses
on the local context and has better modeling power of
frequency variations [39]. Meanwhile, LSTM is good at
temporal modeling, which is more suitable for the speaker
tracing and speech recognition module. The architecture with 1
LACE + 5·4 BLSTM layers combines their strength. Notably,
[39] proposes a similar structure, called CLDNN, to form

the acoustic model with modules focusing on different scales
and take advantage of the complementarity of CNN, LSTM
and DNN. The difference is that, to fulfill the respective
advantages in modeling, the proposed method further pretrains
each module with different criteria. ii) As the performance
improvement from modularization and initialization is much
larger in 1 LACE + 5·4 BLSTM, it shows that module-wise
initialization is important to fulfill the modeling power of
neural networks especially with different structures and scales.

To further analyze the frame-wise interpreting ability
of CNN and BLSTM, experiments without frame-wise
interpreting initialization are conducted in the fifth and sixth
rows. This time, the performances are similar both in 6·4
BLSTM and 1 LACE + 5·4 BLSTM. It shows that in
initialization of the speaker tracing module, both BLSTM
and CNN can spontaneously learn the frame-wise interpreting
ability. We notice that in [13], frame-wise PIT training doesn’t
show good performance, which is similar to our observation.

TABLE II
Progressive Joint Modeling Based on Modular Initialization. Initializations

of frame-wise interpreting, speaker tracing and speech recognition are
denoted as FI, ST and ASR respectively.

Modular Init. Neural network WER Rel. (%)

× 6·4 BLSTM 52.8 0
1 LACE + 5·4 BLSTM 52.9 +0.2

FI+ST+ASR 6·4 BLSTM 50.3 -4.9
1 LACE + 5·4 BLSTM 47.4 -10.2

ST+ASR 6·4 BLSTM 50.2 -5.0
1 LACE + 5·4 BLSTM 47.4 -10.2

C. Self-transfer Learning Based Joint Modeling

Table III shows the performance improvement of the transfer
learning applied to joint modeling. For transfer learning, the
interpolation weight between hard and soft labels is 0.5 .

TABLE III
Transfer Learning Based Joint Modeling

Layers Modular teacher WER Rel. (%)

10·0
× × 57.5 0
× 9·1 ⊕ 6·4 ⊕ 3·7 55.0 -4.4
× clean 52.5 -8.7

6·4
× × 52.8 -8.2
× clean 47.1 -18.0√

clean 38.9 -32.4√
MMI clean 35.8 -37.7

The original PIT-ASR system is in the first row and a better
PIT-ASR baseline with 6·4 structure in Table I is also included
in the fourth row.

The ensemble-based transfer learning proposed in Sec-
tion III-B3 is tested in the second row. The ensemble contains
3 types of structure, 9·1, 6·4 and 3·7, where the left number
denotes the bottom stream-independent layers and the right
number denotes the top stream-dependent layers. The student
network learns from each teacher one-by-one. Although it’s
not a large gain, it shows improvement after learning from
each teacher.
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The result of replacing hard labeling with simultaneous
clean speech based transfer learning is listed in the third and
the fifth rows. In both model architectures, transfer learning
brings about a relative 10% improvement over the respective
baseline, which is comparable with the result in [18]. It
shows that soft distribution inferred by the model with similar
architecture is superior to the hard labeling.

The self-transfer learning based progressive joint modeling
is finally listed in the sixth and the seventh row by using CE-
trained and MMI-trained clean speech teacher respectively.
Notably, as the model framework discussed in III-B, the
initializations of speech recognition modules are the respective
clean speech teachers. The result shows over 30% relative
improvement. Comparing the third and the fifth rows with
Table II, it can be further observed that, combining progressive
joint training and self-transfer learning brings about even
larger improvement compared with the summation of the
relative improvement from each of the two technologies. The
learning curve of the proposed method is also shown in
Figure 4.

From these results, we conclude: i) The proposed
method brings about faster convergence and better converged
minimum. The reason is discussed in Section III-B. The
better convergence result also comes from the removal of the
inappropriate hard alignment in the joint training. ii) Easier
convergence helps the model fulfill the best performance
in each module. That’s the explanation of the even better
synergy result compared with the summation of the relative
improvements from transfer learning and progressive joint
training. iii) Better teacher generates better student. And the
MMI-trained distribution can also be transferred to the student
model, similar to what has been observed in [40].

Figure 5 further shows the student performance versus
quality of the teacher in transfer learning based joint modeling.
It can be observed that better student can usually be obtained
with better teacher. An important reason is that self-transfer
learning is conducted by minimizing the divergence of its own
distributions in mixed speech and clean speech. Thus better
original distribution, including MMI-trained distribution, can
intrinsically be part of the joint model and brings about better
results. The only inflection point is in epoch=3 of the MMI
teacher, where the student performance is similar to epoch=1
although the teacher model has better WER performance. We
believe the reason is that the distribution of the teacher model
of epoch=3 is hard to transfer to the student model because of
the transition process from CE-trained distribution to MMI-
trained distribution.

