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ABSTRACT

We propose a novel, end-to-end model based on convolutional
and recurrent neural networks for speech enhancement. Our
model is purely data-driven: it does not make any assumptions
about the type or the stationarity of the noise. In contrast
to existing methods that use multilayer perceptrons (MLPs),
we employ both convolutional and recurrent neural network
architectures. Thus, our approach allows us to exploit local
structures in both the spatial and temporal domains. By incor-
porating prior knowledge of speech signals into the design of
model structures, we build a model that is more data-efficient
and achieves better generalization on both seen and unseen
noise. Based on experiments with synthetic data, we demon-
strate that our model outperforms existing methods, improving
PESQ by up to 0.6 on seen noise and 0.64 on unseen noise.

Index Terms— convolutional neural networks, recurrent
neural networks, speech enhancement, regression model

1. INTRODUCTION

Speech enhancement [1, 2] is one of the corner stones of build-
ing robust automatic speech recognition (ASR) and communi-
cation systems. The problem is of especial importance nowa-
days where modern systems are often built using data-driven
approaches based on large scale deep neural networks [3, 4].
In this scenario, the mismatch between clean data used to train
the systems and the noisy data encountered when deploying the
system will often degrade the recognition accuracy in practice,
and speech enhancement algorithms work as a preprocessing
module that help to reduce the noise in speech signals before
they are fed into these systems.

Speech enhancement is a classic problem that has attracted
much research efforts for several decades in the community.
By making assumptions on the nature of the underlying noise,
statistical based approaches, including the spectral subtrac-
tion method [5], the minimum mean-square error log-spectral
method [6], etc., can often obtain analytic solutions for noise
suppression. However, due to these unrealistic assumptions,
most of these statistical-based approaches often fail to build
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estimators that can well approximate the complex scenarios in
real-world. As a result, additional noisy artifacts are usually
introduced in the recovered signals [7].

Related Work. Due to the availability of high-quality,
large-scale data and the rapidly growing computational re-
sources, data-driven approaches using regression-based deep
neural networks have attracted much interests and demon-
strated substantial performance improvements over traditional
statistical-based methods [8, 9, 10, 11, 12]. The general idea
of using deep neural networks, or more specifically, the MLPs
for noise reduction is not new [13, 14], and dates back at least
to [15]. In these works, MLPs are applied as general nonlin-
ear function approximators to approximate the mapping from
noisy utterance to its clean version. A multivariate regression-
based objective is then optimized using numeric methods to fit
model parameters. To capture the temporal nature of speech
signals, previous works also introduced recurrent neural net-
works (RNNs) [16], which removes the needs for the explicit
choice of context window in MLPs.

Contributions. We propose an end-to-end model based
on convolutional and recurrent neural networks for speech
enhancement, which we term as EHNET. EHNET is purely
data-driven and does not make any assumptions about the
underlying noise. It consists of three components: the con-
volutional component exploits the local patterns in the spec-
trogram in both spatial and temporal domains, followed by a
bidirectional recurrent component to model the dynamic cor-
relations between consecutive frames. The final component is
a fully-connected layer that predicts the clean spectrograms.
Compared with existing models such as MLPs and RNNs,
due to the sparse nature of convolutional kernels, EHNET
is much more data-efficient and computationally tractable.
Furthermore, the bidirectional recurrent component allows
EHNET to model the dynamic correlations between consecu-
tive frames adaptively, and achieves better generalization on
both seen and unseen noise. Empirically, we evaluate the ef-
fectiveness of EHNET and compare it with state-of-the-art
methods on synthetic dataset, showing that EHNET achieves
the best performance among all the competitors on all the 5
metrics. Specifically, our model leads up to a 0.6 improvement
of PESQ measure [17] on seen noise and 0.64 improvement
on unseen noise.
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Fig. 1: Model architecture. EHNET consists of three components: noisy spectrogram is first convolved with kernels to form
feature maps, which are then concatenated to form a 2D feature map. The 2D feature map is further transformed by a bidirectional
RNN along the time dimension. The last component is a fully-connected network to predict the spectrogram frame-by-frame.
EHNET can be trained end-to-end by defining a loss function between the predicted spectrogram and the clean spectrogram.

