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Single-Agent Paradigm

Shimon Whiteson (Oxford) Cooperative Multi-Agent RL July 4, 2018 2 / 27



Markov Decision Process

Agent observes the state s

Selects an action: u ∈ U

State transitions: P(s ′|s, u) : S × U × S → [0, 1]

Receives reward: r(s, u) : S × U → R

Goal: maximise expected cumulative discounted return:

Rt =
∞∑
k=0

γk rt+k
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Value Functions

Given a policy π(s, a), the value function is:

V π(s) = Eπ [Rt |st = s]

The action-value function is:

Qπ(s, a) = Eπ [Rt |st = s, at = a]

Estimate Q-values using a temporal difference update rule:

Q(st , at)← Q(st , at) + α[rt + γQ(st+1, at+1)− Q(st , at)]

Act (soft) greedily wrt to Q-values:

at = arg max
a

Q(st , a)
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Policy Gradient Methods

What about when greedification is hard, e.g., continuous actions?

Optimise πθ with gradient ascent on expected return:

Jθ = Es∼ρπ(s),u∼πθ(s,·) [r(s, u)]

Policy gradient theorem [Sutton et al. 2000]:

∇θJθ = Es∼ρπ(s),u∼πθ(s,·) [∇θ log πθ(u|s)Qπ(s, u)]
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Actor-Critic Methods [Sutton et al. 00]
Estimate gradient with trajectory τ and learned critic Q(s, u):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)Q(st , ut)
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Baselines

Reduce variance with a baseline b(s):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(Q(st , ut)− b(st))

b(s) = V (s) =⇒ Q(s, u)− b(s) = A(s, u), the advantage function:

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)A(st , ut)

TD-error rt + γV (st+1)− V (s) is an unbiased estimate of A(st , ut):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(rt + γV (st+1)− V (st))

Shimon Whiteson (Oxford) Cooperative Multi-Agent RL July 4, 2018 7 / 27



Deep Actor-Critic Methods

Actor and critic are both deep neural networks

I Convolutional and recurrent layers

I Actor and critic share layers

Both trained with stochastic gradient descent

I Actor trained on policy gradient

I Critic trained on TD(λ) or Sarsa(λ)
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Multi-Agent Paradigm
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Types of Multi-Agent Systems

Cooperative:
I Shared team reward
I Coordination problem

Competitive:
I Zero-sum games
I Individual opposing rewards
I Minimax equilibria

Mixed:
I General-sum games
I Nash equilibria
I What is the question?
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Coordination Problems are Everywhere

Shimon Whiteson (Oxford) Cooperative Multi-Agent RL July 4, 2018 11 / 27



Multi-Agent MDP

All agents see the global state s

Individual actions: ua ∈ U

State transitions: P(s ′|s,u) : S ×U× S → [0, 1]

Shared team reward: r(s,u) : S ×U→ R

Equivalent to an MDP with a factored action space
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Dec-POMDP

Observation function: O(s, a) : S × A→ Z

Action-observation history: τ a ∈ T ≡ (Z × U)∗

Decentralised policies: πa(ua|τ a) : T × U → [0, 1]

Centralised learning of decentralised policies
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Independent Actor-Critic

Inspired by independent Q-learning [Tan 1993]
I Each agent learns independently with its own actor and critic
I Treats other agents as part of the environment

Speed learning with parameter sharing
I Different inputs, including a, induce different behaviour
I Still independent: critics condition only on τ a and ua

Limitations:
I Nonstationary learning
I Hard to learn to coordinate
I Multi-agent credit assignment
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Counterfactual Multi-Agent Policy Gradients

Centralised critic: stabilise learning to coordinate

Counterfactual baseline: tackle multi-agent credit assignment

Efficient critic representation: scale to large NNs
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Centralised Critic

Centralisation → Hard Greedification → Actor-Critic

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )(rt + γV (st+1)− V (st))
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Wonderful Life Utility [Wolpert & Tumer 2000]
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Difference Rewards [Tumer & Agogino 2007]

Per-agent shaped reward:

Da(s,u) = r(s,u)− r(s, (u−a, ca))

where ca is a default action

Limitations:

I Need extra simulation to estimate counterfactual r(s, (u−a, ca))

I Need domain knowledge to choose ca
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Counterfactual Baseline

Use Q(s,u) to estimate difference rewards:

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )Aa(st ,ut)

Aa(s,u) = Q(s,u)−
∑
ua

πa(ua|τ a)Q(s, (u−a, ua))

Baseline computes expectation wrt ua

Critic obviates need for extra simulations

Expectation obviates need for default action
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Efficient Critic Representation
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Starcraft
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Starcraft Micromanagement [Synnaeve et al. 2016]

Shimon Whiteson (Oxford) Cooperative Multi-Agent RL July 4, 2018 22 / 27



Decentralised Starcraft Micromanagement

x
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Baseline Algorithms

IAC-V: independent actor-critic with V (τ a) (TD error)

IAC-Q: independent actor-critic with A(τ a, ua) = Q(τ a, ua)− V (τ a)

Central-V: centralised critic V (s) (TD error)

Central-QV:

I Centralised critics Q(s,u) and V (s)

I Advantage gradient A(s,u) = Q(s,u)− V (s)

I COMA but with b(s) = V (s)
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COMA Results vs. Baselines (Average Performance)
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(c) 5 Wraiths
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(d) 2 Dragoons & 3 Zealots
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COMA Results vs. Centralised (Best Agents)

Map COMA Heuristic DQN GMEZO

3 Marines 98 74 - -
5 Marines 95 98 99 100

5 Wraiths* 98 82 70 74
2 Dragoons & 3 Zealots 65 68 61 90
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Paper

Counterfactual Multi-Agent Policy Gradients
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