D. Sequence Discriminative Training

Table IV shows the performance improvement of sequence
discriminative training based joint modeling. In this experi-
ment, the baseline is PIT-ASR model without progressive joint
training. All the structures are kept the same as 10·0 and
only criteria are changed. κ = 0.1, which is in accordance
with the decoding setup. The senone level language model for
competing hypothesis modeling is obtained from the clustered
tri-phone state alignment. Tri-gram is used, similar to [31].

epoch=1
epoch=3

epoch=7
epoch=11

epoch=60

epoch=50 epoch=40

epoch=30

35

36

37

38

39

40

41

42

43

44

15 16 17 18 19 20 21 22

MMI teacher CE teacher

Student WER (%)

Teacher WER (%)

Fig. 5. Student Performance versus Teacher Quality in Transfer Learning
Based Progressive Joint Modeling. All the student models are fully converged
based on the respective teacher model. The epoch number denotes how many
epochs the teacher model is trained in the clean speech. Each epoch contains
24 hours of data. The MMI teachers are initialized from the best CE teacher,
i.e. epoch=60 .

For the artificial swapped word method, the hyper-parameters
in Section III-C3 is decided by the preliminary experiment.
α = 0.4, β = 10 and γ = 2. The swapped word senone level
search graph is 4 times larger than the original tri-gram senone
level language model graph. λ = 0.1, b = 0.1 and b̂ = 0.2.

TABLE IV
Sequence Discriminative Training Based Joint Modeling

corpus criterion Den. graph WER Rel. (%)

50 hours

PIT-CE n/a 57.5 0
LF-MMI

senone transcription

54.6 -4.9
LF-DC-MMI 53.2 -7.3

LF-bMMI 53.5 -6.9
LF-DC-bMMI 53.1 -7.4

LF-MMI + art. swapped word 53.5 -6.9
LF-DC-bMMI 52.7 -8.2

150 hours
PIT-CE n/a 42.2 0

LF-MMI senone transcription 40.1 -4.9
LF-DC-bMMI 39.1 -7.3

The baseline PIT-ASR system is shown in the first row,
denoted as PIT-CE to show the criterion of the system.
Applying the naive sequence discriminative training method
for multiple outputs in the second row, only brings about
4.9% relative improvement. For the recognition result, word
precision is improved but insertion error increases. The reason
is from imperfect search space modeling of swapped words
discussed in III-C.

By applying the proposed LF-DC-MMI method in the third
row, the recognition result is significantly improved compared
with both baseline and the naive LF-MMI. The proposed
method minimizes the swapped words from parallel output
streams in the denominator modeling. Thus the problem can
be alleviated.

The fourth and fifth rows show the effect of using bMMI
instead of MMI in the formulations. The bMMI criterion
boosts the ASR errors in the denominator modeling, implicitly
including possibly swapped words. Although significant
improvement can be observed between LF-MMI and LF-
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bMMI, the LF-DC-bMMI explicitly includes the swapped
words and achieves an even better result.

The proposed artificial swapped word method is shown in
the sixth and seventh rows. By comparing the sixth row with
the second row, and comparing the seventh row with the fifth
row, it shows slight but consistent improvement in solving the
swapped word problem. And the method can also be combined
with LF-DC-bMMI to achieve 8.2% relative improvement
versus the CE-trained PIT-ASR baseline.

In the eighth to tenth rows, experiments are conducted
on 150 hours corpus. The results are similar, and LF-DC-
bMMI criterion shows consistent improvement versus PIT-
CE and naive sequence discriminative training criterion. In
Section IV-E, it is shown that sequence discriminative training
can be combined with other technologies and achieves further
consistent and significant improvement.

The discriminative training criterion helps the system
training in two ways. Firstly, sequence level criterion helps
the sequence level speaker tracing problem in PIT modeling.
Specifically, linguistic information is encoded in the senone
level language modeling in discriminative training. Thus the
procedure implicitly integrates linguistic information in the
speaker tracing problem. Secondly, sequence discriminative
training improves the speech recognition module. Notably, all
the sequence discriminative training procedures are applied
after CE initialization as in [31]. With initialization, it also
helps Equation (13) to reach a better minimum.

E. Combination and Extension to Larger Corpus

Table V summarizes the performance improvement of
integrating all the proposed methods.