2. MODELS AND LEARNING

In this section we introduce the proposed model, EHNET, in
detail and discuss its design principles as well as its inductive
bias toward solving the enhancement problem. At a high
level, we view the enhancement problem as a multivariate
regression problem, where the nonlinear regression function
is parametrized by the network in Fig. 1. Alternatively, the
whole network can be interpreted as a complex filter for noise
reduction in the frequency domain.

2.1. Problem Formulation

Formally, let x ∈ Rd×t+ be the noisy spectrogram and y ∈
Rd×t+ be its corresponding clean version, where d is the di-
mension of each frame, i.e., number of frequency bins in the
spectrogram, and t is the length of the spectrogram. Given a
training set D = {(xi,yi)}ni=1 of n pairs of noisy and clean
spectrograms, the problem of speech enhancement can be for-
malized as finding a mapping gθ : Rd×t+ → Rd×t+ that maps a
noisy utterance to a clean one, where gθ is parametrized by θ.
We then solve the following optimization problem to find the
best model parameter θ:

min
θ

1

2

n∑
i=1

||gθ(xi)− yi||2F (1)

Under this setting, the key is to find a parametric family for
denoising function gθ such that it is both rich and data-efficient.

2.2. Convolutional Component

One choice for the denoising function gθ is vanilla multilayer
perceptrons, which has been extensively explored in the past
few years [8, 9, 10, 11]. However, despite being universal func-
tion approximators [18], the fully-connected network structure

of MLPs usually cannot exploit the rich patterns existed in
spectrograms. For example, as we can see in Fig. 1, signals in
the spectrogram tend to be continuous along the time dimen-
sion, and they also have similar values in adjacent frequency
bins. This key observation motivates us to apply convolutional
neural networks to efficiently and cheaply extract local patterns
from the input spectrogram.

Let z ∈ Rb×w be a convolutional kernel of size b×w. We
define a feature map hz to be the convolution of the spectro-
gram x with kernel z, followed by an elementwise nonlinear
mapping σ: hz(x) = σ(x ∗ z). Throughout the paper, we
choose σ(a) = max{a, 0} to be the rectified linear function
(ReLU), as it has been extensively verified to be effective in
alleviating the notorious gradient vanishing problem in prac-
tice [19]. Each such convolutional kernel z will produce a 2D
feature map, and we apply k separate convolutional kernels to
the input spectrogram, leading to a collection of 2D feature
maps {hzj (x)}kj=1.

It is worth pointing out that without padding, with unit
stride, the size of each feature map hz(x) is (d − b + 1) ×
(t− w + 1). However, in order to recover the original speech
signal, we need to ensure that the final prediction of the model
have exactly the same length in the time dimension as the
input spectrogram. To this end, we choose w to be an odd
integer and apply a zero-padding of size d × bw/2c at both
sides of x before convolution is applied to x. This guarantees
that the feature map hz(x) has t + 2 × bw/2c − w + 1 =
t+ w − 1− w + 1 = t time steps, matching that of x.

On the other hand, because of the local similarity of the
spectrogram in adjacent frequency bins, when convolving with
the kernel z, we propose to use a stride of size b/2 along
the frequency dimension. As we will see in Sec. 3, such
design will greatly reduce the number of parameters and the
computation needed in the following recurrent component,
without losing any prediction accuracy.



Remark. We conclude this section by emphasizing that the
application of convolution kernels is particularly well suited
for speech enhancement in the frequency domain: each kernel
can be understood as a nonlinear filter that detects a specific
kind of local patterns existed in the noisy spectrograms, and
the width of the kernel has a natural interpretation as the length
of the context window. On the computational side, since con-
volution layer can also be understood as a special case of fully-
connected layer with shared and sparse connection weights,
the introduction of convolutions can thus greatly reduce the
computation needed by a MLP with the same expressive power.

2.3. Bidirectional Recurrent Component

To automatically model the dynamic correlations between ad-
jacent frames in the noisy spectrogram, we introduce bidirec-
tional recurrent neural networks (BRNN) that have recurrent
connections in both directions. The output of the convolutional
component is a collection of k feature maps {hzj (x)}kj=1,
hzj

(x) ∈ Rp×t. Before feeding those feature maps into a
BRNN, we need to first transform them into a 2D feature map:

H(x) = [hz1
(x); . . . ;hzk

(x)] ∈ Rpk×t

In other words, we vertically concatenate {hzj
(x)}kj=1 along

the feature dimension to form a stacked 2D feature map H(x)
that contains all the information from the previous convolu-
tional feature map.

