Cooperative Multi-Agent Reinforcement Learning

Shimon Whiteson Dept. of Computer Science University of Oxford

joint work with Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, and Nantas Nardelli

July 4, 2018

Single-Agent Paradigm

Markov Decision Process

- Agent observes the *state s*
- Selects an *action*: $u \in U$
- State transitions: $P(s'|s, u) : S \times U \times S \rightarrow [0, 1]$
- Receives *reward*: $r(s, u) : S \times U \rightarrow \mathbb{R}$
- Goal: maximise expected cumulative discounted return:

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

Value Functions

• Given a policy $\pi(s, a)$, the *value function* is:

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\mathsf{R}_t | s_t = s
ight]$$

• The action-value function is:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[R_t|s_t = s, a_t = a
ight]$$

• Estimate *Q*-values using a *temporal difference* update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

• Act (soft) greedily wrt to Q-values:

$$a_t = rg\max_a Q(s_t, a)$$

Policy Gradient Methods

- What about when greedification is hard, e.g., continuous actions?
- Optimise π_{θ} with gradient ascent on expected return:

$$J_{\theta} = \mathbb{E}_{s \sim \rho^{\pi}(s), u \sim \pi_{\theta}(s, \cdot)} \left[r(s, u) \right]$$

• Policy gradient theorem [Sutton et al. 2000]:

$$\nabla_{\theta} J_{\theta} = \mathbb{E}_{s \sim \rho^{\pi}(s), u \sim \pi_{\theta}(s, \cdot)} \left[\nabla_{\theta} \log \pi_{\theta}(u|s) Q^{\pi}(s, u) \right]$$

Actor-Critic Methods [Sutton et al. 00]

• Estimate gradient with trajectory τ and learned *critic* Q(s, u):

$$g(au) = \sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(u_t|s_t) Q(s_t, u_t)$$

Baselines

• Reduce variance with a *baseline* b(s):

$$g(\tau) = \sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(u_t|s_t) (Q(s_t, u_t) - b(s_t))$$

•
$$b(s) = V(s) \implies Q(s, u) - b(s) = A(s, u)$$
, the advantage function:
 $g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_t|s_t) A(s_t, u_t)$

• TD-error $r_t + \gamma V(s_{t+1}) - V(s)$ is an unbiased estimate of $A(s_t, u_t)$:

$$g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_t|s_t)(r_t + \gamma V(s_{t+1}) - V(s_t))$$

Shimon Whiteson (Oxford)

Deep Actor-Critic Methods

- Actor and critic are both deep neural networks
 - Convolutional and recurrent layers
 - Actor and critic share layers
- Both trained with stochastic gradient descent
 - Actor trained on policy gradient
 - Critic trained on TD(λ) or Sarsa(λ)

Multi-Agent Paradigm

Types of Multi-Agent Systems

• Cooperative:

- Shared team reward
- Coordination problem

• Competitive:

- Zero-sum games
- Individual opposing rewards
- Minimax equilibria

• Mixed:

- General-sum games
- Nash equilibria
- What is the question?

Coordination Problems are Everywhere

Multi-Agent MDP

- All agents see the global state s
- Individual actions: $u^a \in U$
- State transitions: $P(s'|s, \mathbf{u}) : S \times \mathbf{U} \times S \rightarrow [0, 1]$
- Shared team reward: $r(s, \mathbf{u}) : S \times \mathbf{U} \rightarrow \mathbb{R}$
- Equivalent to an MDP with a factored action space

Dec-POMDP

- Observation function: $O(s, a) : S \times A \rightarrow Z$
- Action-observation history: $au^a \in T \equiv (Z imes U)^*$
- Decentralised policies: $\pi^a(u^a|\tau^a): T imes U o [0,1]$
- Centralised learning of decentralised policies

Independent Actor-Critic

- Inspired by independent Q-learning [Tan 1993]
 - Each agent learns independently with its own actor and critic
 - Treats other agents as part of the environment
- Speed learning with *parameter sharing*
 - Different inputs, including a, induce different behaviour
 - Still independent: critics condition only on τ^a and u^a
- Limitations:
 - Nonstationary learning
 - Hard to learn to coordinate
 - Multi-agent credit assignment

Counterfactual Multi-Agent Policy Gradients

- Centralised critic: stabilise learning to coordinate
- Counterfactual baseline: tackle multi-agent credit assignment
- Efficient critic representation: scale to large NNs

Centralised Critic

 $\mathsf{Centralisation} \to \mathsf{Hard}\ \mathsf{Greedification} \to \mathsf{Actor-Critic}$

$$g_{a}(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_{t}^{a} | \tau_{t}^{a})(r_{t} + \gamma V(s_{t+1}) - V(s_{t}))$$

Shimon Whiteson (Oxford)

Wonderful Life Utility [Wolpert & Tumer 2000]

Difference Rewards [Tumer & Agogino 2007]

• Per-agent shaped reward:

$$D^a(s,\mathbf{u}) = r(s,\mathbf{u}) - r(s,(\mathbf{u}^{-a},c^a))$$

where c^a is a *default action*

- Limitations:
 - ▶ Need extra simulation to estimate counterfactual $r(s, (\mathbf{u}^{-a}, c^{a}))$
 - Need domain knowledge to choose c^a

Counterfactual Baseline

• Use $Q(s, \mathbf{u})$ to estimate difference rewards:

$$g_{a}(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_{t}^{a}|\tau_{t}^{a}) A^{a}(s_{t}, \mathbf{u}_{t})$$
$$A^{a}(s, \mathbf{u}) = Q(s, \mathbf{u}) - \sum_{u^{a}} \pi^{a}(u^{a}|\tau^{a}) Q(s, (\mathbf{u}^{-a}, u^{a}))$$

- Baseline computes expectation wrt *u^a*
- Critic obviates need for extra simulations
- Expectation obviates need for default action

Efficient Critic Representation

Starcraft

Starcraft Micromanagement [Synnaeve et al. 2016]

Decentralised Starcraft Micromanagement

Baseline Algorithms

• *IAC-V*: independent actor-critic with $V(\tau^a)$ (TD error)

- *IAC-Q*: independent actor-critic with $A(\tau^a, u^a) = Q(\tau^a, u^a) V(\tau^a)$
- Central-V: centralised critic V(s) (TD error)
- Central-QV:
 - Centralised critics $Q(s, \mathbf{u})$ and V(s)
 - Advantage gradient $A(s, \mathbf{u}) = Q(s, \mathbf{u}) V(s)$
 - COMA but with b(s) = V(s)

COMA Results vs. Baselines (Average Performance)

Shimon Whiteson (Oxford)

COMA Results vs. Centralised (Best Agents)

Мар	СОМА	Heuristic	DQN	GMEZO
3 Marines	98	74	-	-
5 Marines	95	98	99	100
5 Wraiths*	98	82	70	74
2 Dragoons & 3 Zealots	65	68	61	90

Counterfactual Multi-Agent Policy Gradients

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson

The Outstanding Student Paper of AAAI-18