TABLE V
Performance Summary in SWBD 50 Hours Dataset

Neural network Model WER Rel. (%)
10·0 BLSTM PIT-CE 57.5 0

6·4 BLSTM

progressive joint training 50.2 -13
+ clean teacher 38.9 -32.4
+ MMI clean teacher 35.8 -37.7

+ LF-DC-bMMI 35.2 -38.8

1 LACE + 5·4 BLSTM

progressive joint training 47.4 -17.5
+ clean teacher 36.0 -37.4
+ MMI clean teacher 34.6 -39.8

+ LF-DC-bMMI 34.0 -40.9

The PIT-ASR model [14], denoted as PIT-CE, is taken as the
baseline of naive joint modeling in the first row. The separately
optimized system, namely PIT-SS+ASR, is not included here.
As shown in Table II, the performance deteriorates because
of feature mismatch. Instead, the proposed progressive joint
training model in the second row can be taken as a stronger
separately optimized system with fine-tuning. The proposed
self-transfer learning based joint training model shows further
significant improvement in the third and fourth rows. Finally,
the multi-output sequence discriminative training is applied
and achieves moderate improvement, although the teacher
model is already MMI-trained, similar to what has been
observed in [41]. Figure 6 shows decoding examples of

the proposed methods versus the PIT baseline. The baseline
contains many errors due to bad model generalization with
limited size of dataset. With the proposed methods, errors
are significantly reduced. Notably, in this example, the self-
transfer learning based progressive joint training mainly
reduces errors from similar pronunciations, while sequence
discriminative training mainly reduces explicit syntax or
linguistic errors, which is in line with the expectation.

With similar number of parameters but different neural
networks, namely 1 LACE + 5·4 BLSTM, the system can
be consistently improved in the sixth to ninth rows. We
believe the further improvement comes from the proper
modularization of the problem, which is discussed in
Section IV-B.

Table VI expands the dataset to 150 hours to show the effect
of more training data.

TABLE VI
Performance Summary in SWBD 150 Hours Dataset

Neural network Model WER Rel. (%)
10·0 BLSTM PIT-CE 42.2 0

6·4 BLSTM
progressive joint training 41.0 -2.9

+ clean teacher 32.8 -22.3
+ LF-DC-bMMI 30.8 -27.0

1 LACE + 5·4 BLSTM
progressive joint training 39.4 -6.6

+ clean teacher 30.4 -27.9
+ LF-DC-bMMI 28.0 -33.6

The naive joint training baseline in the first row significantly
benefits from more data and shrinks the gap to the proposed
progressive joint training model in the second row. However, it
still even significantly worse than the self-transfer learning and
sequence discriminative training based joint model trained in
50 hours data in Table V. It again shows the disadvantages of
large model complexity and insufficient model generalization
discussed in Section II. i.e. compared with merely increasing
data, the better method to solve the problem is to improve
the model generalization. Besides, the convergence speed of
naive joint training model in the larger dataset is even slower,
namely 4 times more epochs versus the proposed method.

Comparing Table VI with Table V, the proposed self-
transfer learning based joint training and multi-output
sequence discriminative training show consistent relative
improvement versus the progressive joint training. Compared
with Table V, sequence discriminative training achieves larger
relative improvement on the CE-trained teacher based system.

In both 50 hours and 150 hours corpus, the proposed
method achieves over 30% relative improvement respectively,
versus the PIT-ASR system and the PIT-SS+ASR system.
The improvement comes from better model generalization,
training efficiency and the sequence level linguistic knowledge
integration.

Although this paper addresses the case of simultaneous
speech of two people talking at a relative level of 0dB, we
believe it will be straightforward to extend the system to
handle more realistic conditions. The case where one speaker
is louder than the other has already been observed to be
easier for PIT-style models than the 0dB data explored in
this paper [14]. For more than two speakers, extension of
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4 + seq. disc. tr.

1 PIT-CE baseline

2 + self-transf. progressive joint training

3 + MMI teacher

0 reference

4 + seq. disc. tr.
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Fig. 6. 50 hours dataset decoding examples of the proposed methods versus the PIT baseline. The upper part is from stream A and the lower part is from
stream B. C, S, D, I refer to correct, substitution, deletion and insertion.

the proposed system should follow the same construction
described in [35]. Finally, we expect robustness to background
noise and reverberation to come from standard techniques such
as multi-condition training [43].

V. CONCLUSION

In this work, we proposed to divide the single channel
overlapped speech recognition problem into three sub-
problems: frame-wise interpreting, speaker tracing and speech
recognition. Each module is firstly optimized separately
with specific designed criteria, which significantly improves
the system generalization and training efficiency. After the
initialization, modules are jointly trained with two novel
strategies: self-transfer learning and multi-output sequence
discriminative training. Specifically, in the joint training stage,
the clean speech model fine-tunes its parameters with other
modules in overlapped speech to fit its own distribution in the
simultaneous clean speech. And then sequence discriminative
training designed for multiple outputs is applied to integrate
linguistic and sequence information. The proposed framework
achieves 30% relative improvement over both a strong jointly
trained system, PIT-ASR, and a separately optimized system,
PIT-SS+ASR.

The proposed framework shows promising perspectives of
future improvements, which are: i) Integrating state-of-the-
art technologies in each module in the initialization stage,
e.g., DPCL [9]. ii) Applying other sequence level criteria to
improve the speaker tracing and speech recognition modules,
i.e. connectionist temporal classification (CTC) [45]. iii)
Explicit integration of language model in the joint modeling,
e.g. joint decoding [6] and end-to-end modeling [46].
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