In EHNET, we use deep bidirectional long short-term
memory (LSTM) [20] as our recurrent component due to its
ability to model long-term interactions. At each time step
t, given input Ht := Ht(x), each unidirectional LSTM cell
computes a hidden representation

−→
H t using its internal gates:

it = s(WxiHt +Whi
−→
H t−1 +Wcict−1) (2)

ft = s(WxfHt +Whf
−→
H t−1 +Wcfct−1) (3)

ct = ft � ct−1 + it � tanh(WxcHt +Whc
−→
H t−1) (4)

ot = s(WxoHt +Who
−→
H t−1 +Wcoct) (5)

−→
H t = ot � tanh(ct) (6)

where s(·) is the sigmoid function, � means elementwise
product, and it, ot and ft are the input gate, the output gate
and the forget gate, respectively. The hidden representation
H̃t of bidirectional LSTM is then a concatenation of both

−→
H t

and
←−
H t: H̃t = [

−→
H t;
←−
H t]. To build deep bidirectional LSTMs,

we can stack additional LSTM layers on top of each other.

2.4. Fully-connected Component and Optimization

Let H̃(x) ∈ Rq×t be the output of the bidirectional LSTM
layer. To obtain the estimated clean spectrogram, we apply a
linear regression with truncation to ensure the prediction lies
in the nonnegative orthant. Formally, for each t, we have:

ŷt = max{0,WH̃t + bW }, W ∈ Rd×q, bW ∈ Rd (7)

As discussed in Sec. 2.1, the last step is to define the mean-
squared error between the predicted spectrogram ŷ and the
clean one y, and optimize all the model parameters simulta-
neously. Specifically, we use AdaDelta [21] with scheduled
learning rate [22] to ensure a stationary solution.

3. EXPERIMENTS

To demonstrate the effectiveness of EHNET on speech en-
hancement, we created a synthetic dataset, which consists of
7,500, 1,500 and 1,500 recordings (clean/noisy speech) for
training, validation and testing, respectively. Each recording is
synthesized by convolving a randomly selected clean speech
file with one of the 48 room impulse responses available and
adding a randomly selected noise file. The clean speech cor-
pus consists of 150 files containing ten utterances with male,
female, and children voices. The noise dataset consists of 377
recordings representing 25 different types of noise. The room
impulse responses were measured for distances between 1 and
3 meters. A secondary noise dataset of 32 files, with noises that
do not appear in the training set, is denoted UnseenNoise and
used to generate another test set of 1,500 files. The randomly
generated speech and noise levels provide signal-to-noise ra-
tio between 0 and 30 dB. All files are sampled with 16 kHz
sampling rate and stored with 24 bits resolution.

3.1. Dataset and Setup

As a preprocessing step, we first use STFT to extract the spec-
trogram from each utterance. The spectrogram has 256 fre-
quency bins (d = 256) and ∼ 500 frames (t ≈ 500) frames.
To throughly measure the enhancement quality, we use the fol-
lowing 5 metrics to evaluate different models: signal-to-noise
ratio (SNR, dB), log-spectral distortion (LSD), mean-squared-
error on time domain (MSE), word error rate (WER, %), and
the PESQ measure. To measure WER, we use the DNN-
based speech recognizer, described in [23]. The system is kept
fixed (not fine-tuned) during the experiment. We compare our
EHNET with the following state-of-the-art methods:

1. MS. Microsoft’s internal speech enhancement sys-
tem used in production, which uses a combination of
statistical-based enhancement rules.

2. DNN-SYMM [9]. DNN-SYMM contains 3 hidden lay-
ers, all of which have 2048 hidden units. It uses a
symmetric context window of size 11.

3. DNN-CAUSAL [11]. Similar to DNN-SYMM, DNN-
CAUSAL contains 3 hidden layers of size 2048, but
instead of symmetric context window, it uses causal
context window of size 7.

4. RNN-NG [16]. RNN-NG is a recurrent neural network
with 3 hidden layers of size 500. The input at each time
step covers frames in a context window of length 3.



Table 1: Experimental results on synthetic dataset with both seen and unseen noise, evaluated with 5 different metrics. Noisy
Speech corresponds to the scores obtained without enhancement, while Clean Speech corresponds to the scores obtained using
the ground truth clean speech. For each metric, the model achieves the best performance is highlighted in bold.

Seen Noise Unseen Noise
Model SNR LSD MSE WER PESQ SNR LSD MSE WER PESQ
Noisy Speech 15.18 23.07 0.04399 15.40 2.26 14.78 23.76 0.04786 18.4 2.09
MS 18.82 22.24 0.03985 14.77 2.40 19.73 22.82 0.04201 15.54 2.26
DNN-SYMM 44.51 19.89 0.03436 55.38 2.20 40.47 21.07 0.03741 54.77 2.16
DNN-CAUSAL 40.70 20.09 0.03485 54.92 2.17 38.70 21.38 0.03718 54.13 2.13
RNN-NG 41.08 17.49 0.03533 44.93 2.19 44.60 18.81 0.03665 52.05 2.06
EHNET 49.79 15.17 0.03399 14.64 2.86 39.70 17.06 0.04712 16.71 2.73
Clean Speech 57.31 1.01 0.00000 2.19 4.48 58.35 1.15 0.00000 1.83 4.48

(a) Noisy speech. (b) MS. (c) DNN. (d) RNN. (e) EHNET. (f) Clean speech.

Fig. 2: Noisy and clean spectrograms, along with the denoised spectrograms using different models.

The architecture of EHNET is as follows: the convolutional
component contains 256 kernels of size 32× 11, with stride
16× 1 along the frequency and the time dimensions, respec-
tively. We use two layers of bidirectional LSTMs following
the convolution component, each of which has 1024 hidden
units. To train EHNET, we fix the number of epochs to be
200, with a scheduled learning rate {1.0, 0.1, 0.01} for every
60 epochs. For all the methods, we use the validation set to
do early stopping and save the best model on validation set
for evaluation on the test set. EHNET does not overfit, as
both weight decay and dropout hurt the final performance. We
also experiment with deeper EHNET with more layers of bidi-
rectional LSTMs, but this does not significantly improve the
final performance. We also observe in our experiments that
reducing the stride of convolution in the frequency dimension
does not significantly boost the performance of EHNET, but
greatly incurs additional computations.

3.2. Results and Analysis

Experimental results on the dataset is shown in Table 1. On the
test dataset with seen noise, EHNET consistently outperforms
all the competitors with a large margin. Specifically, EHNET
is able to improve the perceptual quality (PESQ measure) by
0.6 without hurting the recognition accuracy. This is very sur-
prising as we treat the underlying ASR system as a black box
and do not fine-tune it during the experiment. As a comparison,
while all the other methods can boost the SNR ratio, they often
decrease the recognition accuracy. More surprisingly, EHNET
also generalizes to unseen noise as well, and it even achieves a
larger boost (0.64) on the perceptual quality while at the same
time increases the recognition accuracy.

To have a better understanding on the experimental result,
we do a case study by visualizing the denoised spectrograms
from different models. As shown in Fig. 2, MS is the most
conservative algorithm among all. By not removing much
noise, it also keeps most of the real signals in the speech. On
the other hand, although DNN-based approaches do a good job
in removing the background noise, they also tend to remove
the real speech signals from the spectrogram. This explains the
reason why DNN-based approaches degrade the recognition
accuracies in Table 1. RNN does a better job than DNN, but
also fails to keep the real signals in low frequency bins. As a
comparison, EHNET finds a good tradeoff between removing
background noise and preserving the real speech signals: it is
better than DNN/RNN in preserving high/low-frequency bins
and it is superior than MS in removing background noise. It is
also easy to see that EHNET produces denoised spectrogram
that is most close to the ground-truth clean spectrogram.

4. CONCLUSION

We propose EHNET, which combines both convolutional and
recurrent neural networks for speech enhancement. The in-
ductive bias of EHNET makes it well-suited to solve speech
enhancement: the convolution kernels can efficiently detect
local patterns in spectrograms and the bidirectional recurrent
connections can automatically model the dynamic correlations
between adjacent frames. Due to the sparse nature of convolu-
tions, EHNET requires less computations than both MLPs and
RNNs. Experimental results show that EHNET consistently
outperforms all the competitors on all 5 different metrics, and
is also able to generalize to unseen noises, confirming the
effectiveness of EHNET in speech enhancement.
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